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RESUMEN

Se presenta un algoritmo adaptable apropiado para.deconvolver trazas, el cual esta basado sobre una expresion
generalizada de la técnica de minimo error cuadratico medio. El uso del nuevo proceso se recomienda especial-
mente para elaborar sismogramas de reflexion sismica que contengan reverberaciones variables en el tiempo.

Mediante la aplicacion del sistema adaptable los coeficientes del operador se recalculan para cada fiempo de
la sefial de entrada.

Tanto las caracterfsticas de convergencia del algoritmo como sus propiedades de estabilidad se analizan y
comparan con las del algoritmo tradicional LMS. Para tal efecto se presentan ilustraciones con sismogramas
sintéticos.

La aplicabilidad del método expuesto parece promisoria para pruebas sismicas en aguas poco profundas.
ABSTRACT

An adaptive deconvolution algorithm based upon a generalized expression of the Least Mean-Square (LMS) error
technique is presented. The use of this process is recommended for reflection seismic data which contain time-
varying reverberations.

Filter coefficients are designed for each sample of the input trace using the proposed method.

Convergence characteristics of the new algorithm, and its stability properties, are analyzed and compared to
the simple LMS algorithm. Illustrations using synthetic seismic data are presented.

Future possibilities of application to real shallow-water seismic data are found promising.

* Instituto del Petrdleo, Facultad de Ingenierta, Universidad de Buenos Aires.
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INTRODUCTION

In order to meet the needs of data processing in geophysical prospecting, a number
of high-speed data methods have been developed in recent years for deconvolving
seismic information. The purpose of this paper is to present a generalized expression
of the LMS Adaptive Filter (Widrow and Hoff, 1960), which is appropriate for de-
convolution of non-periodic multiple waves from shallow water seismograms (marine
prospecting).

The application to seismic traces of the simple LMS algorithm was discussed by
Griffiths et al. (1977).

Early papers discussing expressions of generalized techniques were written by
Mantey and Griffiths (1969), and by Mueller (1975).

The New Algorithm requires a greater number of arithmetic operations than the
conventional LMS system, but it presents the following advantages:

1) Accurate estimation of time-varying parameters is not required.

2) Instability intervals are not generated.

3) The algorithm shows efficiency in the elimination of some additional noises,
for example noises that could be discriminated from the main signal by their fre-
quency content.

The specific application of the New Algorithm in the elimination of multiple sig-
nals is achieved by adapting the filter coefficients to minimize the mean-square dif-
ference between the filter output and the data values in the seismogram occurring
an appropriated distance later in time (Peacock and Treitel, 1969). Thus, the meth-
od renews the coefficients of an L-dimension prediction operator as the filter moves
along the input trace.

GENERAL ADAPTIVE DECONVOLUTION

Let us assume an N-length input vector X, and a prediction operator ¢ with L samples.



" A. H. Cominguez 395

The output yy at time k is given by

Yk = %C )
where - - - -
Xk Cy
Xk )
Xy = and C =
Xk-L+1 c
L . L L

yk will not, in general, be exactly equal to the desired output dy, so the error at
time k will be

e = ¥k~ dy . (2
The mean square error at time k will thus be
a=e{¢. @

Now g, the gradient of 1/2 €* with respect to €, can be calculated by combining
(1), (2) and 3)

g—=1/z%€;—=E{ekxk}=Ac——v , @)
where A is the signal autocorrelation matrix, ‘
A=E inkT} , (5)
and v is the correlation vector between the input and the desired output,
V=E {%cdg} (6)

The best filter c, in the mean square sense, is such that it minimizes €2, and is ob-
tained by setting g to zero (Lee, 1960),

Copt, = Ay . @)
We will use the recursive algorithm proposed by Mueller (1972),
Cmer =Cm ~ ngm ’ ®)

where g,,, is the gradient vector calculated with the filter-vector after the mth itera-
tion, and Q,, is a nonsingular matrix. The generalized algorithm (8) will stop up-
dating when ¢ = c,,. Obviously, if the algorithm converges at all, it will converge to
the optimum solution given by (7).
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If we consider the simplified case Q,, = pI, equation (8) will reduce to

Cme1 = Cpp ~ Bgm s (9)

this is the expression of the steepest descent gradient algorithm (Widrow and Hoof,
1960).

From (4), expression (8) can be written in the following form

m+1—(l—Q A)C,h,+Q,V , (10)
and introducing the filter error vector '
ATy = Cpy — Copt, (11)
it is possible to arrive to the following expression
m
AT,,, = (- QuA)AC, = [ﬂ: (I-Q, A) ] AT, . (12)
n=

We conclude from equation (12) that the term (I- Q,A) is a critical factor which
controls the convergence characteristics of the algorithm given by (8).

CHOICE OF THE Q MATRIX

If the change in the statistical properties along the input signal is not extreme, the
algorithm can be used to update the coefficients of the vector T as the filter moves
along the trace. We could initialize algorithm (8) by selecting

t, =K'V, (13)
where A = average { X i{} along the input trace,

and V' = average {X, d. } along the same trace.
k 9k

Equation (13) is equivalent to the least-squares filter suggested by Treitel and
Robinson (1966).
From equation (12) it is observed that the estimate A could be used to estimate Q,
e = B At 14)
If we define
Ay = (1-AK14A) , ) 15)
the coefficients a;; of the matrix Ay have the following properties
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E {aij§='o, and E Jai} <, (16)

because the input signal was described as exhibiting small oscillatory fluctuations

* around its mean characteristics.

Selecting By =1 in (12), the filter error will take the form
m
AT, = l:l;ll_ (Ak)] AC, ' a7n

Therefore, taking Q = A“, a rapid convergence of the filter coefficients must be
expected.

THE GLMS ALGORITHM

As shown by Peacock and Treitel (1969), the elimination of stationary events from a
trace can be achieved by designing a Wiener filter Copt appropriate for generating a
trace estimate X, -y samples later,

s - <T=
Ry = Xy Copt. o (18)

and calculating the deconvolved trace z, as the difference between the input x and
the predicted value &, : Ze = X~ R . (19)

Using algorithm (8) with Q,, = u A! as proposed in (14), we obtain

Tpoy = - uA'g . (20)

Widrow and Hoff (1960) suggested that the gradient g, could be estimated by re-
placing the autocorrelation terms A and v by their instantaneous values:

A->xxl
V > Xy Xk >
following this idea, the algorithm in equation (20) becomes

Ek@-il = Ek + “A-l (xki-‘y‘ ik+7))—(k » (21)
or :

Tkey =kt A ZL K (22)
where A is the inverse autocorrelation matrix of the input trace and z, is the de-
convolved trace at time k.
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Equation (22) will be called GLMS algorithm (Generalized expression of LMS al-
gorithm).

SELECTION OF ALGORITHM PARAMETERS

Griffiths et al (1977) presented the application of the LMS algorithm
Sk = S+ M2, Xy (23)

for use in processing reflection seismic data which included multiples with time-
varying periods. They selected u' according to Widrow’s suggestion (1976):

I=__q_ 4
where
0<a<?2 , (25)

and ¥ 03( is the average power level of the input trace. L, as defined in (1), is the
dimension of the prediction operator T.

From the above results, it is not difficult to derive the GLMS algorithm parame-
ters, which would be used in expressions (21) and (22). The ¥ o,f parameter must
. not be included in the expression of u because it is included in the diagonal terms of
the A‘ matrix. On the other hand, as the gradient estimate z,,. Xy is multiplied by
the A™! matrix, which is an LxL dimension matnx the new u value must be propor-
tional to 1/L2.

Therefore, for the GLMS algorithm, the following expression will be adequate:

Ek’*l = Ek +[1A—l Zk+‘yik s (26)
where
-2, @n
and
0<a<2 . (28)

Equations (27) and (28) will be empirically ratified in the applications discussed
in the final part of this paper.

NUMERICAL MODEL APPLICATIONS

The adaptive deconvolution procedures discussed in the first part of this paper are
designed for use in processing seismic traces having non-stationary statistical behavior

-
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over relatively short-time intervals. A synthetic seismogram (4 msec sample period)
representing a marine experiment is presented in Figure 1. The traces contain the
water-bottom reflection and its multiples, like a primary reflection. The multiples
have constant amplitude, and the nonperiodic spacing intervals represent a critical
example of shallow-water record. The distant receiver traces (upper part of Figure
1) show overlap between successive wavelets in the zone near the water-bottom.
This detail represents a very difficult example for testing the stability properties of
time-varying algorithms.

Figure 2 illustrates the use of LMS adaptive deconvolution (equation 23) on a
seismogram generated by filtering the traces of Figure 1 with a 0-40 Hz low-pass fil-
ter. The values of the parameters used to deconvolve the seismogram were: filter
length = 49 samples (196 msec), prediction coefficient = 23 samples (92 msec), and
a = 0.20. Experiments using values of a greater than 0.20 presented details of ins-
tability* on the output traces. However, a fendency to instability was observed in-
creasing the frequency band of the input synthetic seismogram. In general, the tests
demonstrated that the LMS deconvolution required a very accurate selection of the
algorithm parameters.

Figure 3 shows the output calculated using the GLMS adaptive deconvolution
(name of the new algorithm proposed in this paper) on the multi-channel seismogram
presented in Figure 1. The operator was characterized by filter length = 19 samples
(76 msec), prediction coefficient = 23 samples (92 msec), and a = 1.00. Application
of a previous low-pass filtering was not necessary when the GLMS algorithm was
used. Inspection of the results shows that events are more readily distinguishable in
Figure 3 than in Figure 2. However, good trace deconvolutions were obtained ap-
plying the GLMS filter with a values in the range of 0.10 to 1.20, and operator
lengths in the range of 9 to 19 samples (36 to 76 msec).

An experiment was made adding 30% white noise to the input seismogram (Fig.
4) and applying GLMS deconvolution. Figure 5 shows the filtered output when
the traces were deconvolved by using the same filter as in Figure 3. It is observed a
robustness of the output interpretation under additive white noise conditions.

* The character of the unstable operator response is typically a rapid oscillating of the polarity of the output
trace.
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CONCLUSIONS

A comparison between (22) and (23) shows that in the GLMS algorithm all the fil-
ter coefficients converge at the same rate, while in the LMS process the coefficients
converge with different rates. Widrow et al. (1976) estimated that dissimilar conver-
gence of the LMS filter coefficients produced critical results when the eigenvalues of
the input correlation matrix were highly disparate (A2 /Amin > 10).

Practical applications to synthetic seismograms indicate that the performance of
the GLMS algorithm in removing multiple wavelets is not a critical function of the
process parameters (previous low-pass filtering is not necessary).

The effectiveness of the GLMS algonthm does not ‘decrease when white noise is
added to the input traces.

The good results obtained applying the GLMS algorithm to synthetic data suggest
that this method could be used with advantage on real shallow-water seismic data.
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