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IN 3-D HETEROGENEOUS MEDIA, CONTINUOUS AND DISCRETE 
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Se presenta un metodo sencillo para cl trazado cinenultico de rayos. El mctodo se basa en Ia muy conocida 
"aproximaci6n circular", desarrollada para medios heterogcneos en dos dimensiones. Puedc aplicarse a medios 
tridimensionales tanto continuos como discretos. Los medios en dos dimensiones son un caso particular (perfil), 
al igual que los medios tridimensionales discretizados, donde las unidades son tetraedros irregulares, dentro de 
los cuales Ia velocidad es lineal en las coordenadas. El mctodo usa Ia forma analltiea de Ia velocidad y sus gra
dientes. Es rapido, exacto, no requiere mucha memoria ni tiempo de computadora, y permite el disefio y manejo 
sencillos de heterogeneidades. Se ilustra con ejemplos sinteticos. 

ABSTRACT 

A simple method for kinematic ray tracing in 3-D heterogeneous media is presented. The method is based on the 
well known "circular approximation", which holds for 2-D heterogeneous media, and it can be used for both 
continuous and discrete 3-D media. 2-D media are a particular case (a profile), as well as discrete 3-D media, 
where the space units are irregular tetrahedrons, inside of which the velocity behaves linearly with the coordi
nates. The method requires analytical determination of the velocity and velocity gradients: it is fast and accu
rate, and requires minimum computer time and memory. Also, it is extremely versatile in that it allows easy 
handling of specific heterogeneities. Synthetic examples arc provided. 

• Centro de Investigaci6n Cientffica y Educaci6n Superior de Ensenada, Baja California. 
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INTRODUCTION 

The problem of ray tracing has been solved recently in several ways, according to the 
required usage. In most cases, the so-called. ray tracing system of differential .equa
tions of the first order (1) is solved. These equations may be presented in different 
forms, according to the parameter used to describe the raypath. In general 

dXj 2-Np· -=V I 
dw 

(1) 

where pi= cosO/V, with (Ji the angle of the tangent to the ray at (x, z) with the i-axis, 
and the velocity Vis a function of the coordinates (V = V(x, y, z)). 

The nature of dw depends on the value of N: if N = 1, dw = dS (the differential of 
arch length) if N = 2, dw = VdS, and if N = 0, dw = dT (the differential of travel time). 
The apparently most efficient choice is N = 2, since if 1 /V2 is assumed to vary linear
ly with the coordinates, the solution of system (1) reduces to polynomials of the 
first, second and third order in w = fVdS for the slownesses, the position and the 
travel time, respectively (Cerveny, 1986). Several papers have been published that 
cover both continuous and discrete media: Aric et a/. ( 1980), Pereyra et al. ( 1980), 
Gebrande (1976), Madrid ,'(1985), for example. Most of the methods are lengthy 
and very time consuming. 

Ray tracing is adequate for direct and inverse travel time and synthetic seismo
grams calculations (c.f Chapman and Drummond, 1982; Cerveny, 1985), as well as 
in migration of traces and image formation (c.f Carter and Frazer, 1984 ). The 
Gaussian beam method (Cerveny et al. 1981; Cerveny and Psencik, 1983), for exam
ple, has been implemented for 2-D inhomogeneous media (Muller, 1984) that are 
discretized in such a way that they are composed of a set of "linear" triangular 
regions. By linear it is understood that the wave velocity behaves as V = Vo + bz', 
where the direction of z' is determined by minus the velocity gradient (-b). . -

In this paper, I report a simple, geometrical method to trace raypaths and com-
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pute travel times anp associate quantities for continuous 3-D media whose wave vel
ocity may be expressed as 

with 

3v 
hx =ax' 

V = (V(x, y, z) 

3v 
by = ay' 

(1.1) 

(1.2) 

The method is based on the well known "circular approximation" (Aric et al., 1980; 
Marks and Hron, 1980; Madrid and Traslosheros, 1983; Madrid, 1985). The essen
tials of this method are that, for every point in the medium the curvature of a ray is 
given by a suitable combination of p(x) = (p, q) (the ray slowness) and Q(~) = (bx, 
bz), the velocity gradient. For the curvature of the ray we have 

k = - p'b (2) 

where p' is the horizontal component of the slowness, expressed in a system where 
grad(V) = b is aligned with the negative z'- axis. In two dimensions, the angle of 
rotation is given by 

cos r = - bz/b 

sin r = bx/b 

and 

(3) 

For a set of initial conditions (x0 , z0 , Po, q0 ), a circular segment of a raypath 
may be computed, since the radius is known, and the final values of x, z, p, and q 
may be calculated. The reiteration of this process traces a ray from a specific point 
(source) to the surface. The travel time and other parameters are computed and ac
cumulated along the path. The ray remains in the original plane since by = 0. This 
is the feature that is exploited to extend the method to 3-D media: in a small neigh
borhood of (x, y, z), a ray with p = (p, r, q) "feels" a velocity which Mhaves linear
ly in (x, y, z), so the local path is an arc of a circle contained in a local plane of prop-
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agation. If the local path is small enough, the error with respect to the correct path 
is negligibh~. The whole path is then composed of many "local" paths, each corres
ponding to a plane of propagation that may vary according to the behavior of b = 

(bx, by, bz). 

In the next section, the method is thoroughly explained, and in the following sec
tion, synthetic examples of travel time calculations are given. Since the method 
holds for arbitrary v(x, y, z). It is obvious that an extension to 3-D of the discrete 
circular approximation becomes a particular case, and it can be easily solved. 

THEORY 

Consider a medium where the velocity is given by 

V(x, y, z) = Vo + bz , b<o (4) 

i.e., b = (o, o, b). In such a medium, a ray is totally contained in the plane of prop
agation defined by the gradient of velocity and the takeoff slowness (Fig. Ia). If the 
velocity varies in the x and/or y directions, but it is such that bx = const, by = 

const, a rotation of the cartesian axis of coordinates that aligns the new z-axis (z') 
with the direction of - Q reduces locally the case to the previous one. In this case, 
however, the plane of propagation is tilted with respect to the vertical (Fig. 1 b). 

The rotation may be construct~d in such a way that the slowness, expressed in the 
new system (p' = p, due to invariance with respect to rotations) is totally contained 
in the plane of pro-pagation. Then, the y'- component of the slowness vector is null. 
This is done as follows: 

A unit vector in the direction of the z'- axis is given by: 
, -bx 

kl= --

i.e. 

b 

k
l - -by. 
2- b 

k
' _ -bz 
3- b 

(5.1) 
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A unit vector perpendicular to the plane that contains the ray path is obtained by 
taking the vector product 

• • I 
j = k X E_V 

(5.2) 

(a) 

z 

y 

( X, y ) 

Fig. 1. (a) A ray with initial slowness p in a medium with velocity V= Vo+ bz remains in the plane defined by 
the normal to the slowness p and to the velocity gradient Q = (bx, by, bz). The horizontal slowness.£_ is con
served. (b) If bx, by, bzt 0 the ray remains in the plane defined by p and .Q, but this is no longer vertical and 
the horizontal slowness p is not conserved. -
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since pv is the unit slowness vector; finally, the right-handed system of coordinates 
is completed simply by another vector product: 

f' = f' X k' 

(5.3) 

The operator formed by writing (5.3), (5.1) and (5.2) (hereafter referred as (5)), 
as the rows of a matrix is a rotation that transforms the (x, y, z) system of coordi-
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nates into the system (x', y', z'). Since it is orthogonal, its inverse is simply the 
transpose matrix. 

_, _, _, 
II ll 13 

R= ·' ·' (5) h h 

k~ k~ k3 

R-I = RT 

When the velocity gradients are constant, one such construction is enough, since, 
as discussed in the first paragraph, the whole ray path remains in the same plane. 
This is not the case if the velocity of propagation is a more general function of the 
coordinates. 

Let us assume that the velocity is given by ( 1.1 ). The gradient of velocity may 
change from point to point, and the raypath will be a curve in the 3-D (x, y, z) space 
that is not contained in a specific plane. It is intuitive, however, that the whole ray 
path may be divided into a finite number of circular segments, as illustrated with cir
cle arcs in Fig. 2. Thus, the construction of the whole ray path may be achieved by 
sequentially constructing tl].e required circular segments through a method such as 
those discussed in Gebrande (1976) or Madrid (1985). This case is not different 
from the case of a constant gradient, except that the construction of the local sys
tem (5 .1, 5.2, 5.3) must be done for every segment along the ray path. 

In the two dimensional case, the determination of a segment is immediate. The 
only feature to check is that the whole path (Fig. 3) remain inside the region (Ma
drid, 1985). If this is not so, the circular segment must be interpolated to the proper 
boundary. The continuation of the ray path then requires the application of Snell's 
law. 

The 3-D case is, of course, more complex. The division of the whole medium may 
be done in a variety of ways, but in any case, the different regions that conform the 
medium must be in welded contact with each other. Perhaps, the simplest way is to 
use irregular blocks. The important feature required to define a ray displacement as 
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z 

y 

(X,Y) 

Fig. 2. A whole ray path is composed of a number of "local arcs of circles". The radiuses of the osculating cir
cles may vary according to the variation of the velocity. The heavy line above is the projection of the ray on the 
surface z = 0. 

"good" is. that it does not cross any boundary face, L e., both the stclrting as well as 
the final points of the segment are inside the region. If this requirement is not satis-
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fied, the intercept of the local osculating circle with the appropriate face of the cube 
must be determined and Snell's law applied, just as in the 2-D case. A simple way to 
do this is as follows: once the local plane of propagation and the local circle have 
been constructed, the intercepts of the plane with the sides of each face of the cube 
can be easily computed. For the sides of each face, there can be only two such in
tercepts. This is shown in Fig. 4, where the vertices of a face are numbered I, 2, 3, 
4, and the intercepts are named 11 and 12 . Calling, for example, !t and !.2 the vec
tors defining the vertices 1 and 2, we have: 

r = !_1 + XQ) - !_1) (6) 

Since the rotation that aligns the normal to the plane of propagation with the Y1 

axis is known (5), the whole cube is rotated, and (6) becomes: 

Y
1 = y/ + X(Yz

1
- y/) = YP

1 

I I "\( I I) 
Z = Zt + 1\ Z2 - Zt 

A. can be determined from the second equation: 

I 

X = YP- Yt 
Y2 - Y1 

(7) 

(8) 

x and Z
1 are then easily determined by direct substitution of (8) in (7). The problem 

then has been reduced to a local two dimensional problem, similar to the one ex
plained in Madrid ( 1985). The only difference is that, in that case, there were always 
four sides to be checked, whereas in the present case the number of sides may vary 
from 3 to 6 (Fig. 5). 

The final step for deciding if a displacement is bad or good is simple if a secon<;l 
rotation is implemented, this time, in the 2-D space of the plane of propagation. 
This rotation aligns the x" axis with the direction of the line defined by the inter
cepts. In this new (x", z") system, the osculating circle intercepts the line at the 
points 
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xc" ± b.x" (9) 

where 

(10) 

and D is the perpendicu1ar distance from the center of the circle to the line L (de
fined by 11 and 12 ). The last step consists of eliminating the solutions that do not 
comply with the direction of the ray or that fall outside the intercepts of the plane 
of propagation with the face of the cube. Only one solution is left, say (x/', z/'). 
The inverse rotation from the (x", z") system produces the point 

( 
I I I) xr' Yp, zr 

and the inverse operator of (5), applied to ( 11) gives the final point 

(xr, Y f' zr) 

{11) 

{12) 

To complete the algorithm, the travel time between points p0 and Pr must be calcul
ated, as well as the final slowness components. The slowness is easily determined in 
either the normal system of coordinates or the local system, but it is easier in the lat
ter through 

since inside this system p' = const and r' = 0, the inverse operator to (5) then gives 

Pr 
, 

p 

rf = R-1 0 (13) 

qf 
, 

qf 

the travel time is then 

1 1 + qv f 
b.t = - [In -- ] b pv o (14) 
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c c 

Po 

Fig. 3. (a) A "good" segment. Both, the initial and the final points arc inside the same region. (b) A "bad" 
segment. The final point must be interpolated to the proper side of the region; there, Snell's law must be used 
to determine if the ray is reflected or refracted, as well as the new direction of the ray. 

Summation of ( 14) for each segment along the whole path yields the total travel 
time. Other quantities are derived from T, X, Y, Pr, rf, qf. 

For discrete media, the procedure explained is as follows. The media are divided 
in blocks that in turn are divided in tetrahedrons defined by the vertices of the cubes. 
Each cube is formed by six tetrahedrons (Fig. 6), inside each one of them the veloc
ity behaves as 

V = Vo + bx x +by y + bz z. (15) 

The four constants (Vo, bx, by, bz) in (15) are easily computed using the rule of 
Kramer, since at the vertices of each tetrahedron 

i = 1, 2, 3, 4 • 
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Fig. 4. A ray striking on one of the faces of a cubic region. The vertices of the face are numbered 1, 2, 3, 4. 
The local plane of propagation is intersected by the sides 1-2 and 34 at points I 1 and 12 • The interpolation to 
the correct final point is performed more easily in the system of the plane of propagation (X', z'). 

The formulae developed in the present section are valid in this case, the only dif
ference is in the final point, which, for each tetrahedron, is computed in only one 
step, i.e., solving for the intercept of the local circle with the appropriate face of the 
tetrahedron. The final point thus obtained becomes the initial point of a new tetra
hedron. Of course, for c"ontinuous media where the velocity gradient is constant, 
this procedure may be used too. 
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Fig. 5. An example of the variation of the number of faces that arc cut by a local plane of propagation. Here 
the plane intercepts only four out of the six faces. If the inclination of the plane is changed, it may cut more or 
less faces. In this example, the important faces arc }(front), 3(right), 5(abovc), 6(bclow), but solutions exist 
only for faces 3 and 5 (points 1, 2, 3, 4). Two of the possible solutions (2, 4) fall outside the intercepts, and 
are consequently eliminated. The other one (3) docs not comply with the direction of the ray. 
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I 
I 

' I ~ ,, , 
~ 
I 

I 

Fig. 6. Any cube may be divided in 6 tetrahedrons. 

EXAMPLES 

The following examples are very simple and have little geophysical interest, but fully 
illustrate the capabilities of the method. 

The first two examples differ only in that the velocity gradient has, correspond
ingly 1 (bz), and 2(by, bz) components, thus they are equivalent after an adequate 
rotation of the coordinate axes. However, in the x-y plane (z = o ),. the difference is 
noticed in the shape of the isuchrones or equal travel time curves at the surface. 
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Figure 7 shows the case bx = by = 0, bz =I= 0. Profiles are shown in part (a), at 
three different azimuths. The rays are arcs of circles contained in vertical planes and 
the resulting profiles are straight. In part (b), thirty rays with the same vertical take
off angle, but different azimuths are plotted, and a vertical sight of these rays is 
shown in part (c). In Fig. 8(a) and (b) the same curves are illustrated for the case 
by =I= 0, bz =f 0, bx = 0. It is evident here that the isochrones become circles elongated 
in a direction opposite to <hi + b;) 112 

, i.e. along the y-axis. The rays are circles 
contained in planes that are tilted so that the normal to each plane is given by pxb. 
This example is equivalent to the more general bx :f:: 0, by =f 0, bz =f 0, after a rota
tion in the (x, y) plane that aligns the horizontal component of the gradient with a 
new y-axis.The interesting feature of this example is that the profiles are not straight 
anymore. That is, the rays that correspond to a vertical plane <1> = const at the source 
do not emerge in a straight line (Fig. 8(b)) (a profile) at the surface. In Fig. 8(c), 
30 rays at azimuths spanning 27T radians around the source are illustrated; here, the 
clustering of the rays in the direction of the velocity gradient is very noticeable. Fig. 
8(d) is a vertical view of these rays. 

(a) 

I 

j 

Fig. 7. (a) A medium with bx =by= 0, bz+ 0. Three profiles at different azimuths arc showq. Two of the rays 
leave the model through lateral sides. (b) 30 rays with equal takeoff angle spanning 2~ radians around the 
source. (c) The rays of (b) as seen from above. 
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(b) 

// 

~,~/_,/_/ __ ~-------~~~~~~--------.~/ 

/ / 
~----------------------------------~ 

(c) 
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(a) 

(b) 

Fig. 8. fa) Same region as in Fig. 6, but byi= 0. (b) The vertical sight of the profiles shows that they arc not 
straight anymore. (c) Thirty rays at equal takeoff angle showing divergence in the direction.of decreasing vel
ocity and clustering in the opposite direction. (d) Vertical sight of (c). 
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(c) 

/ 

(d) 
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The fourth example, shown in Fig. 9, includes an inclined discontinuity that 
causes that rays in a certain angular range be reflected or refracted. Critically refracted 
rays are not illustrated, but they could easily be drawn. Three reflections in the wall 
are easily spotted. 

Fig. 9. Two media with vertical gradient separate by an inclined discontinuity. Three different shooting direc
tions are shown, two of them yield rays leaving the model in vertical walls, the other shows three reflected rays. 

The example shown in Fig. 10 is the simplest representation of a graben. Three 
blocks have been used where the velocity varies with depth, but it is greater in the 
middle one. In the figure, two refractions appear, one in each inclined fault. The ef
fect of the refraction in the fault at the rear is noticed in the change of direction of 
the profile (see the dotted line). 

The last example (Fig. 11) corresponds to a model that includes four layers with 
discontinuities. This example is illustrative of the versatility and simplicity with 
which models are handled when worked out using analytical functions to define the 
velocity. For example, if one wishes to model a bell shaped anomaly within a 'nor
mal' medium (V =Yo+ bz), the following set of definitions may be used: 

Block 1: V(z) = Vo + bz, b = b = 0 X y ( 16.1) 

Block 2: V = V(z) + b.V 2 (z) sech(A lr - r0 I) 



Fig. 10. A simple representatioiU>f a graben. The velocity of propagation in the middle region is greater. Three 
different azimuths are shown. Note the change of direction of the profile due to refraction on the rear fault. 
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Fig, 11. A four layers velocity model with three shooting directions. In this example, the same velocity law 

holds through the four regions, so that the rays are completely circular. 
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Fig. 12. A section of a possible representation for a "bell shaped" velocity anomaly as given by equations (15.1), 
(15.2) and (16), with r= ro. 
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A(x- x0 ) 
bx = LW2 (z) sec h (A I r - r0 I) tanh (A lr -r0 I) --=----=...:... 

. lr- r0 I 

A(y- Yo) 
by= .0.V2(z)sech(A(r-r0 )tanh(Air-r0 1) 

I r- r0 I 

I 2 2 1/2 
r- ro I = ( (x- Xo) + (y- Yo) ) , and (x0 , y0 ) 

is the center of the anomaly. 

Block 3: same as Block 2, with .6 V 3 (z) instead of .6 V 2 (z) 

Block 4: same as Block 1. 

In particular, if r = r0 , and 

b.V2 (z) = -.2(z + 10), -10>z>-15 

t.V3 (z) = .2(z+20), -15 > z> -20 

the model corresponds to Fig. 12. If r t= r0 , the amplitude of .6 V decreases. 

349 

(16.2) 

(16.3) 

If a discontinuity must be considered, it is enough to add or(and) substract a 
constant in the corresponding block(s). 
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