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A NEW GENERALIZED LEAST MEAN-SQUARE ALGORITHM 
FOR PROCESSING NON-STATIONARY SEISMIC DATA 

RESUMEN 

A. H. COMINGUEZ* 
(Recibido: 14 de junio, 1985) 
(Aceptado: 2 de julio, 1986) 

Se presenta un algoritmo adaptable apropiado para deconvolver trazas, el cual esta basado sobre una ex presion 
generalizada de Ia tecnica de mlnimo error cuadnitico medio. El uso del nuevo proceso se recomienda especial­
mente para elaborar sismogramas de reflexi6n sismica que contengan reverberaciones variables en el tiempo. 

Mediante Ia aplicaci6n del sistema adaptable los coeficientes del operador se recalculan para cada tiempo de 
Ia sefial de entrada. 

Tanto las caracterfsticas de convergencia del algoritmo como sus propiedades de estabilidad se analizan y 
comparan con las del algoritmo tradicional LMS. Para tal efecto se presentan ilustraciones con sismogramas 
sinteticos. 

La aplicabilidad del metodo expuesto parece promisoria para pruebas slsmicas en aguas poco profundas. 

ABSTRACT 

An adaptive deconvolution algorithm based upon a generalized expression of the Least Mean-Square (LMS) error 
tech~ique is presented. The use of this process is recommended for reflection seismic data which contain time­
varying reverberations. 

Filter coefficients are designed for each sample of the input trace using the proposed method. 

Convergence characteristics of the new algorithm, and its stability properties, are analyzed and compared to 
the simple LMS algorithm. Illustrations using synthetic seismic data are presented. 

Future possibilities of application to real shallow-water seismic data are found promising. 

"'Instituto del Petroleo, Facultad de lngenier(a, Universidad de Buenos Aires. 
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INTRODUCTION 

In order to meet the needs of data processing in geophysical prospecting, a number 
of high-speed data methods have been developed in recent years for deconvolving 
seismic information. The purpose of this paper is to present a generalized expression 
of the LMS Adaptive Filter (Widrow and Hoff, 1960), which is appropriate for de­
convolution of non-periodic multiple waves from shallow water seismograms (marine 
prospecting). 

The application to seismic traces of the simple LMS algorithm was discussed by 
Griffiths et al. ( 1977). 

Early papers discussing expressions of generalized techniques were written by 
Mantey and Griffiths (1969), and by Mueller (1975). 

The New Algorithm requires a greater number of arithmetic operations than the 
conventional LMS system, but it presents the following advantages: 

1) Accurate estimation of time-varying parameters is not required. 

2) Instability intervals are not generated. 

3) The algorithm shows efficiency in the elimination of some additional noises, 
for example noises that could be discriminated from the main signal by their fre­
quency content. 

The specific application of the New Algorithm in the elimination of multiple sig­
nals is achieved by adapting the filter coefficients to minimize the mean-square dif­
ference between the filter output and the data values in the seismogram occurring 
an appropriated distance later in time (Peacock and Treitel, 1969). Thus, the meth­
od renews the coefficients of an L-dimension prediction operator as the filter moves 
along the input trace. 

GENERAL ADAPTIVE DECONVOLUTION 

Let us assume anN-length input vector x, and a prediction operator cwith L samples. 
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The output Yk at time k is given by 

Yk = ~TC (I) 
where 

xk = and C = 

Yk will not, in general, be exactly equal to the desired output dk, so the error at 
time k will be 

(2) 

The mean square error at time k will thus be 

(3) e2 = E { ei} . 
Now g, the gradient of 1/2 e2 with respect to c, can be calculated by combining 

(1), (2) and (3) 

g = 1/2 ~~ = E { ek x k} = Ac - v , 

where A is the signal autocorrelation matrix, 

A = E { xk xkT } , 

and v is the correlation vector between the input and the desired output, 

(4) 

{5) 

v = E { X\ dk } (6) 

The best filter c, in the mean square sense, is such that it minimizes e2 , and is ob­
tained by setting g to zero (Lee, 1960), 

- A-1 -
c·opt = /"\. v . 

We will use the recursive algorithm proposed by Mueller (1972), 

cm+l =em- Omgm • 

(7) 

(8) 

where gm is the gradient vector calculated with the filter-vector after the mth itera­
tion, and Om is a nonsingular matrix. The generalized algorithm (8) will stop up­
dating when c =Copt· Obviously, if the algorithm converges at all, it will converge to 
the optimum solution given by (7). 
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If we consider the simplified case Om = ~1, equation (8) will reduce to 

cm+l = em - ~gm (9) 

this is the expression of the steepest descent gradient algorithm (Widrow and Hoof, 
1960). 

From (4), expression (8) can be written in the following form 

em+1 = (1- QmA)em + Qm v , 
and introducing the filter error vector 

D. em = em -Copt • 

it is possible to arrive to the following expression 

(10) 

(11) 

D. em+l =(I- QmA)D.em = [-IT (I- On A) J D.e, (12) 
n=l 

We conclude from equation ( 12) that the term (1- Q0 A) is a critical factor which 
controls the convergence characteristics of the algorithm given by (8). 

CHOICE OF THE Q MATRIX 

If the change in the statistical properties along the input signal is not extreme, the 
algorithm can be used to update the coefficients of the vector ·cas the filter moves 
along the trace. We could initialize algorithm (8) by selecting 

(13) 

where A = average { xk x~} along the input trace, 

and V' = average { X:k d~ } along the same trace. 

Equation (13) is equivalent to the least-squares filter suggested by Treitel and 
Robinson (1966). 

From equation ( 12) it is observed that the estimate A could be used to estimate Q, 

Qk = ~k k' (14) 

If we define 
D.k = (I - K1 A) , (15) 

the coefficients aij of the matrix ~k have the following properties 
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(16) 

because the input signal was described as exhibiting small oscillatory fluctuations 
around its mean characteristics. 

Selecting (jk = 1 in (12), the filter error will take the form 

tlcm+ 1 =[T(~)ltlc 1 (17) 
k=1 J 

Therefore, taking Q = A- 1, a rapid convergence of the filter coefficients must be 
expected. 

THE GLMS ALGORITHM 

As shown by Peacock and Treitel ( 1969), the elimination of stationary events from a 
trace can be achieved by designing a Wiener filter Copt appropriate for generating a 
trace estimate x, 'Y samples later, 

xk+-y = x:Jcopt (18) 

and calculating the deconvolved trace zk as the difference between the input xk and 
the predicted value xk : zk = xk - xk (19) 

Using algorithm (8) with Om = 1J. K 1 as proposed in (14), we obtain 

ck+1 = ck- JL A-1 gk . (20) 

Widrow and Hoff (1960) suggested that the gradient gk could be estimated by re­
pla~ing the autocorrelation terms A and v by their instantaneous values: 

A-+~x:J 

following this idea, the algorithm in equation (20) becomes 

c k+1 = ck + JLK1 (xk+-r- xk+-r) ~ 
or 

(21) 

ck+1 = ck + JL k 1 zk+-r.~ (22) 

where A-1 is the inverse autocorrelation matrix of the input trace and zk is the de­
convolved trace at time k. 
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Equation (22) will be called GLMS algorithm (Generalized expression of LMS al­
gorithm). 

SELECTION OF ALGORITHM PARAMETERS 

Griffiths et al. (1977) presented the application of the LMS algorithm 

ck+t = ck + ~'zk+-yxk , (23) 

for use in processing reflection seismic data which included multiples with time­
varying periods. They selected p.' according to Widrow's suggestion (1976): 

where 

I- __g__ 
~ - Lva; (24) 

O<a<2 , (25) 

and v a! is the average power level of the input trace. L, as defined in (1 ), is the 
dimension of the prediction operator c. 

From the above results, it is not difficult to derive the GLMS algorithm parame­
ters, which would be used in expressions (21) and (22). The v a; parameter must 

. not ~e included in the expression of p. because it is included in the diagonal terms of 
the f:!.- 1 matrix. On the other hand, as the gradient estimate zk+-yxk is multiplied by 
the K 1 matrix, which is an LxL dimension matrix, the new p. value must be propor­
tional to 1 /L 2• 

Therefore, for the GLMS algorithm, the following expression will be adequate: 

where 

and 

ck+t = ck +~k~ zk+-yxk 

a 
~ = i2 

O<cx<2 

(26) 

(27) 

(28) 

Equations (27) and (28) will be empirically ratified in the applications discussed 
in the final part of this paper. 

NUMERICAL MODEL APPLICATIONS 

The adaptive deconvolution procedures discussed in the first part of this paper are 
designed for use in processing seismic traces having non-stationary statistical behavior 
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over relatively short-time intervals. A synthetic seismogram (4 msec sample period) 
representing a marine experiment is presented in Figure I. The traces contain the 
water-bottom reflection and its multiples, like a primary reflection. The multiples 
have constant amplitude, and the nonperiodic spacing intervals represent a critical 
example of shallow-water record. The distant receiver traces (upper part of Figure 
I) show overlap between successive wavelets in the zone near the water-bottom. 
This detail represents a very difficult example for testing the stability properties of 
time-varying algorithms. 

Figure 2 illustrates the use of LMS adaptive deconvolution (equation 23) on a 
seismogram generated by filtering the traces of Figure I with a 0-40 Hz low-pass fil­
ter. The values of the parameters used to deconvolve the seismogram were: filter 
length = 49 samples ( 196 msec ), prediction coefficient = 23 samples (92 msec ), and 
a = 0.20. Experiments using values of a greater than 0.20 presented details of ins­
tability* on the output traces. However, a tendency to instability was observed in­
creasing the frequency band of the input synthetic seismogram. In general, the tests 
demonstrated that the LMS deconvolution required a very accurate selection of the 
algorithm parameters. 

Figure 3 shows the output calculated using the GLMS adaptive deconvolution 
(name of the new algorithm proposed in this paper) on the multi-channel seismogram 
presented in Figure I. The operator was characterized by filter length = 19 samples 
(76 msec), prediction coefficient= 23 samples (92 msec), and a= 1.00. Application 
of a previous low-pass filtering was not necessary when the GLMS algorithm w~s 
used. Inspection of the results shows that events are more readily distinguishable in 
Figure 3 than in Figure 2. However, good trace deconvolutions were obtained ap­
plying the GLMS filter with a values in the range of 0.10 to 1.20, and operator 
lengths in the range of 9 to 19 samples (36 to 76 msec). 

An experiment was made adding 30°/o white noise to the input seismogram (Fig. 
4) and applying GLMS deconvolution. Figure 5 shows the filtered output when 
the traces were deconvolved by using the same filter as in Figure 3. It is observed a 
robustness of the output interpretation under additive white noise conditions. 

* The character of the unstable operator response is typically a rapid oscillating of the polarity of the output 
trace. 
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CONCLUSIONS 

A comparison between (22) and (23) shows that in the GLMS algorithm all the fil­
ter coefficients converge at the same rate, while in the LMS process the coefficients 
converge with different rates. Widrow et al. (1976) estimated that dissimilar conver­
gence of the LMS filter coefficients produced critical results when the eigenvalues of 
the input correlation matrix were highly disparate (~max /~min > I 0). 

Practical applications to synthetic seismograms indicate that the performance of 
the GLMS algorithm in removing multiple wavelets is not a critical function of the 
process parameters (previous low-pass filtering is not necessary). 

The effectiveness of the GLMS algorithm does not decrease when white noise is 
added to the input traces. 

The good results obtained applying the GLMS algorithm to synthetic data suggest 
that this method could be used with advantage on real shallow-water seismic data. 
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