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CALCULATION OF GRAVITY EFFECTS OF TRIDIMENSIONAL 
STRUCTURES BY ANALYTICAL INTEGRATION OF A POL YHEDRIC 
APPROXIMATION AND APPLICATION TO THE INVERSE PROBLEM 

RESUMEN 
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Se deducen expresiones analiticas de nipido procesamiento en maquina, para el clilculo de Ia anomalia gravime­
trica producida en un punto exterior por un modelo de cuerpo tridimensional homogeneo, definido a! dar varias 
secciones verticales paralelas de contorno poligonal vinculadas lateralmente por caras triangulares. 

Se emplea luego este tipo de cuerpo en el modelado de soluciones del problema gravimetrico inverso, efec· 
tuandose algunas sugerencias respecto de Ia convergencia. 

Se presentan tambien ejemplos de clilculos directos e inversos. 

ABSTRACT 

Analytical expressions, rapid in computer time, are derived to calculate the gravity anomaly on an external point 
due to a model of homogeneous tridimensional body defmed by providing several parallel vertical polygonal con­
tour sections laterally assembled by triangular faces. 

Such type of body is then used for modeling solutions of the inverse gravity problem and some suggestions 
on convergence are made. 

Examples of direct and inverse calculations are also presented. 

• Grupo Geo[fsica, Instituto de Ffsica Rosario (/FIR), Av. Pellegrini 250, 2000. Rosario, Argentina. 
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INTRODUCTION 

The general case of analytical calculation of gravity effects caused by homogeneous 
tridimensional structures of arbitrary shape - 3-D direct problem - has been studied 
by Barnett (1976) and Okabe (1979) among others. The frrst author deduces ex­
pressions for polyhedric bodies with triangular faces. The second author develops 
expressions for polyhedric bodies with faces having an arbitrary number of sides. 

The case of prismatic bodies with constant polygonal cross section and finite 
strike length - 2!-D direct problem -has been studied, among o1her autrors by 
Rasmussen and Pedersen (1979) and Caddy (1980). 

In a previous work - hereinafter called "Paper I" - Guspi, Introcaso and Huerta 
( 1984) developed formulae to calculate the vertical gravity anomaly due to a vertical 

0 

z 

Fig. 1. Discretization of a tridimensional body by polygonallaJllinae. 
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polygonal lamina. In that work, a tridimensional body is sampled by taking a certain 
number of parallel vertical polygonal sections or laminae (Fig. 1) and the effect of 
each one is calculated separately. Then a numerical integration is performed to ob­
tain the attraction of the whole body. 

Such a discretization led the authors to find out a method for analytically inte­
grating the effect of those laminae, and a solution was found under the hypothesis 
that the lateral surface of the body is constituted by triangular faces. No rotation of 
coordinates is performed to solve the integration. 

STATEMENT OF PROBLEM 

As in Figure 1 we approximate the body by giving -several vertical polygonal sec­
tions, parallel to the XZ plane, and we consider that each of them has the same 
number n of sides. (This last constraint was not necessary in Paper l's method). 

0 

z 

Dl/rECTION I DIRECTION 2 

Fig. 2. Triangulation of lateral surface can be made in two directions. 
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The lateral surface of the body can be approximated by considering that a pair of 
consecutive vertices on one section and its homologue pair on a consecutive section, 
define two triangular plane faces. Notation and position of coordinate axes are de­
fined in Figure 2. If we unite each vertex ~ of the body with the vertex X.i+l we 
have the direction 1 of triangulation. If we unite Ai+l with Xi we have the direc­
tion 2. Of course, the result obtained will vary with the direction choosen. 

Since the total anomaly caused by the body is the sum of the anomalies produced 
by the blocks bounded by two consecutive sections, we will study the effect of a 
single block. 

Let K be a block defined by they= y1 andy= y2 sections (Fig. 3). The vertical 
anomaly caused by K at the origin of coordinates is 

z dx dy dz 
(1) 

where G is the Newton's gravitational constant, p is the density of the body and 
a(y) is an intermediate section of the block produced by a vertical plane parallel to 
XZ whose y coordinate varies between y 1 and y 2 . 

As in Paper I we define 
z dx dz 

V(y) = f fo(y) (x2+ y2+ z2)3'2 

- contribution from a(y) lamina - and then 

Y2 

6gK = Gp f V(y) dy. 
Yl 

(2) 

(3) 

If we look at Figure 3 we can see that a(y) is a· polygon of 2n sides, and we can 
calculate its contribution V(y) by summing the individual contribution of its sides, 
as made in Paper I; that is, 

2n 
V(y) = .~ Vi(Y) (Vi(y): contribution of i-th side). (4) 

1'"1 

Then in (3) 
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Y2 2n 2n Y2 

L'lgK = Gp f ,1; Vi(Y) dy = Gp ,1; f Vi(Y) dy. 
Y1 1=1 1=1 Y1 

/ 
/ 

,"' \ 

/··... \ 
/ ·· ..... , \ 

/ . " . '\ ... o-(IJ) 
/ \ ····-':~ 

\ 
\ _...,-·-..--

Fig. 3. Block and u(y) section. 
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(5) 

0 

z 

When y varies from y 1 to y 2 each side of the polygonal section a(y) runs over a 
triangular face of the block. Then 

(6) 

represents the contribution of the triangle face containing the i-th side of the vertical 
intermediate sections. 

CALCULATION OF THE ANOMALY OF A TRIANGULAR FACE 

Let us consider a triangle (Fig. 4) with the following vertices: 

A (Xa, Yt, Za) 
B (xb, Y2, zb) 
C (xc, y 2 , zc) 

which represents a face of the polyhedron. The l3C side is normal to the Y axis. 
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0 

z 

Fig. 4. Calculation of the anomaly of a triangular face. 

_]'he side of a a(y) lamina belonging to this face (li vector) is then parallel to the 
BC side and its extremes have coordinates 

To calculate Vi(y) from (6) we need to apply the expression developed in Paper 1: 

being 

Ti 
/).xi Ri+l + li + "!;: 

Vi(y) • --ln Ti 
li Ri +-

li 

6 xi • xi+l - xi 

ll zi • zi+l - zi 
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11 • VIJ x~ +flz: -j11, 

T 1 • xi.() xi + zi ~ zi • Ri • li 

(. : scalar product) 

Ri+l • I Ri+ll • Vx~+l + Y
2 

+ z~+l 

413 

(7) 

In order to perform integration with respect to y, we introduce a parameter t 
which ranges from 0 to 1. 

So, 

Ri+l • loA + t Ac I • ....{Acl
2 t2 + 2 (OA.AC) t + loAI

2 

Ri • loA + t AB I • J.\812 t2 + 2 (OA.AB) t + joAI
2 

11 • t lscl 
Ti • R1• t BC • ( OA + t AS) • tBC (8) 

Ti ABe BC OA. BC 
• t + 

lac/ li I sci 

Ti Be. BC + AB. BC OA. BC AC. BC OA. BC 
11 +-. 

lsc I 
t + 

lsc I • 
lsc I 

t + 
lac I li· 

l1 xi • (xc - xb) t 

Ax
1 

X • X c b 
li • I sci 

dy 
• y2 - yl 

dt 
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Then by replacing expressions (8) into (7) and by integrating with respect tot we 
obtain 

X - X 
t ( ) c b 
1. Y2- Yl lacl 

That is: 

The contribution of the face can be expressed by the difference between two in­
tegrals having a similar shape, the first concerning the AC side and the second the 
AB side. · 

We can summarize both integrals as 
1 

I = f In (at+ 13 +yat2 + bt +d) dt. 
0 

(10). 

Details of analytical integration are given in Appendix, and the following result is 
obtained: 

I • ..!. r(v
2 

- pq2 ) ln (pv
2 

+ q + Jv~ + c ) -
V. L 1-p 



with 
b 

vl • 2Va 

<X 
p ·-Va 

b2 
c • d--

Ita 
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Further simplification can be introduced by making the difference between inte­
grals. 

The term is cancelled. 

The term 

can be transformed into 
b- 2a~ In(~ +..Jd) ; 
2(a- a 2 ) 

but f3 and d are the same on both integrals. Otherwise 

b - 2a~ (on the first integral) = 2(0A.AC)- 2 AC.BC OA.BC 
IBCI IBCI 

(12) 

and by making AC' = AB + BC the result obtained is equal to b - 2cxj3 (on the second 
integral). 

In a similar manner 
2(a - a 2 ) (on the first integral)= 2(a- a2 ) (on the second integral). 

Hence, the whole term ( 12) is removed. 

Also, since factor _1_ (v2 _ ...£i..2) 
.,ja I - p 

is equal on both integrals, the difference of logarithms in the first terms can be com­
puted as the logarithm of a quotient. 

COMPUTER TIME 

For a given body, formula (9), where integral.s are evaluated by using (11) and its 
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simplifications, must be applied to every triangle of the lateral surface. 

We have considered a set of several bodies having different shape - quantity of 
sections, number and position of vertices, etc. - and we have calculated on the com­
puter, gravity anomalies at different stations, by employing the here proposed method. 

Then, the same calculations were made by applying to the bodies the more gener­
al methods given by Barnett (1976) and Okabe (1979). 

Numerical results were always coincident, but the computer time spent by our meth­
od was about 30°/o less than the time employed by the other two methods which was 
found ~to be approximately equivalent in computer time for this type of models. 

NUMERICAL EXAMPLE 1 

Let us consider an homogeneous block hav~g a density contrast of 1 g/cm3 whose 
shape is described in Figure 5. 

X 

z 

(-5J 10J5) 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

Fig. 5. Numerical example 1. Vertex coordinates are in km. 
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We calculate vertical anomalies due to that block at the origin of coordinates and 
at the four points of the XY plane located on the vertical of the vertices. 

The limits of integration are the two faces parallel to the XZ plane and we trian­
gulate the remaining faces (lateral surface); Since these faces are all plane, triangles 
fit exactly the body's shape and the result is the same for both directions of trian­
gulation. 

Computed values are shown in Table I. 

Table 1 

Computed values for numerical example 1 

Point Computed anomaly 

X y 

0 0 
-5 -10 

5 -10 
-5 10 

5 10 

z 

0 
0 
0 
0 
0 

(mGal) 

81.04 
35.70 
35.70 
41.06 
41.06 

NUMERICAL EXAMPLE 2 

Example I 's block was divided into two irregular bodies whose vertices are defined 
along five vertical sections parallel to the XZ plane, as shown in Figure 6. We com­
pute the anomalies, separately for each body, at the same points as in Example I. 

In this case, different directions of triangulation lead to different results for each 
body, and this is pointed out in Table 2. 

The lower surface of the upper body agrees exactly with the upper surface of the 
lower body when triangulation is made in different directions on each body. Then, 
cross sums of contributions, as made in the table, equal the effect of the whole body 
which, as said, does not depend upon triangulation. · 
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Fig. 6. Numerical example 2. Decomposition of example 1 's block. 

Table 2 

Computed values for numerical example 2. 

Point 
Triangulation Triangulation 

Direction 1 Direction 2 

X y z 
(a) (b) (c) (d) 

Upper body Lower body Upper body Lower body 

0 0 0 54.56 26.49 54.55 26.48 

-5 -10 0 23.37 11.30 24.40 12.33 

5 -10 0 23.00 11.64 24.06 12.70 

-5 10 0 22.89 20.08 20.98 18.17 

5 10 0 22.99 20.o? 20.99. 18.o? 

Whole body 
=(a)+ (d) 
=(b)+ (c) 

81.04 

35.70 

35.70 

41.06 

41.06 
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APPLICATION TO THE INVERSE PROBLEM 

A model of homogeneous body with known density contrast having a fixed top sur­
fa.ce and a variable bottom surface defined by the z coordinate of a set of points 
whose x and y coordinates are fixed, is common in gravity interpretation. (Vice­
versa, the bottom surface can be fixed and the top surface, variable). 

The type of body presented in this paper is very suitable for such a model. 

In fact, as in Figure 7, one can construct a series of polygonal vertical sections 
adapted to the desired model and determine which vertices are to be fixed and 
which are to be variable (i.e. upper vertices fixed, lower vertices variable). 

As it is known, ambiguity in gravity interpretation does not allow - theoretically 
or practically - all the vertices to be variable. 

Ft.X£0 

VAHIA.BLEZ 

I 
I 

VARIA.Bt.£ Z 
I 
I 
I 

rt.x£D 

VA1i'!Ai3LE Z 

Fig. '7. One of the vertical sections of the model. 

FIXED 

V.Atr/A.BLE i! 

/IARIABLEZ 

Suppose that we have measured gravity at n stations, obtaining a vector of anom­
alies 

g= 
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Suppose also that our model depends upon m parameters, i.e. the z coordinate 
of m variable vertices, which define a vector 

z = 

zm 

We can compute the anomalies caused by the model by applying the expressions 
developed in previous paragraphs, and the result is a vector of computed anomalies 

i" (z) = 

We search for a model minimizing the objective function 

n 
S(z) = .~ [g.- g~(z)]2 

1=1 I I 

that is, we need to solve a non-linear least-squares problem. 

One of the ways of solving it is by the Gauss- Newton method combined with the 
Marquardt's ( 1963) algorithm. 

Starting from a z(o) guessed solution, one constructs at each iteration a normal 
m x m system of linear equations in the ~z increments to be added to the former ap­
proximation for obtaining a new one 

(13) 

where J is the Jacobian matrix having at the i-th row, j-th column, the partial 
derivative 
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In practice it is convenient to compute numerically the derivatives, by recalculat­
ing (11) with a small increment on the z coordinate of each variable vertex of the 
triangle, since an analytical derivative expression derived from (II) should be very 
much longer in computer time than (II) itself. 

Marquardt's algorithm adds a positive constant A to all diagonal terms of Jt J in 
( 13 ). The initial value of A is arbitrary, and the normal system remains 

(Jt J + AI)6z = Jtg (14) (1: identity matrix) 

Independent terms of (14) are proportional to 'VS (gradient of the objective 
function), and their quadratic mean, Q, provides a measure of convergence. In fact, 
if Q = 0 (in practice less than a tolerance), the gradient is zero and a minimum is 
reached. 

At each iterative step if S (or Q) decreases, A must be made smaller, i.e., by dividing 
it by I 0. The process tends to the Gauss- Newton method. But if S (or Q) increases, 
the criterion is to augment A, i.e. by multiplying it by 10, and then go back to the 
former step. The process tends to the steepest-descent method. 

A flowchart describing the solution of the inverse problem by applying this algo­
rithm is presented in Figure 8. 

The above described procedure is found very useful in avoiding divergence when 
the initial model is far from the solution, but convergence is poor when the matrix 
of the normal system is ill-conditioned. An ill-conditioned matrix can be obtained 
not only when m > n, but also in most cases of close proximity of the vertices defining 
the unknown surface. 

For this case other procedures can be useful: 

a) Generalized matrix inversion. See Pedersen (1977), Enmark (1981 ), Lines and 
Treitel (1984) among others. 

b) As proposed by Guspf ( 1984) for the 2-D inverse problem, to add linear cons­
traints in order to limit the free movement or oscillation of the points. These cons­
traints may establish that the vertices of the triangles defining the unknown part of 
the body must lie over a surface defined by p parameters, being p < m. The surface 

: ~' 
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can be a polynomial surface of given degree, or a linear combination of sampling 
functions given, etc. 

Fig. 8. Synthesis of flowchart followed to solve the inverse problem. 
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We suppose that the body causing the anomalies is the block in Example 1, but 
suppose that we only know density and upper surface (coordinates of the four upper 
vertices). 

Then, in order to determine the lower surface (coordinates of the four lower ver­
tices) we apply the Gauss - Newton method with Marquardt's algorithm starting 
from an initial approach z1ower =constant= 7 km. 

Table 3 shows convergence through 5 iterations. Since initial and final models are 
symmetric, the non-symmetry observed on intermediate approximations is due to 
the influence of triangulation direction on partial derivatives. 

CONCLUSIONS 

Exact expressions for computing gravity effects of finite structures approximated by 
a model of polyhedric body have been developed. No rotation of coordinates is per­
formed and formulae are rapid in computer time. The type of body proposed is 
very suitable for modeling solutions in most cases of inverse problems, and unknown 

vertices (usually the lower or upper surface of the body) may have different proxim­
ities. The Gauss- Newton method with Marquardt's algorithm provides good conver­
gence even from relatively distant input if vertices are not too close. Some concepts 
have been mentioned concerning the close vertices case. 
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APPENDIX 

ANALYTICAL INTEGRATION 

In order to compute 

I • (01 j ln (<X t + ~ + Vat2 + bt + d ) dt 

with a> 0 and b2 - 4ad<O . 
we firstly substitute 

1 ~, dt l 
t •- (v- --ra 218 dv ra 

• • • I . -1_ Jv2 I ln (pv + q + V v 2 + c 

Va vl 
) dv 

b b o< o(b b2 
with vl • 2 {i ' 

v2 • ra + 21a: ' p • ra' q • P- 2a ' c • d - 4a 

Then, after a partial integration, 
v v2 

I. p + 

• ~ [v ln (pv 
/v2 + c 

dvl + /v2 {A-) I + q + c ) -
+ {v2 + pv + q c ,.., 

'--- _./ Yl 
--...,.-

Il 
is obtained. 

To reduce I 1 to the integral of a rational function we make a new 

substitutionl 

u • v + /v2 + c , from which 

u2 - c 
Jv2 

u2 + c 
v • + c • 

2u 2u 

Then, by replacing, 

j. (l+p)u4 - 2cu2 + 
11 

• 2u2 ((l+p)u2 + 2qu 

dv u 2 + c 
-: 

du 2u2 

(l-p)c2 
du 

+ (1-p)c) 
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of the ~ntegrand into 

u- +C --u-
1-p 

simple fractions 

2q2 
2c +--

1-p 

J 

2 J. 2pq 

11 • -----::----- du + -----,.-------- du 
2u2 (l+p)u2 + 2qu + (1-p)c '---------;- _____ __..., 

I___. 
2 

(A-2). 
1 q c 

• --u- ln u - + 12 
2 1-p 2u 

We work on 12 and we obtain 

pq r 2(l+p)u + 2q 
I2 • 

l-p2 (l+p)u2 + 2qu + (1-p)c 
du 

= pq 1n ~l+p)u2 + 2qu + (1-p)c)-
1-p2 

2 Jc(l-p2) - qt _1 (l+p)u + q 

1 - p2 tan y'c(l-p2) q2 

But 

427 

leads to 

• 

ln [(l+p)u2 + 2qu + (1-p)cJ • ln [2u (pv + q + Jv2 + c >]· 
•_!A-i:+ ln u·+ ln (pv + q + lv2 +c) 
constant 

and from (A-2) 

Then 
v -

1 
-u 
2 

q 

c 

2u 

ln I1 • 
l-p2 

2w 
tan-1 ---

1-p2 

with w • 

u
1 

- c 
---- v 

2u 

(v + /v2 + c ) + 
pq 

l-p2 
ln (pv + q + jv2 + c ) -

(l+p) (v + Vv2 + c) + q 

w 



428 GEOFISICA INTERNACIONAL 

Final1y.going to (A-1) 

1 ~ pq 
+ Vv2 

q 
ln ( v + /v2 + cJ + I • {8 ( v - ~ ) l.n ( pv + q + c ) - v + --

a 1-p l-p2 

2w (l+p) (v + /v2 + c ) 

··~ 
v2 

+- tan-1 (A-3) 
1-p2 w v1 
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