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Las observaciones de tiempos de recorrido y amplitudes son de gran importancia en la interpre
tación sismológica tanto de fuente como de estructura. Se presenta aquí un método nuevo pa
ra obtener tiempos de recorrido y rayos para medios cuya velocidad de propagación de onda 
puede ser especificada analíticamente. Se proveen ejemplos en dos dimensiones y se desarrolla 
una extensión a tres dimensiones. Los resultados de aplicarlo a un modelo, se pueden usar en la 
construcción de sismogramas sintéticos o en esquemas de inversión de tiempos e interpretación. 
Numéricamente, este método es una extensión de otros métodos para resolver ecuaciones dife
renciales; la técnica, usual de predictor - corrector se reemplaza por un criterio simple. Compu
tacionalmente es sencillo; barato y arroja resultados precisos. 

ABSTRACT 

Travel times and amplitude observations are of prime importance in seismic interpretation of 
both source and structure. A new method for computing travel times and ray paths for media 
whose velocity law of wave propagation and boundaries are specified analitically, is presented 
here. Toe method is illustrated by severa! examples in two dimensions, and an extension to the 
three dimensional case is developed. This method facilitates further computations related to 
the construction of synthetic seismograms, and provides better tools for data inversion and 
model interpretation. Numerically, this method is an improvement over existing methods for 
solving certain types of differential equations, where a ray path is considered as a curve in space. 
Computationally, the method is straightforward, and yields accurate results with relatively lit
tle effort. The usual predictor-corrector control is replac~d by a pair of easy to apply criteria. 

• Centro de Investigación Cient(fica y Educación Superior de Ensenada, (CICESE), B. Cfa., 
MEX/CO. 
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1. INTRODUCTION 

Travel times and amplitudes of observed records are powerful tools in 
seismic data analysis. Until very recently, seismic media have usually 
been modeled by layers where velocity of propagation depends in sim
ple ways on depth only. New methods have been reported for comput
ing travel time curves and ray paths and for inverting travel time data in 
laterally heterogeneous media. Sorne of these methods salve a system 
of partial diff erential equations numerically, while others divide the me
dia in regions where either the velocity or its gradient are homogeneous, 
and use previously known analytical solutions of the ray problem. Ex
amples may be found in Pereyra, Lee and Keller, (1980), Lentini and 
Pereyra (1977), Jacob (1970), Marks and Hron (1980), Will (1976), 
Whittal and Clowes (1979), Julian and Gubbins (1977), Green (1976), 
Aric et al. ( 1980). Pure numerical solutions are expensive, and the use of 
regions produce singularities that affect later calculations (synthetic 
seismograms, for example). 

A majar difficulty of the inverse problem is the lack of uniqueness of 
solutions. Generally, the number of possible solutions is reduced by 
geological restrictions and, if possible, by comparisons of observed and 
computed amplitudes. This step requires generating synthetic seismo
grams. There are many solutions to this problem, the most important 
or realistic ones being very difficult to use. Complete methods yield 
solutions as difficult to interpret as the actual recorded data (Alterman 
and Karal, 1968; Smith, 1975) and simpler methods that provide inter
mediate results suff er from singularities (Cagniard de - Hoop, Reflec
tivity, Asym ptotic Ray Theory ). In general, calculations are lengthy 
and expensive, except in Asymptotic Ray Theory (ART), which is valid 
for heterogeneous media. 

Despite its simplicity there are singular cases in ART, fo~ instance, 
velocity discontinuities produce triplications, and gradient discontinui
ties cause caustics. This peculiarities may introduce difficulties in the 
computation of synthetic seismograms even if the gradient discontinui~ 
ties are artificial and the triplications are small. In a recent paper by 
Chapman and Drummond (1982), this inconvenience is not important 
because the WKBJ algorithm automatically smooths the results. In all 
these methods the computation of the travel times and ray paths·is cru
cial, because they reflect characteristics of the medium. 
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In this paper, I propase a simple method for computing travel times 
and ray paths for media whose velocities are continuous functions of 
the coordinates, except at actual (physical) discontinuities. The method 
is a limiting case of the "circular approximation" (Marks and Hron, 
1980; Arle et al., 1980), as well as an analogy of Euler's method for 
solving differential equations of the first order. Gebrande (1976) re
ported a method essentially similar, but the basic formulas used to com
pute the ray displacement differ, and here a three dimensional proce
dure is explained. 

A ray is a curve representing the evolution of a specific point on a 
wavefront from the instant it is produced until it emerges to the free 
surface. At a given instant, the path describes locally an are of a circle 
contained in an instantaneous plane of propagation. This plane con
tains the vector of slowness and of gradient of velocity. The local circle 
is well known in differential geometry as the "oscullating circle", an im
portant characteristic being that its first and second derivatives coincide 
with the corresponding derivatives of the ray path curve (Eisenhart, 
1909, 1960). In the next section the method will be described and jus
tified, examples will be given and the results will be compared with the 
results of other authors. Extension to three dimensions will be discus
sed in section 3. 

The method does not require of large computer space. Models are 
specified with few parameters. The final result is an interactive program 
which provides a mean to readily search for regions of interest and 
more realistic ray paths. 

2. DESCRIPTION OF THE METHOD 

Several methods for seismic ray tracing and for travel time determina
tion have been reported recently. Most of them divide the medium un
der study into regions whose velocity or velocity gradient are homo
geneous, e.g. the circular approximation (Marks and Hron, 1980; Aric 
et al., 1980). Chapman and Drummond (1982) have used this tech
nique to obtain data for the computation of body wave seismograms 
using Maslov's Asymptotic Theory. In that paper, the authors remark 
that, in order to obtain significant amplitudes, the velocity must be a 
smooth function of the coordinates of the medium, so as to .prevent the 
the formation of spurious critica} points, caustics, and triplications. The 

'2 
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medium is divided in triangular regions (two dimensions). Each region 
is characterized by a linear velocity law so that travel time and geome
trical spreading are easy to find. The gradient discontinuities are small 
and do not cause too much trouble in forming the synthetic seismo
gram. Real discontinuities are made to coincide with appropriate sides 
of triangles, and the velocity does not change discontinuously in sides 
which are not real boundaries. 

This work originates in the circular approximation. The idea is to 
divide a medium in a very large number of very small triangular regions. 
If the propagation velocity of a wave is represented through the me
dium as a smooth function of the coordinates, every point in the me
dium becomes equivalent to an infinitesimal triangular region so that 
the velocity may be approximated by a Taylor expansion of first order, 
thus making it possible to apply the formula of the circular approxima
tion in a neighborhood of each point. In this way, forced use of discon
tinuities of either the velocity or its gradient, and the formation of 
spurious critica! points and caustics, may be prevented. 

Suppose a ray through a seismic medium for which the variation of 
velocity is small. We can write 

v = v(x, z) (1) 

in a neighborhood of (x0 , z0 ): 

v(x, z) = vo+(av/3x)0 (x - xo) +(av/az)o(z - zo) 

(2) 

where 
b 1 = 3v/3x, 

and 

(3) 

is the absolute value of the gradient vector. 

The small triangle in Fig. 1 illustrates this case. Inside, the gradient 
vector is constant and forms an angle 

(4). 

with the negative z-axis. It is well known (Nettleton, 1940) that in a 
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medium of constant velocity gradient, the ray describes an are of a cir
cle whose radius is given by 

R = 1/p'b (5) 

where p' = seni'/v is the h9rizontal slowness in a system of coordinates 
rotated by an angle r (Fig. 2), so that the direction of the z'-axis coin
cides with the direction of - º-· In the rotated system (x', z' ), called 
"local system" from now on, the velocity may be expressed by: 

v(x, z) = v¿ - bz' (6) 

so that p' is constant. The local slowness components are obtained 
from the "externa!" slowness components (p, q) by the usual rotation 
in two dimensions: 

p' = p cosr +q sinr 
(7) 

q' = - p sinr +q cosr 

where cosr = - b2 /b and senr = b1 /b; combining these with (7) and (5), 
it is possible to write 

R = (-pb2 +qb¡) (8) 

for the radius of curvature of the ray at a point. The center of the local 
circle is located at: Xc = xo + R sin0 

Zc = zo + R cos0 

And the circle satisfies the equation 

(x - Xc)2 + (z -Zc)2 = R2 

0.00 
11.36 22.71 

-8.32 

-16.64 

34.07 

(9) 

(10) 

45.42 

Fig. l. Infinitesimal triangular region. lnside this region v(x, z)=vo+ b 1x+ b2z, b¡, b2 = const. 
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11.36 22.71 34.07 

V 1 

Rot 

45.42 

Fig. 2. Local system at point (x, z). 

Determination of the displacement 

In Marks and Hron (1978) and Chapman and Drummond (1982), the 
advance of a ray path inside a triangular region is determined by solving 
for the intercept of the ray with the appropriate side of the triangle. 
This implies many operations, since there is a system of equations for 
each side, and various criteria of selection must be used. In the present 
case, one needs to be concerned only with the physical boundaries, and 
may drop any other auxiliary boundary. Thus, the local advance of a 
ray may be determined by means of a specific rule governing the ade
quacy of its size and direction. The only remaining concern is that of 
determining if the advance is "good" (final point inside the region) or 
"bad" (final point outside the region). "Bad" advances are fixed by an 
interpolation to the adequate boundary, (Fig. 3). This scheme has 
been previously used (see, for instance Gebrande, 1976). 

Let the horizontal displacement be dx. It is convenient to write itas: 
dx=R/N (11) 

if it is required that this displacement agrees with the initial direction 
of the ray (Fig. 2), it is possible to write 

xr = x0 + dx . (12) 
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and from (10) 
zr = Zc + (R2 

- (xr - Xc)2 )112 (13) 

Once the point (xf, zf) has been correctly determined, the compo
nents of slowness are given by (9). As already mentioned, if both, xf 
and zf are inside the initial region (Fig. 3 ), the computation of the ray 

e e 

Po 

Fig. 3. (a) "Good" displacement. (b) "Bad" displacement. 

path may proceed. If either x or z fall outside the initial region, it is 
necessary to interpola te the ray path to the crossed boundary. The new 
region is thus determined, and if necessary, Snell's Law is applied at the 
boundary. The horizontal displacement must satisfy 

lxf- Xcl<< R 

If this condition is not met, it is enough to interchange x and z in 
(11 ), (12) and (13) to continue the calculations. This procedure may 
be seen as the construction of the solution of a differential equation. 
Toe proposed method is similar to the implicit Euler's method for solv
ing differential equations of the form 

~ = f(x, z) 
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but here the solution includes á term (d :x~) associated with the curva
ture. In Euler's method, the increment in x is either constant or interpol
ated by means of a rule (see, for example, Dalquist and Bjorch, 1974) 
so that zc = z0 + f(x0 , z0 )dx 

and we get a linear (first order) advance. Other methods achieve higher 
order approximations using several points (Runge-Kutta methods). 

Let 
dz/dx = f(x, z) (14) 

be the differential equation of a curve (a ray), from which initial con
ditions xo, zo, po, qo (dz/dx = q/p) are known. The radius of curvature 
is: 

(15) 

One can say that (15) is an intrinsic property of every real curve of 
class C(2). The function solving (14) may be interpreted as a curve cor
responding to a particular ray in a medium whose velocity is given by 
(1 ). Equating (15) and (8) it is possible to obtain 

(16) 

_This is a second order differential equation for the ray. Its solution 
exists for cases of geophysical interest, although it may be extremely 
difficult to obtain for any but the simplest ones. For example, if the 
medium is homogeneous, (16) reduces to (b 1 = b2 = O) 

(17) 

whose solution is z = c1 x + c2 (if the velocity is homogeneous the rays 
are straight lines). A second case is b 1 = O, b2 = const., v = v(z). Inte
gration of ( 17) yields 

(x - c1/pb)2 + (z - c2 )
2 = 1/(pb)2 

agreeing with (10). 
(18) 

A third very simple case is b1 = const, b2 = const, which reduces to 
the case above with p = p'. The solution of more complex cases is a 
subject for future investigation. 
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Travel time computation 

The detennination of travel time as the ray goes from (xo, zo) to (xf, 
zf) is carried out in a simple way in the local system, putting 

or 

with 

and 

f f 
T = f dT = fRd0/v 

o o 

f 
T = (1/b)[ln((l + sin0)/cos0))

0 

sin 0' = - cos i' coso' = sini' 

0' = 0 + r 

(19) 

where 0 is the angle the slowness vector fonns with the x-axis and 0' is 
the angle of the same vector with the local x'-axis (Fig. 2). 

As will be seen la ter, it is not necessary that N, in expression (11 ), be 
very large in order to obtain an adequate ray path. With N = 100 is suf
ficient. For this value of N, sin0 = 0 up to the fifth significant figure, 
which means that, concerning the path, a constant velocity and a cons
tant gradient would give essentially the same result. The travel time, on 
the contrary, is more sensitive to N at least by an order of magnitude. 
It is worth noting that the proposed algorithm automatically provides 
resolution, in the sense that the path is effectively controlled by the 
combination 1/p'b, i.e., by the radius of curvature, so that those regions 
where the radius is small will require more points to specify the path. 
Caution is recommended in those cases in which the curvature changes 
sign (Fig. 4 ), because in the neighbourhood of the inflexion point the 
radius becomes too large, and the advance must be controlled to pre
vent divergence in the solution. This is easily achieved by defining a 
minimum advance, to be used if necessary, instead of that determined 
by the local radius. 
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dX=R/N 
- ------. -------7 

' ' ' ' 1 
'-1 

(Xf,Zf) '\ 

Fig. 4. A ray with a point of inflexion. In a neighbourhood of (xo, zo), R -- 00 • 

If the velocity of propagation is a linear function of the coordinates, 
the solution (12) and (13) is exact, since the Taylor expansion is com
plete. Later it will be numerically shown that even for non-linear cases 
the approximation holds good. 

3. EXAMPLES 

In arder to establish comparisons, I have taken the examples con
tained in Chapman and Drummond ( 1982), for two reasons: 1) These 
models illustrate the formation of caustics, and (2) They are very sim
ple to represen t analytically. 

Model CD 1 consists of two layers with no discontinuity in velocity, 
and the boundary at 1 O u. depth. The jump in gradient at this depth is 
reflected as a caustic at a distance of 45 u. This model is specifieq by a 
set of equations and conditions: 
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v = vo = 3.0 u/sec 

v = vo + b{z - zo) 

b = - 0.25 u/seg/u, zo = - lOu 

449 

(20) 

The result is shown in Fig. 5. This case is exact. Fig. S(a) shows the 
travel time curve, while Fig. S(b) illustrates several rays for this model. 

31.00 

''·º' 

J0.00 

o.eo 
71.0t 

·IS.O, 

..... 

.... to o.oo tS,IO 31.IIO ••• ••• ,._ .. 
Fig. S. Model CDI. (a) Raypaths and travel times. (b) Note the caustic close to 45 u. 

Model CD2 is similar to the previous one, but in the half space a 
dome shaped anomaly has been included. In this example, the advan-

The model and computed ray paths are shown in Fig. 6. The features 
of the ray paths are similar to those reported by Chapman and Drum
mond, exceptas regards to numerical details concerned with the specifica-
tion of the model. · 
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tages of modeling through analytical expressions are clearer. In Chap
man and Drummond (1982), the dome has been modeled by modifying 
the triangles associated with the anomalous region. To change the 
shape or position of this anomaly, one must reparameterize a consider
able portion of the model. In the method I discuss here it is enough to 
change the value of three parameters: the position of the center of the 
anomaly (xc), its extent (A) and its amplitude (.6.v). The anomaly is 
modulated horizontally by a hyperbolic secant (Fig. 6) while its posi-

o.oo 

(1) ---·------------- -----------
(2) 

-20.00 --·- --- - - - -------
(l) 

0.001-----------------...L.---I 

Fig. 6. Model CD2. (a) Velocity as function of depth at X= xc. (b) Isovelocity lines. (e) Ray
paths. The anomaly is efticiently modeled by a hyperbolic secant sech(A(x-xc)). · 
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tion is determined by the pair (xc, za), with - 1 Ou > za > 20u. The 
maximum of the anomaly is at z = - l Su. The chosen analytical for
mulation of this model is as follows: 

v = 3.0 u/s 

vz = 3.0 - b(z - zo) 
(21) 

v = v2 + l:wi(z) sech [A(x - xc)] 

i = 1,2,3, Ó.V3 = 0, XC= 20u. 
JQ.00 

20.00 

10.00 

75.00 

•IS.DO 

•30.tJO 

•Jt.00 

•20.00 

Fig. 7. Model CD3. This model includes a valley. This is well represented by an inverted hy
perbolic secant. (a) Travel times for the raypaths in (b). (e) lsovelocity lines. 
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In model CD3 (Fig. 7), a valley has been included using the same 
technique (an upside-down dome). An inverted hyperbolic secant func
tion adequately achieves a good representation of the valley. The ex
tent of the bell shape is controlled by the factor A in (21 ). Examina
tion of results indicates that the method works properly and that dif
ferences between these results and those mentioned above are caused 
by differences in the parameterizing of models (discrete versus contin
uous case). For further illustration, models CD4 and BVS, the first, 
consisting of two layers with a discontinuity in the velocity gradient 

10.00 

5.00 · 

O.DO 
D.00 15.00 30.00 '15.00 60.00 75.00 

O.DO 

J:,.Oll 

-30.00 
O.DO IS.DO 30.00 'IS.DO 60.00 75.00 

Fig. 8. Model CD4. Two layers with homogeneous gradient, with no discontinuity in velocity 
The triplication zone is noticeable in the rays, but it is imperceptible in the travel time curve. 
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(Fig. 8), and the second, of four layers including a low velocity zone 
between z = - 15 u and z = - 20 u (third layer, Fig. 9) have been in
cluded. Figure 1 O shows the results obtained varying N from 50 to 
10,000 for three different rays in model CD2. From these examples, it 
is clear that a value of N = 100 is enough to achieve proper results. 

30.00 

20.00 

10.00 

O.DO 
o 75.00 

·15.00 

-30.00 

º-ºº 15.00 30.00 %.DO 60.00 75.00 

Fig. 9. Model BV5. Four layers including a LVZ between z= -15 u and z= -20 u. 

4. THE THREE DIMENSIONAL CASE 

This case needs not present special difficulties if one uses the two-dimen
sional theory developed so far, the fundamental fact being that locally, 
the ray is an are of a circle whose radius (of curvature) is R = ) /p'b', 
where p' is the local horizontal slowness. The local system is built as 
follows: the ray is contained in an instantaneous plane of propagation, 
as illustrated in Fig. 11. This plane contains the vectors "\! and grad y. 
A unit vector perpendicular to that plane is 

ñ = (!!X grad(v))/l!!X grad(v)I = f (22) 
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or, 
ñ = nl,n2,n3) = f 

z z. 

111 :,J u, 

"' !!! 1- CD .,, CD 
.... 

CD "! N N dr· t'! 

~ ~ ~ 111 111 
ISI 

11 111 
111 - ISI 
ISI ~ .... 

z. 

ISI 1 :,J u, 
1 

ISI 1 1 ISI CD CD .... X 
N .... r-- .... 

In e¡ ~ • • • u, 

Fig. 10. Convergence of (a) X, (b) T, (e) p, (d) q. 

" 
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a unit vector in the plane, perpendicular to (22), is 

k' = -grad(v)/lgrad(v)I = (kl,k2,k3) (23) 

and a unit vector in the plane and normal to (23) and (22) is 

i' = j' x k' = (il, i2, i3) (24) 

so that i', j' and k' form an orthogonal three-dimensional basis, and the 
rotation from the externa} system (i, j, k) to the local system (i ',] ', k: ') is 

( 

il 

Rt = _::/b 

i2 

n2 

-b2/b 

(25) 

The rotated (local) components of slowness, position or any other 
vector, may be thus immediately obtained. In particular: 

p' = pil + ri2 + qi3 = 1:!_ • i' (26) 

Also, rotation (25) causes the y-component of every vector contained 
in the plane of propagation to vanish. 

In the local system, the slowness vector has components 

1:!. = (p', o, q') 

since in this system velocity is a function only of z', p' is conserved, and 
the path of the ray is an are of a circle. At this point, the three-dimen
sional problem has been reduced to a two-dimensional problem, already 
solved in the last section. One can then generate the "displacement" of 
the ray as described, and obtain the final point: 

1 = (x'f, D, z'f) (27) 

and with the values of x'f, z'f and X'c and Z'c (the local center of the 
circle), obtain the value q'f. The externa} corresponding quantities are 
then obtained through the inverse rotation. 

where 

r.f = (xf, yf, zf) = RC1 (!:_f) 

(28) 
~f = (pf, rf, qf) = 13r1 (1:!_'f) 

!:!Í = p', O, q'f), p' = const 

Toe set of quantities (xf, yf, zf, pf, rf, qf, specifying the new point is 
now complete. 
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Iteration of this procedure, exchanging the final point with the ini
tial one, will determine the ray path and the travel time in an analogous 
fashion to the two-dimensional case. This is possible because during 
propagation over the instantaneous plane, a ray tube experiences no ex
pansion or contraction in a direction perpendicular to the plane. This 
implies a succession of directions in which there is no distortion. In the 
ensuing paragraphs, simple examples illustrating what is to be expected 

z 

/ , , 
I 

/ 

/ 
/ , 

J 
I 

I 
I 

I 

Fig. 11. lnstantaneous plane of propagation and local system. The vector u and grad(v) are 
contained in the plane. 

from this method is explained. A program to draw the ray paths and 
the equal travel time curves (surface isochrones) is being prepared. 

y 
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5. CONCLUSIONS 

The present method is an extension of Euler's implicit method for nu
merically solving a certain type of differential equations of the first 
order. In this development, use has been made of the fact that the first 
and second derivatives of the path coincide with the corresponding der
ivatives of the oscullating circle, so that curvature is automatically taken 
into account, and consequently, the error is less than in other methods. 

n 
From this, it is possible to show that the error is .~ R¡/N3where nis the 

1=1 

number of points of a path. Since, in general, n~ N, we conclude that 
the error behaves as < R> /N2 with < R> the average radius of the ray 
path. The procedure used in constructing the "displacement" provides 
the method with an intrinsic resolving mechanism, in the sense that 
paths with greater curvature will automatically have more points. 

The computation of travel time for the three-dimensional case reduces 
to that of two-dimensions at each point of the path. The computation
al algorithm is fast and accurate. The simplicity of the formulation 
given here allows the use of analytical expressions to provide smooth 
data to use in further calculations, as for example, the construction of 
synthetic seismograms, and continuous inversion schemes. The author 
feels that the disadvantages of an analytical representation for realistic 
velocity structures are a matter of research, and that, in the long run, 
this mode of operation will prove to be more convenient than the more 
general discrete approaches. 
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