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Resumen

El análisis multiresolución basado en la 
transformada ondicular discreta se incorpora al 
procesamiento de señales sísmicas. Ésta técnica 
de análisis permite descomponer una señal 
sísmica en diferentes bandas de frecuencia, 
y así analizar la información contenida en 
dichas bandas. El análisis de multiresolución 
permite visualizar en el dominio del tiempo 
la información contenida en las bandas de 
frecuencia. Las ondículas usadas comúnmente 
en la transformada ondicular discreta presentan 
un traslape entre escalas, lo que da origen a un 
efecto aliasing e introduce información espuria. 
La ondícula Vaidyanathan minimiza el traslape 
entre escalas. Aplicamos esta ondícula a datos 
sintéticos y a un cubo sísmico 3D. De acuerdo 
a este estudio, los efectos espurios generados 
por el traslape entre escalas es minimizado con 
la ondícula Vaidyanathan.

Palabras clave: análisis multiresolución, des-
composición espectral, transformada ondicular 
discreta.
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Abstract

Multiresolution analysis, based on the discrete 
wavelet transform, is here incorporated 
in seismic signal processing. This analysis 
technique enables decomposing a seismic 
signal, in different frequency bands, and thus 
to analyze the information contained in these 
frequency bands. Multiresolution analysis 
allows visualizing in the time domain the 
information contained in the frequency bands. 
Wavelets commonly used in the discrete 
wavelet transform present an overlay between 
scales, this constitutes an aliasing effect that 
gives rise to spurious effects. Vaidyanathan 
wavelet minimizes the overlay between 
scales. We applied this wavelet to synthetic 
data and to a 3D seismic cube. Accordingly, 
spurious effects from aliasing generated by 
overlay between scales are minimized with the 
Vaidyanathan wavelet.

Key words: multiresolution analysis, spectral 
decomposition, discrete wavelet transform.
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Introduction

Seismic signal analysis plays a key role in 
petroleum exploration by helping to enhance 
information difficult to visualize naked eye. 
Today several techniques and algorithms are 
used to interpret seismic 3-D data. Spectral 
analysis comprises several methods that 
enhance specific seismic information enabling 
to solve stratigraphic and structural details (i.e., 
Rivera-Recillas et al., 2005 and Coconi-Morales 
et al., 2010), to estimate reservoir dimensions, 
etc. Fourier transform is commonly used to 
analyze frequency content of a seismic signal. 
However, when frequency content varies with 
time, this tool cannot show time position of 
the frequency content. Spectral content of 
seismograms varies significantly with time, 
i.e., they are non stationary and require non-
standard decomposition methods. The discrete 
wavelet transform enables decomposing a non–
stationary time series in its different frequency 
components and transforms the time domain 
information into a time–scale domain where 
scale is inversely proportional to frequency.

Discrete wavelet transform (DWT) is based 
in filter bank theory. Convolution of a filter 
bank with a signal provides frequency rank 
windows. The filter banks for a particular 
wavelet must satisfy two conditions; must be 
of compact support and of zero average. This 
tool enables separating high frequencies from 
low frequencies and locating its position in 
time. A growing number of geophysical studies 
using DWT have provided satisfactory results; 
however sometime, separation between 
scales is not fully achieved due to an intra–
scale coupling effect. So that, an appropriate 
wavelet is needed to conduct a successful data 
processing based in this technique. There are 
many wavelets but many present the aliasing 
problem, here we present a performance 
analysis of several wavelets with respect to 
the aliasing effect in multiresolution analysis of 
seismic signals. We tested the performance of 
Vaidyanathan wavelet with a real 3-D seismic 
cube data.

We first briefly introduce the wavelet theory. 
Then we describe the Vaidyanathan wavelet. 
We reconstructed seismic sections based in 
the respective multiresolution analysis of the 
Boonsville field seismic cube, located in north-
central Texas (Bureau of Economic Geology, 
1996). The seismic cube is open access and 
well documented.

Theory

A signal can be expressed in terms of a 
set of functions with different resolution. 
Multiresolution based on the discrete wavelet 
transform generates this function base, to each 
resolution a certain information content of the 
signal is associated. The theory of discrete 
wavelet transform has been exposed in many 
books (i.e., Hubbard, 1998; Chui, 1992; Dwight 
and Olejniczak, 2003). This technique can be 
developed on Daubechies´s (1992) pyramidal 
algorithm where the discrete wavelet transform 
is obtained by convolving the signal with a 
quadrature mirror filter (QMF) bank, built from 
a compact support and zero mean wavelet. The 
wavelet is dilated to different scales by a factor 
of two. Translation is done in binary form.

The dilatation and shifting of a wavelet 
y(x), can be expressed as:

	 ψ ψ( ) ( ),
/x x kj k
j j= −− −2 22 	 (1)

where j denote scale and k translation. At small 
scales, when the wavelet is contracted, high 
frequencies are displayed; at great scales, 
when the wavelet is expanded, low frequency 
contents are obtained. From expression (1) two 
functions are generated which are employed 
in the decomposition: a wavelet function as 
expression (1) and a scalar function as:

	 ( ) ( ),
/x x kj k
j j= −− −2 22ϕ ϕ 	 (2)

The functions y(x)j, k and j(x)j, k generates 
a sub–set of a vector space that spans signals 
orthonormal to the analyzed signal.

The respective filter bank is constituted by 
one high and one low pass filter. The low pass 
filter is obtained from the wavelet function (y), 
while the high pass filter is obtained from the 
corresponding scalar function (j).

So, when the high pass filter is applied to 
a non-stationary signal detailed coefficients 
are obtained, and when the low pass filter is 
applied to the same signal, we obtain smooth or 
approximate coefficients. The detail coefficients 
capture the top half frequency content of the 
data while the smooth coefficients contain 
the bottom half frequency content. This first 
step corresponds to the first decomposition 
level and is named first scale. To generate 
the next scale the smooth coefficients are 
used as input signal, and the above described 
process is repeated (Figure 1). To decompose 
the signal, a sub–sampling is done, because 
the translation of a wavelet along the signal is 
made in a binary form.
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The wavelet coefficients can be inverse 
transformed to exactly reproduce the original 
time series. This is achieved by using the filter 
bank in its synthesis form and reversing the 
sequence of the forward transform algorithm 
(Figure 2). Because the sub–sampling intro-
duced in the forward decomposition, in 
reconstructing the signal it is needed an up–
sampling by 2, and this can be achieved by 
adding one zero between two coefficients.

Vaidyanathan wavelet

As mentioned, discrete wavelet transform 
uses a wavelet to build an analysis based in 
frequency content, and such a wavelet can be 
derived from a pair of filters which satisfies the 
following frequency domain conditions for a 
perfect reconstruction (Foster et al., 1997):

	 L L H H( ) ( ) ( ) ( )ω ω ω ω+ = 2 	 (3)

	 L L H H( ) ( ) ( ) ( )ω ω π ω ω π+ + + = 0 	(4)

where L(w) and L( )ω π+  are an analysis low 
pass filter and a synthesis low pass filter, derived 
from a wavelet function (y), while H(w) and 
H ( )ω π+  are an analysis high pass filter and 
a synthesis high pass filter, correspondingly, 
obtained from a scalar function (j). These 

conditions are known as normalization 
(Equation 3) and aliasing conditions (Equation 
4). If aliasing condition is not satisfied, aliased 
energy will be present in the output signal. So 
that, orthonormal filter banks that satisficed 
this conditions are constructed by setting 
(Foster et al., 1997):

	 H e Li( ) ( )0 = +− ω ω π 	 (5)

	 H w e Li( ) ( )= +ω ω π 	 (6)

these are known in the literature as a 
Quadrature Mirror Filter (QMF). In wavelet 
applications Finite Impulse Response (FIR) 
filters satisfying conditions (3) and (4), are 
compact support in the time domain, which is 
important for space–time operations.

There exists a group of wavelets that satisfies 
these conditions. The choice of a wavelet is very 
important for any wavelet domain processing 
application. In seismic processing it is desirable 
a wavelet that produces an optimal separation 
of information between scales and gives rise to 
a minimum overlap. Thus we need a wavelet 
which enables a perfect reconstruction and will 
minimize any artifact that may be introduced 
in the processing of a signal and appearing in 
its reconstruction.

Figure 1. Schema of DWT decomposition. The signal f is non–stationary, j is the low pass filter, y is the high 
pass filter, S1 are smooth coefficients and D1 are detail coefficients. The subscript indicates scale and 2↓ represents 

a sub–sampling.

Figure 2. Schema of DWT reconstruction. The signal f is reconstructed, j is the low pass synthesis filter, y is the 
high pass synthesis filter, S1 are smooth coefficients and D1 are detail coefficients. The subscript indicates scale 
and 2↑ is an up–sampling. Sign of plus indicate one sum between up–sampled detail and smooth coefficients.
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There exists a two–channel QMF bank 
which satisfies the condition for a perfect 
reconstruction, and ensures a good stop–band 
of frequencies. Vaidyanathan and Hoang. 
(1988) introduced this filter. This wavelet is 
known as Vaidyanathan wavelet (Figure 3). 
We implemented the multiresolution analysis 
and conducted a performance test of several 
wavelets including the Vaidyanathan wavelet.

Programming

The programmed multiresolution analysis was 
based on the pyramidal algorithm, and on the 
1D discrete wavelet transform. The programmed 
structure comprises five sub–programs to allow 
an optimal execution (Figure 4).

The objective of the first program is to 
communicate with the user (i.e., a friendly 
interface). Several windows enable the user to 
input the data file, to select a wavelet, as well 
as the scale or resolution level to be displayed.

The second sub–program distributes this 
information to other three sub–programs. The 
third sub program allocates enough space 
for all of the needed variables. The fourth 
subprogram contains all information defining 
each of the wavelets contained in the catalog 
shown in the first subprogram. Finally, the fifth 
subprogram performs the wavelet transform 
by means of the pyramidal algorithm.

This last subprogram analyses the seismic 
information trace by trace. It handles in this 
way a 3D data volume. When the user wants 
to elaborate a time–slice, this program shows 
the values at the user selected time. The case 
of one horizon is managed similarly.

Performance assessment

To assess how well isolated is the frequency 
content associated with a given scale was the 
goal of this study (i.e., which wavelet does 
preserve the power spectrum in an optimum 
way). Figure 5 shows a signal created by 
summing a series of sines with frequencies 
between 30 and 211 Hz. This signal encompass 
a wide frequency range: it has a 511 msec 
length and a sampling rate of 1 msec. It can 
be considered a non-stationary signal. This 
is not a seismic signal but is useful to assess 

Figure 3. Vaidyanathan wavelet (Vaidyanathan and 
Hoang, 1988).

Figure 4. Structure of the developed program based in object oriented programming.
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the performance, in multiresolution analysis, 
of the following wavelets: Haar, Symplet, 
Coiflet, Daubechies (wavelets employed in 
Matlab, Misiti et al., 1996) and Vaidyanathan 
(Vaidyanathan and Hoang, 1988).

Figure 6 shows the power spectrums of the 
original signal and those corresponding to the 
second level (or scale) of the multiresolution 
analysis based on the above mentioned 
wavelets.

Figure 5. Signal created to assess the performance of several wavelets in multiresolution analysis. This signal is 
a sum of sine functions in the frequency range from 30–211 Hz.

Figure 6. Power spectrums obtained from the multiresolution analysis using several wavelets. In blue line 
is presented the power spectrum of the original signal (Figure 5). Also, are presented power spectrums of 
multiresolution analysis based on the Haar, Symplet, Coiflet, Daubechies, and Vaidyanathan wavelets. The signal 

reconstructed corresponds to the second scale.
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To the second decomposition scale 
approximately corresponds the frequency 
content between 125 and 250 Hz of the 
original signal. The original signal (blue line) 
power spectrum has a stronger gradient 
towards approximately 170 Hz. In this 
portion, the reconstructed spectrums from 
the multiresolution analysis based on Haar, 
Symplet, Coiflet, Daubechies wavelets show 
spurious effects. The exception corresponds 
to the Vaidyanathan wavelet. At 350 Hz 
approximately, Haar, Symplet, Coiflet, 
Daubechies wavelets produce a spurious pike, 
possible an armonic from the information 
contained in the frequency range of the second 
scale. We can see that for the Vaidyanathan 
wavelet this effect is minimum.

This performance analysis indicates that 
the Vaidyanathan wavelet best preserves the 
original signal power spectrum (i.e., it distorts in 
a minimum degree the spectrum of the original 
signal), so that, in particular, this wavelet is 
very well suited to conduct the multiresolution 
analysis (trace by trace in this study) of 3D 
seismic data, where it is very important to 
preserve the original seismic amplitude and no 
to introduce artifacts.

Example of multiresolution of 3D seismic 
data

Boonsville 3D seismic data

Boonsville 3D seismic dataset were obtained in 
the Jack and Wise counties, Fort Worth Basin, 
north–central Texas (Figure 7). The study area 
comprises approximately 67 km2. The data are 
well documented and can be acquired from the 
Bureau of Economic Geology. Vaidyanathan and 
Hoang, (1988) wavelet based multiresolution 
analysis of the Boonsville 3-D seismic cube is 
now presented.

The data length is two seconds, sampling 
of the seismic data were done at 1 ms (Bureau 
of Economic Geology, 1996), with a 500 Hz 
corresponding Nyquist frequency. The dominat 
frequency is 57 Hz, with mean velocity of 3,600 
m/s. According to Rayleigh criterium, the 
corresponding vertical resolution only allows to 
study layers with a thickness > 15 m.

Figure 8 shows the Boonsville seismic 3-D 
cube layout and the location of the oblique 
section used to illustrate the performance of 
the multiresolution analysis. This section was 

Figure 7. Boonsville study area is located between Jack and Wise counties , in North–Central Texas.
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Figure 8. Locations of BY11 and BY13 wells in the Boonsville 3-D seismic cube. An oblique section through these 
wells was generated to test with a zoom along well lenghts.

created to pass through two wells (BY11 and 
BY13 wells), because we wanted a zoom along 
of the well length to see information at detail. 
Figure 9 shows the seismic events along this 
oblique section, in the right lower part it is 
showed the respective power spectrum. We 
can shown that approximatly the dominant 
frequencies range from 30 to 115 Hz. We use 
one scale within this dominant frequency range 
to conduct an multiresolution analysis using 
Vaidyanathan wavelet and the Daubechies 
wavelet of order 10 (see Figure 6).

Figure 10 shows the reconstructed section 
using only the fourth scale (frequency 
content between 31.25 and 62.5 Hz). The 
respective multiresolution analysis was based 
on Vaidyanathan wavelet. Figure 11 presents 
the corresponding fourth scale obtained from 
the Daubechies wavelet of order 10 based 
multiresolution analysis.

The power spectra of the reconstructed 
sections based respectively on the Vaidyadanath 
and Daubechies wavelets (Figures 10 and 
11) indicate that the aliasing effect due to 

the Vaidyanathan wavelet is not visible (i.e., 
negligible). However, the Daubechies wavelet 
of order 10 introduces high frequencies 
armonics enclosed by black elipsoids (i.e., a 
noticeable effect).

We can note that the seismic horizons in 
Figure 10 correlate quite well with the original 
seismic information. The seismic horizons in 
Figure 11 correlate fair well with then original 
seismic horizons. However, seismic horizonts 
in Figure 10 change its position along the 
seismic section in a smooth manner, but the 
seismic horizons in Figure 11 presents jumps. 
We believe that it is due to high frequency 
associated with the high frequency armonics 
introduced by the Daubechies wavelet of order 
10 (see the power spectrum of Figure 11).

Finally, Figure 12 shows the FFT based 
bandpass filtered section of the original data. 
The band pass filter encompasses the fourth 
scale frequency range (31.25 – 62.5 Hz). 
Figures 10 and 12 correlate very well, which 
illustrates how the Vaidyadanath wavelet 
minimizes the aliasing effect.
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Figure 9. Oblique seismic section with original seismic (location in Figure 8) through wells BY11 (right) and BY13 
(left). In the right lower part it is shown the respective power spectrum.

Figure 10. Seismic section reconstructed only from the fourth scale (31.25 to 62.5 Hz) using Vaidyanathan 
wavelet. In the right lower part it is shown the respective power spectrum.
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Figure 12.- Seismic section reconstructed from bandpass (using Fourier Transform) in frequency range of 31.25 
to 62.5 Hz. In the right lower part it is shown the respective power spectrum.

Figure 11. Seismic section reconstructed only from the fourth scale (31.25 to 62.5 Hz) using Daubechies wavelet 
of order 10. In the right lower part it is shown the respective power spectrum. Black ellipses indicate aliasing effect.
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Conclusions

This study reports a performance analysis of 
the Vaidyanathan wavelet that minimizes the 
aliasing effect (Figures 5 and 6) (Vaidyanathan 
and Hoang, 1988). Several wavelets have been 
tested with a synthetic signal and with a real 
3–D seismic dataset. The best results were 
obtained with Vaidyanathan wavelet.

This study has illustrated how a discrete 
wavelet transform based multiresolution 
analysis makes possible separation of the 
information content of a non–stationary signal in 
different frequency ranges. This descomposition 
provides the seismic interpreter frequency 
information of interest that might not be visible 
in band-pass filters. This numerical study 
shows that several wavelets can be used with 
this technique, but it is important to select the 
appropriate wavelet, because a bad selection 
can give rise to spurious effects (i.e., artifacts) 
due to the overlay between scales, causing that 
the amplitude of the frequency content of some 
frequencies be enhanced, and the seismic 
interpreter can be mislead with these artifacts, 
and consider them subsoil information.
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