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Se desarrollan formulas para el ca!culo de residuos de tiempo de recorrido y derivadas parciales con respecto a Ia 
velocidad de propagacion de onda definida en un punto, para modelos de Ia Tierra en dos dimensiones. Las deri­
vadas estan completamente determinadas por las trayectorias (rayos). Los residuos del tiempo de recorrido son 
tan exactos como los tiempos o bservados y no es necesario resolver el problema tlpico de ex tremos fijos. Se in­
troduce un nuevo tipo de inversion que actiia directamente sobre las lineas de igual vclocidad. hacicndo posible 
Ia inspeccion visual inmediata de los resultados obtenidos durante una iteraci6n. 

Se usaron datos sinteticos correspondientes a var!os modelos para pro bar Ia validez de las formulas dcsarrolla­
das, con excelentes resultados. La forma de tratar un problema particular depende tanto de los datos disponibles 
como de Ia estructura buscada. 
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ABSTRACT 

Reliable formulae for the computation of travel time residuals and partial derivatives for the inverse problem in 
two dimensions based on ray tracing are developed. The partial derivatives are completely determined by the 
path and the travel time residuals are as accurate as the observed travel times; it is not necessary to solve the tra­
ditional 'fixed ends problem'. A new kind of inversion is introduced that operates directly on the shape of the 
isovelocity lines, making possible the immediate visual inspection of the results of an iteration. 

The formulae were checked against synthetic data corresponding to a variety of models. The way to approach 
a particular problem depends both on the available data and the structure. 

INTRODUCTION 

Lateral variations of earth structure have become of great interest both for geologists 
and geophysicists, especially when studies of the crust are undertaken. Methods for 
inverting seismic data have been reported that include hypocenter relocation and re­
parameterization of the medium, either continuous or discrete (c.f Spencer and 
Gubbins (1980), Firbas (1981 ), Thurber (1980) . All these methods are based on 
ray tracing by various approaches, for example Cerveny, Molotkov and Psc~ncik, 
1977, or Pereyra et al., 1980. Particularly interesting is Fir bas (1981 ), because he 
uses' continuous analytical functions to describe the velocity of propagation, al­
though this method is limited to laterally homogeneous starting models. In other 
method (Thurber, 1980) the partial derivatives depend on the number of points 
used to interpolate the velocity, and these points change even for close-by rays. All 
methods require the determination of the travel time at a certain number of points 
of observation, i.e., the solving of the so-called 'two-points ray tracing' or 'fixed ends 
extremal travel time' problem. In this paper we relax such requirement and use a 
second order correction to the travel time of a ray emerging close to an observation 
point. Finally, we introduce a new approach to the inversion procedure that we call 
'non-rigid inversion'. This kind of inversion acts directly upon the position of isovel­
ocity lines, thus making the visualization of the result of each iteration fast and easy. 
We believe that in this way some control on the successive steps of inversion is 
achieved, making it more active and dynamic. 

THEORY 

In this section, we will obtain an expression for the partial derivative of the travel 
time corresponding to a ray path with respect to a point velocity, starting with the 
ray-tracing technique known as 'circular approximation' (Gebrande (1976), Aric and 
Sailer (1980) or Madrid and Traslosheros (19~3)). 
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Consider a triangular region S bounded by the lines joining vertices v 1 , v 2 and v 3 

(Fig. I). We assume that inside this region the velocity of propagation of a wave is 

l 

Fig. 1 

linear in the 'absolute' or 'external' coordinates, x, z. Thus we can write 

v(x,z) = vo+b 1x+b 2 z 

(x, z)eS. The corresponding equations for the velocities at the vertices are 

Equations (2) may be solved by Kramer's rule to yield the values ofvo, b1 , b2 : 

b
1 

_ D(l, v, z) 
- A 

b
2 

= D(l •• x. v) 
A 

D(v, x, z) 
vo = A 

(3) 

(1) 

(2) 
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where A = D(l, x, z) is the determinant of the system and D(l, v, z), D(l, x, v) and 
D(v, x, z) are the auxiliar determinants. It is easy to see that A is twice the area of 
the region S. 

Let us analyze the case b1 = 0, b2 = - b; i.e., the velocity is laterally homogene­
ous, but increases with depth: 

v = vo + b2z (4) 

As is well known, in such a medium, every ray is characterized by a ray parameter 
'p' that is constant along the path. The ray parameter is the horizontal component 
of the slowness vector: 

~ = (p, q) = + cosO, sinO) 

and the path is a circular arc of radius of curvature 

-1 R=­pb 

(S) 

(6) 

In a medium with both b1 = 0, b2 = 0 (Fig. 2) the vector gradient is tilted with 
respect to the vertical axis by an angle 

(7) 

so that performing a rotation of the original axis (x, z) by an angle r, as indicated in 
the figure, we obtain a velocity gradient and slowness components 

12_' = (0, b~) 

p' = pcosr + qsenr 

q' = -psenr + qcosr 

where b' = - b = b~ + b~) 112 • 

The (x', z') system is called the 'local system'. From the figure, it is clear that 
bl 

cosr = 0 

b 
senr = -,1-

since in the local system v = v(z') and p' = const, in analogy with (6): 

(8) 

(9) 
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I R =.­p'b' 

= (-pb2 + qbi)- 1 = const 

Fig. 2. Rotation by angler that transforms velocity v= vo+b,x+ b2z in v= vo' + b'z'. 

365 

(IO) 

X 

Suppose that a ray travels from Po to Pf in a triangular region S, as shown in Fig. 
3. The travel time is 

l!.T = J d~ (11) 

where dS = Rd8 and R is given by (1 0). The problem we are concerned with may be 
stated as follows: 

What is the change in travel tilrte ~T for a ray if we perturb, say, the velocity v, by 
a small fraccion, v3 ?; i.e., we perturb the model and want to see how much the per­
turbation alters the travel time of a ray. 
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z 
X 

Fig. 3. Example of a circular path in S from Po to Pf. 

The change in ~T may be expressed as: 

( OV dS 5 ~T) = -5v3f~ 
uV3 V 

(12) 

to integrate this expression, the partial derivative ov/ov3 , must be determined. To 
achieve this let us perturb equations (2) according to the assumption 

Sv 1 = 0 = Svo + x1Sb 1 + z1Sb2 

Again, these equations are easily solved with the aid of Kramer's rule, yielding 

Sb 1 = ( ~ )sina5v3 

Svo = ( ~ )Z~Sv3 

(13) 

(14) 

where D is the length of the side of the triangle oposite to the perturbed vertex, a is 
the angle of this side with the x-axis. A is the same determinant as in (2), and Z'bis 
the z-coordinate in a system rotated by an angle a, so that D becomes parallel with 
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the xa axis (Figure 4 ); zg is the Z coordinate for the line D. Dividing by Sv 3 and 
taking the limit as 5v3 ~ 0, we get 

ab, ( o ) . ~ -- = - sma uv3 ov 3 A 

(15) 

x---------------tr- • _ ...... - ' 

Fig. 4. The (Xa, ZQ) coordinate system is obtained by rotating the external system to align D with xa. 

To obtain the partial derivative av;av3 , a small increment in velocity is taken 
along the ray path: 

ov = ovo + xob, + z6b2 

dividing by 5v3 and taking the limit as 5v3 ~ 0: 

1Y_ = OVO + X Ob 1 + z ob2 
av3 av3 av3 av3 

(16) 

(17) 
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that, by (15) reduces to 
_Qy_ = _D_ (Za: - Z) (18) 
av3 A D 

where Z is the za: coordinate along the ray path, in the (Xa:, za:) system. Note that, 
at Z = zg, 6v = 0, whereas at Z = ZC:,- h, 6v = 6v 3 , with h = the height of the trian­
gle if Dis taken as its basis. Both results agree with (13). Expression (12) then be­
comes: 

(19) 

To evaluate this expression, we use the fact that dS/v2 = dq' /b, so that integral 
(19) may be written as at.T _ -=..D a , (20) 

av
3 

- bA f(ZD- Z)dq 

which may be integrated by parts: 

f(Z~- Z)dq' = t.[(Z~- Z)q'] + Jq'dZ 

now, using dZ = - dx'sin(r- a)+ dz'cos(r- a), the integral in the right side is 

f q'( -dx' sin(r-a:) + dz' cos(r-a:)) 

= cos(r-a:)[t.r]- p'sin(r-a:)Jdz' 
where r = T- pX is the 'Tau' function or time intercept, so that finally we have, for 
(19): 

a~; = - (D/bA)cos(a:-r)[t.T] + (Dp'/bA)[t.X] 

-(D/bA)t.[q'(Z~- Z)] (21) 

Expression (21) gives the rate of change of travel time of any ray that passes 
through the triangular region. Note that perturbing one of the vertices implies per­
turbing as many as six neighbouring regions as well (Fig. 5 ), so that the effect of 
them all must be included if necessary. The travel time for the ray in figure 5 is 

T = ~t.Ti (22) 
I 

where i = 1, 2, ... , n is the index of the circular segments along the path. We wish 
to determine 

ar 
avk 

i.e., the rate of change in travel time as vk changes. By (22), one gets 
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____rr_ = ~ at:.ru 
avk .avk (23) 

li=A,B,C,D 

Fig. 5. Regions A, B, C, D, E, and F that are affected by a perturbation of point velocity vk. 

all other terms are nill. Expressions (21) and (23 ), and knowledge of the ray path is 
all that is necessary to compute the partial derivatives required for the procedure of 
inversion. 

To complete the inversion scheme, the travel time residual eST must be calculated. 
To be rigorous, the problem of fixed ends ray tracing should be solved. However, a 
second order correction to the travel time for a ray that emerges reasonably close to 
the point of observation will prove to be sufficient. Of course, this depends on the 
deviations of the model being 'small', that is, travel time variations are of the second 
order compared with variations of the raypath. 

Figure 6 shows a ray in the gue~sed model which emerges at Xp, very close to an 
observation distance Xobs. At merging point, the ray is characterized by Tp, p, q, 
the travel time and the slowness components evaluated at the surface x = Xp, z = 0. 
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X 

wavefront 

Bouroe 

Fig. 6. Example of a ray in an assumed model arriving at Xp. 

To reach the observation distance, the wavefront must spend an extra time 

Tc = f p(X)dX (24) 

as its intercept with the surface travels from Xp to Xobs. At x = Xobs, z = 0, both 
the int~rcept and the point on the ray traveling inside the medium coincide, and so 
do their total travel times. If the variation of p(X) is known, the time correction 
(24) is exact. Since generally this is not the case, we evaluate this integral approxi­
mately expanding p(X) up to the linear term: 

p(X,z=O) = p(Xp) + (~ )(X-Xp) + ... 

= p(Xp) + ( * )(X- Xp) 

The factor (dp/dX) may be obtained as follows: in the local system, the horizon­
tal slowness p' is conserved. In going from Po' to Pf', q' changes due to the change 
in local depth z'; to first order: d , 

q'(zf') = qo' + ( ~) dz: 
dz 

by 

we get 

so that 

+ == p'2 + q'2 
v 

p' = const 

~ = _1 _ _Jiy_ = _J:L_ 
dz q'v3 dz' q'v3 

qf' = qo' + (*)dz' 
q~ 

(25) 
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the slowness vector at the final point is (pf', qf'). The rotation may be inverted to 
get: 

pf = po + _QQ. dx + _QQ. dz ax az 
= p' COST- qf' sinr 

= po - ( ~.3-) (- dx sinr + dz cosr) sinr 
qf y~ 

b b b 
= po + ( 1 

) dx - ( 1 2 
) dz 

qf' y3 b qfl y3 

From these expressions, it is seen that: 

QE_=~ 
ax q' v3 b 

~- -bl b2 
az - q' v3 b 

with similar relations for aq/ax and aqjaz. Then the travel time correction is: 

Tc = f (p + ( ~ )(X-Xp))dX 

b 
= p(Xobs- Xp) + ( -

2 
, 13 )(X obs- Xp)2 

. qv 

The residual at Xobs is then 

(26) 

(27) 

liT = Tobs- Tp- Tc (28) 

The correction term includes the term used by Wiggins and Madrid (1974), Wig­
gins (1976), and later by Chapman (1978) and Chapman and Drummond (1982) in 
the computation of synthetic seismograms. In the present study this term prevents 
the solving of the fixed ends problem. 

Once the residuals and the partial derivatives have been determined, the procedure 
of inversion is standard (c./. Wiggins (1972), Jackson (1972)). In the following sec­
tion, computational experiments and their results are explained. 
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COMPUTATIONAL EXPERIMENTS AND DISCUSSION OF RESULTS 

In this section, we report the results obtained from applying the theory developed in 
the last section to a variety of models. The examples were run as follows: first, a 
laterally heterogeneous 'actual' model was established, and a number of travel times 
and observation points (ranges) were selected by exact ray tracing. Then a laterally 
homogeneous model was designed to perform the inversion. This initial (assumed} 
model was sampled by the shooting method to determine adequate limits for the 
shooting angles. The computer program was fixed to automatically select the rays 
emerging closest to the previously selected observation ranges, and the partial deriva­
tives and time correction were computed for each selected ray. 

Two different shooting procedures were used. The first consisted of shooting the 
same number of rays (fifty or a hundred in different trials) and repeating the auto­
matic selection scheme in each iteration; the second was to keep the initial take off 
angle of each selected ray for further iterations. The first procedure was found more 
accurate, albeit more time consuming. Nevertheless, this is not a serious drawback, 
since the circular approximation is extremely fast and cheap. Although all the ex­
amples start with a laterally homogeneous model, this is not a restriction, and we 
could as well have started with a laterally heterogeneous model. 

Six different models were tried with a fixed source. The original models 1 and 2 
(Figure 7) are actually the same, but model 2 was generated by discretizing model I 
with nine points. Model 1 was inverted twice: first, using two and then four rays 
(determined and overdetermined problem), finding no difference at all. The velocity 
at the two upper points was kept fixed. In model 2 the six lower points were al­
lowed to vary. Figure 8 shows the convergence history of rays, residuals and isove­
locity lines for both models. The convergence was perfect (null residuals). The main 
difference found was the number of iterations required for convergence, four for 
the first model, eleven for the second. The values taken by the variables in succes­
sive iterations are shown in Table I. 

Model 3 is shown in Figure 9(a) together with its isovelocities and rays arriving at 
selected observation points. In this model all four points could vary. As in the pre­
vious example, convergence was perfect. It was observed that inclusion of the sec­
ond order term in (27) accelerated the convergence. In this example, five iterations 
were required when this term was left out, whereas when it was included only three 
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-10~~=---------------~~--------~ .. ~------------~--~~--------~ 
0 ----~------~--------~--------~~--~------~--~----~--------~ 

10 
( 0) (b) 

Fig. 7. (a) Model 1 is specified by the four 110mer points of the square. Only points 3 and 4 were allowed to 
vary. (b) Model 2 is specified by 9 points with interpolated values for points 2, 4, 5, 6 and 8. Points 4 to 9 were 
allowed to vary. The velocity of the starting model was 3.0 at the top (z• 0), 7.0 at the bot~om (z• -10). The 
size of the model are 10 x 10 square units. 
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•" (O) , .. ••• 

... ( bl . .. ... 
fig. 8. (a) Convergence of model I. llJJ 1.. onvergencc of model 2. TI1e figures shown correspond to iterations 
3, 7, anu 11. In (a) the rays were not interpolated. 
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T A 8 L E 

KOO I ltOD 2 

IT V3 Vlt Vlt vs V6 V7 V8 \IS 
I 6.380 7.1tlt3 lt.352 5.325 5.31t0 6.817 6.627 7.302 
2 6.1t95 7.,.03 ,.,,so 5.095 5.082 6.860 7.093 7.,.33 
) 6.500 7."00 lt.651 5.180 5.18o 6.81tO 6.835 7.)75 

" 6.500 7.1too "·'"5 5.181 5.180 6.839 6.81t8 7.367 
5 lt.61t7 5.179 5.178 6.8"0 6.852 7.371 

' 7 
8 "·''3 5.197 5.197 6.672 6.811 7.38o 
9 "·7"1 5.201 5.201 6.52lt 6.935 7.396 

10 lt.750 5.200 5.200 6.500 6.950 7.1t00 
II "-750 5.200 5.200 6.500 6.950 7.1j00 

(e) 

(It) 

.a• ... • •• 
Fig. 9. (a) left: Starting model is v1• v:;~• 3.0, V3• V4• 7.0; right: resultingmodelisv1= 3.5, v2 =4.3, v3•6.5, 
v4 • 7.4. (b) Convergence of model and residuals are shown in third and second row. The size of models is the 
same as in the previous example. 
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iterations were necessary. From this, we conclude that the determination of ac­
curate residuals improved with the inclusion of this term. The convergence history 
is shown in Figure 9(b ). 

In model 4 (Figure 1 0) two discontinuities and a low velocity zone around point 
number 10 were included. Again, the convergence was perfect in seven iterations, 
but we could see from the iterative sequence that the process could stop at the fifth. 
In this example and in model 7, the source was located at the origin . 

... ... .... ..... .... ltOO 11.00 40.00 

·UI I I ..... ~-- ---------- ----------··· ----------------- ------------. 
..... ·------------- ________ ._. _____________________________ !!_ 

1e 10 ~~ II II ... , . 
..... 
..... ~-----------L--------•e--k-----------------------~M II 

·11.11 ·-.... 
...... ..... !I • 

(a) ... ... ... ..... ... .... - .... ll.OO .... • .. 

----- ---------------------------------------------------.... 

·MH 

·• 
·II. 

--~------------------------------------------------~ 
(b) 

Fig. 10. (a) Starting model for model 4. Discontinuities at z. -3.0 and z .. -5.0 are included. (b) The resulting 
model (after 7 iterations), which is the same as the actual model. 
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Several more complicated models were tried, all with similar results. A positive 
bias was inherent in the problem in ihe sense that the assumed models had the same 
discretization as the actual ones. The results of models I and 2 show that by includ­
ing a large enough number of points the demands on the discretization are somewhat 
relaxed. Still, the number of points to use is not the only important feature. A 
more critical test was tried in which the discretized models ('actual' and assumed) do 
not coincide. Conflict is expected in this case, because the iterative solution must be 
worked out using fixed (rigid) coordinates, and as many as six actual regions could 
be partially contained in only one assumed region (Figure II). Using a large number 
of points for discretization reduces the conflict, but it does not solve it. The incom-

' ' ' ' ' \ 
' ' ' ' \ 

\ 

' ' \ I ,'L __ 
..-" T, .,.. ,, 

"""... ' ', 
' ' ' ' ' I 

' ' ' ' 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

Fig. 11. Example of incompatibilities between the assumed (solid lines) and the actual (broken lines) models. 

patibility between assumed and actual model is low, but still it does exist. An im­
proper discretization becomes important if one is concerned with economy. Geo­
logical regions which are possibly simple would require few triangles, and in this case, 
their distribution might be critical. Using always a large number of triangles· makes 
this question irrelevant at the expense of raising computational costs. 

A way to deal with this limitation was devised by means of the simple transforma­
tion defined by (1 ). Two different systems of coordinates exist (Fig'ure 12); the 
space in (a) is referred to as the 'configuration' space, defined by ordered couples 
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z 

x, X 

v (e) 

X 

IIIII 

Fig. 12. (a) lsolines ofv(x, z). (b) Iso!Jnes of z(x, v). 

(coordinates) and an associated velocity that satisfy (1 ). The system shown in (b) 
will be called 'phase' space, its vertical axis being the velocity. Due to the one-to­
one character of (1 ), every point (x, v) corresponds to a unique value of z. Further­
more, the transformation is symmetric in x, z, and v, thus the description is equi­
valent in either space. This can be seen by superposing 12(a) and 12(b), since all 
vectors remain the same as well as the raypath. Thus, inverting in phase space with 
respect to z is equivalent to inverting in configuration space with respect to v. By ( 1 ): 

5T = ( aT ) 5v = ( aT ) 5z (29) av az 
For each term in the summation (23) we have, from ( 1) 

all n = _I Qtill 

so that av bl2 az 

aT = ~ bl ( L<6n)) az 2 av (30) 
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From (29) and (30), we conclude that in order to invert in phase space it suffices 
to exchange v by z, and to weight the regional partial derivatives with their correspond­
ing vertical gradients. The result of this operation in configuration space does not 
change the velocity at a point, but does perturb the z-coordinate of the isovelocity 
line with value v along the line x = canst., i. e., it changes the shape of the isovelocity 
line. Inversion in phase space may also be performed in terms of the x-coordinate as 
well, so that an alternate (in x and z) scheme may be devised to reduce the incom­
patibility between the actual and assumed models. Discrepancies originated by the 
difference in the number of points used to invert will still appear, but better results 
can be expected. Since one usually cannot draw isovelocities in the earth, these 'bet­
ter results' are strictly referred to final travel time residuals. 

Models 5 and 6, illustrated in figure 13 (a, b), provide a simple example of incom­
patibility. In model 5 a rigid geometrical grid was used, while in model6 the inver­
sion was carried out in phase space, keeping the x-isolines constant, so that perfect 
convergence was expected. The results of inverting model 5 eleven times show that 
there are regions where the incompatibility could not be resolved. This is due to the 
fact that the inverted isovelocities must end exactly in the corresponding diagonals 
of the triangles (points A and Bin figure 13 (a)), and the continuity of the isovelocity 
lines forces their behavior. On the contrary, in model 6, the change of position of 
the isovelocities includes a change of shape of the triangle regions themselves, so that 
the technique becomes adaptive. In this example, model 5 converged to the best 
possible model satisfying the data. Still, comparison of both results is satisfactory . 

... 
• • • 

• •• • • • • • • • • • • • • 

... ~-----

AUUIIED •"' ••• 
(a) 
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-
•• ••• • • • • • • • • • 

-- L-------------.. t""' ____ ""'P_ ... 

... 

... .,.., . ... . ... 
( It) 

Fig. 13. Model 5. Here the inversion is performed in the (x,z) space, so that the triangles are fixed. lsovelocities 
for v .. 3.0 and v .. 4.5 are shown in the last, resulting model after 7 iterations. (b) Here, the inversion is per­
formed in the 'phase' space. 1: starting model, 2: 1st iteration, 3: 4th iteration, 4: 7th iteration, which coin­
cides with the actual model. Compare with the results in (a). 

Several techniques may be developed to attack an inversion problem similar to 
those in models 5 and 6. An example is given by model 7 (figure 14). Here, solid 
lines represent the •actual' model. Broken thin lines are isovelocities of the resulting 
model, while broken heavy lines are the isovelocities of the initial model. We can see 

.01 'T (lecal 

... 

. os 

.01 

ot-------------~-~·~-·~~r.=~~----_.-------.--------~----_.--------~- x 

-.oe 

-.01 

-.oa 

.•.M .... ,. ) 
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·---==·=··==::~::::::::;:=====-~--------------- -10-t 

~--==~·~·====~=======i~====--~-------------- -ao-t 

• & • .. 
N 

---~----------------~------~------------
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Fig. 14. Example of a simple incompatibility. (a) The dotted curve shows the initial residuals. The crossed 
curve aBove it shows the residuals after 7 iterations. (b) The dotted slight line represents the resulting model, 
while the solid slant line represents the actual model. The horizontal heavy line is the initial, assumed model. 

that the inversion raised up the original horizontal isovelocities, although we cannot 
.expect perfect convergence que to the obvious incompatibilities in discretization. A 
systematic search for the 'actual' position of the central vertical line (defined by the 
cusps of isovelocities of the 'actual model') would yield better results. Another way 
to proceed is first to invert for the position of the upper ( 4.5 in this case) isovelo~ity 
line using rays with turning points above it until a stable result is obtained, and then 
proceed to invert for the next lower isovelocity with any other rays, keeping the 
first isovelocity fixed. Another possible procedure is to invert both lines simulta­
taneously using only one vertical line positioned between the extremes of the model 
until a stable result is achieved, and then to add intermediate vertical lines either one 
by one or several at a time, according to the available data. 
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