
Geofísica internacional (2020) 59-1: 27-37

27

oriGinal paper

The divide-and-conquer framework: a suitable setting for domain
decomposition methods of the future

Ismael Herrera-Revilla, Iván Contreras and Graciela S. Herrera*

Received: March 4, 2019; accepted: November 25, 2019; published on line: January 6, 2020

I. Herrera-Revilla
Instituto de Geofísica
Universidad Nacional Autónoma de México (UNAM)
Apdo. Postal 22-220, México, D.F. 14000

I. Contreras
Instituto de Geofísica
Universidad Nacional Autónoma de México (UNAM)
Apdo. Postal 22-220, México, D.F. 14000

Resumen

Este artículo surgió a partir de experimentos
numéricos, en los cuales ciertos algoritmos,
que en algunos textos científicos (DVS-BDDM)
produjeron aceleración (o speedups) muchas
veces mayores a la cantidad de procesadores
utilizados (existen casos ya abordados de más
de setenta, pero probablemente a menudo son
mucho mayores). Con base en estos resultados
sobresalientes, en este artículo se demuestra
que creer en la aceleración ideal estándar, que
se considera igual a la cantidad de procesadores,
ha sido una limitante en el rendimiento buscado
a través de distintas investigaciones sobre
métodos de descomposición de dominio (MDD)
y hasta el momento ha obstaculizado mucho su
desarrollo. Por lo tanto, se propone una teoría
mejorada en la que el objetivo de aceleración
se base en el paradigma algorítmico “Divide y
vencerás”, considerado con frecuencia como el
leitmotiv de los métodos de descomposición de
dominio, como un escenario adecuado para el
MDD del futuro.

Palabras clave: MDD, DVS-DDM, computación
paralela, aceleración paralela ideal, dividir y
vencerás.

Abstract

This paper was prompted by numerical
experiments we performed, in which algorithms
that Ismael Herrera Research Group previously
developed (the DVS-BDDC) and are already
available in the literature, yielded accelerations
(or, speedups) many times larger (more than
seventy in some examples already treated, but
probably often much larger) than the number
of processors used. Based on such outstanding
results, this paper shows that believing that
the ideal speedup is equal to the number of
processors, has limited the performance-goal
sought by researchers on domain decomposition
methods (DDM) and has hindered much its
development, thus far. Hence, an improved
theory in which the speedup goal is based on
the Divide and Conquer algorithmic paradigm,
frequently considered as the leitmotiv of domain
decomposition methods, is proposed as a
suitable setting for the DDM of the future.

Keywords: DDM, DVS-DDM, parallel computation,
ideal parallel speedup, divide and conquer.

G. S. Herrera*
Instituto de Geofísica
Universidad Nacional Autónoma de México (UNAM)
Apdo. Postal 22-220, México, D.F. 14000
*Corresponding author: ghz@igeofisica.unam.mx

I. Herrera-Revilla, I. Contreras and G. S. Herrera.

28 Volume 58 number 1

1. Introduction

The present paper was prompted by some
outstanding results that we recently obtained
in a sequence of numerical and computational
experiments applying some parallel algorithms
already available in the literature (the DVS-
BDDC [1-8]). They are extraordinary, because
contradict the generally accepted belief that
in parallel computation the acceleration, or
speedup, cannot be greater than the processors
number [9-22]. For example, in our numerical
experiments using 400 processors in parallel
we achieve a speedup of 29,278, which is 73.2
times greater than the maximum acceleration
that such a belief allows.

In agreement with such a belief, the speedup
goal sought in most, probably all, research that
has been carried out in domain decomposition
methods (DDM) up to now [9-20], is equal
to the number of processors used. Since our
results show that considerably larger speedups
are feasible, the conclusion is drawn that the
speedup goal sought so far is too modest and
restrictive; hence, it should be replaced by a
larger and more ambitious performance goals
in future DDM research. To this end, we resort
to the DIVIDE AND CONQUER STRATEGY,
which for solving boundary-value problems
of PDEs using parallel computation, probably
is the most basic algorithmic paradigm [23].
Furthermore, we formulate it in a manner that
yields precise and clearly defined quantitative
performance goals, to be called DC-goals,
which are larger, yet realistic. The adequacy of
the modified framework so obtained is verified
by satisfactorily incorporating the outstanding
results just mentioned in it.

It should be mentioned, before leaving this
Section, that according to the Gustafson’s Law,
the speedup is up-bounded by the number of
processors, which is achieved when the linear
speedup is attained. However, beyond such
limits, the superlinear speedup may happen
for plenty of reasons (see [24]), although it is
not frequent and when it occurs it enhances the
value of the software possessing it.

The paper is organized as follows, Section
2 presents some background material on
the Derived-Vector Space (DVS) approach to
DDM, and DVS-BDDC [1-8]. The outstanding
performance results that prompted this article
are introduced and explained in Section 3.
An inconsistency of standard approaches to
DDM that such results exhibit, is pointed out
and discussed in Section 4, while Section 5
introduces some measures of performance
whose conspicuous feature is that they are
defined with respect to a performance goal.

The ideas and results contained in Sections
3 to 5, are then used in Sections 6 and 7, to
show that both, the concept of ideal parallel-
performance and the belief that the ideal parallel
speedup is p , lack firm bases. The “divide and
conquer” algorithmic paradigm ([23], p. v), -the
DC-paradigm- is recalled and revised in Section
8, and a quantitative DC-performance goal
adequate to be used in future DDM research, is
derived from it. There, it is also shown that in the
examples here discussed the latter performance
goal is larger than p , by a big factor; indeed, in
the examples here treated, the DC-speedup goal
is close to p2 and the factor we are referring to, is
close to p= p2/p . We recall that p is the number
of processors, used and hence the ‘factor’ is large
when the number of processors is large.

When the extraordinary numerical and
computational results that prompted this paper
are incorporated in the DC-framework they look
completely normal, as it is shown in Section 10,
since their DC-efficiencies, for p≠1 , range from
70.3% to 20.0%. Sections 11 and 12 are devoted
to exhibit the severe restrictions that believing in
the relation S(p,n)≤p, has imposed on software
developed under that assumption. Finally,
Section 13 states this paper’s conclusions.

2. Some background

Ismael Herrera and some of his coworkers, have
been working in domain decomposition methods
(DDM) since 2002, when he organized and
hosted the Fourteenth International Conference
on Domain Decomposition Methods (DDM) [23].
In their work on DDM [1-8], they pointed out
that it is extremely inconvenient using coarse

Geofísica internacional

enero - marzo 2020 29

meshes in which some of the nodes are shared
by several subdomains because, when this is
done the system matrix is not block-diagonal.
This, in turn, shatters one of the main objectives
of the DDM strategy: processing in different
processors the degrees of freedom belonging
to different subdomains of the coarse mesh.
So, according to the above discussion, standard
methods (i.e., methods that follow the canons
prevailing at present) share this handicap and,
to overcoming it, we introduced the derived-
vector space methodology (DVS methodology)
[1-8].

The algebraic venue in which DVS
methodology was built is the derived-vector
space. Briefly, the derived-vector space
construction consists in [2]:

i). Firstly, the partial differential equation is
discretized by means of a standard procedure
in a fine mesh. This yields a system of linear
discrete equations and a system of original
nodes. When a coarse mesh is introduced, some
of them are shared by several subdomains.

ii). Replacing the original-nodes by the
derived-nodes. The nodes of this latter class
have the property that each one of them belong
to one and only one of the subdomains. The
whole set of derived-nodes is decomposed into
non-overlapping subsets, with the property that
there is a one-to-one correspondence between
such subsets and sub-domains of the coarse
mesh;

iii). Then, the linear-space of functions
defined in the derived-nodes, constitutes the
derived-vector space, which is provided with
an algebraic structure suitable for effectively
carrying out the developments required for
constructing the DVS methodology;

iv). The concept of non-overlapping
discretization is introduced [2]. The most
significant and conspicuous property of such
a kind of discretizations is that its application
yields block-diagonal systems of equations;

v). A non-overlapping discretization,
equivalent to the standard discretization
applied in i), is used. This permit transforming
the original system of discrete equations into
another whose system-matrix is block-diagonal.

Up to now, the DVS methodology has
produced four DVS-algorithms (see, [2] for
further details): DVS-FETI-DP, DVS-BDDC,
DVS-PRIMAL and DVS-DUAL. The first two
were obtained by mimicking the well-known
FETI-DP and BDDC procedures in the derived-
vector space., but the big and very significant
difference is that such procedures are applied
after the differential equations have been
subjected to a non-overlapping discretization, so
that the discrete system of linear equations we
start with, is block-diagonal. The other two DVS-
algorithms: the DVS-PRIMAL and DVS-DUAL,
were produced by completing the theoretical
framework (again see, [2]). So far, only the
DVS-BDDC algorithm has been numerically
tested; in 2016, preliminary computational
experiments were published, which proved
that the DVS-BDDC was fully competitive with
the top DDM algorithms that were available
[1]. However, at that time we did not have yet
obtained the extraordinary results we are now
reporting.

3. The outstanding results

More recently, in 2018, the authors have
developed a more careful code of the DVS-BDDC
algorithm and tested it through a set of numerical
experiments, obtaining the exceptional results
that are presented and discussed in this Section.
They are objectively outstanding because, for

p n T(p,n) S(p,n) S(p,n)
in terms

of p

p/S(p,n)

1 106 29,278 1 1p 1

16 106 178 164.5 10.28p .097

25 106 78 375.4 15.02p .067

64 106 16 1,829 28.58p .035

256 106 2 14,639 57.18p .017

400 106 1 29,278 73.20p .014

 Table 1. Results of computational experiments

I. Herrera-Revilla, I. Contreras and G. S. Herrera.

30 Volume 58 number 1

example, when the number of processors used is
400 the acceleration produced is 73.2 times by
400; hence, in this application, the DVS-BDDC
algorithm produces an acceleration 73.2 times
larger than the largest possible according to
canonical theory (i.e., theory that follows the
canons prevailing at present).

More specifically, the computational
experiments here reported, consisted in treating
a well posed 2D problem for Laplace differential
operator in the highly parallelized supercomputer
“Miztli” of the National Autonomous University
of Mexico (UNAM), using successively 1, 16,
25, 64, 256 and 400 processors. The notation
used to report the numerical and computational
results so obtained is given next:

 (3.1)

Here, the size of the problem is equal to
number of degrees of freedom, which in turn
is equal to the number of nodes of the fine
mesh. In general, the “execution time” and
“speedup” are functions of the pair . In the set
of numerical experiments here reported the size
of the problem is kept fixed and equal to 106;
i.e.,n=106.

The very impressive results of the numerical
experiments are given in Table 1 (everywhere
in this paper times are given in seconds),
where the fifth column gives the speedup as a
multiple of p, the number of processors, which
in standard theory of domain decomposition
methods is thought to be an unsurmountable
speedup. However, in the set of experiments
we are reporting, the speedup is much greater
than the standard theory foresees, if p≠1 ; even
more, it is greater than such an upper bound, by
a large factor: 10.28, 15.02, 28.58, 57.18 and
73.2, when the number of processors is 16, 25,
64, 256 and 400, respectively. Observe that the
factor increases with the number of processors,
which is an enhancing feature. The last column
is only included here, for later use.

4. An inconsistency of standard DDM

The standard definition of efficiency is

 (4.1)

and it is usually expressed in percentage. The
sub-index S used here, comes from Standard
and it is used for clarity, since alternative
definitions will be introduced later.

The Table 2 that follows has been derived from
Table 1, by expressing its last column in terms
of standard efficiency, ES(p,n). By inspection
of Table 2, where percentages much greater
than 100% such as 1,028, 1,502, 2,858, 5,718
and 7,320 occur, it is seen that the standard
efficiency is not adequate for expressing the
superlinear results of the numerical experiments
we are reporting, because efficiencies far
beyond 100% occur.

5. Revisiting the measures of performance

In this Section we define some measures of
parallel-software performance that will be used
in the sequel. As usual, such measures will be
based on the execution time that is required
for completing a task; the shorter the better.
According to Eq.(3.1), the notation T(p,n)
means the execution time when the number
of processors is p ; in particular, T(1,n) is the
execution time when only one processor is
applied.

Table 2. Using standard efficiency for expressing our
superlinear results

p n T(p,n) S(p,n) Es (p,n) in
percentage

1 106 29,278 100%

16 106 178 164.5 1,028%

25 106 78 375.4 1,502%

64 106 16 1,829 2,858%

256 106 2 14,639 5,718%

400 106 1 29,278 7,320%

Geofísica internacional

enero - marzo 2020 31

For the sake of clarity, we recall the speedup
(or, acceleration) definition:

 (5.1)

The main objective in using a parallel
computer is to get a simulation to finish faster
than it would in one processor. Furthermore, let
us take the position of a software designer who
intends to develop software that performs well;
so, he defines a performance goal he intends
to achieve. The following two procedures for
specifying such a goal will be considered; fixing
the execution-time goal, TG(p,n), or fixing the
speedup goal, SG(p,n). Assume either one of
them have been specified, then the relative
efficiency (relative to a goal performance) is
defined by

 (5.2)

when SG (p,n) is given, or

 (5.3)

when TG(p,n) is given.

These two manners of defining relative
efficiency are equivalent, if and only if:

 (5.4)

Hence

 (5.5)

The first one of these equalities can be used
to obtain SG (p,n) when TG(p,n) is given, and
the second one, conversely.

According to Eq.(5.2),

 (5.6)

Here the symbol ⇔ stands for the logical
equivalence; i.e., if and only if. Actually, when we
choose a goal we do not know if it is achievable,
but the initial state satisfies S(p,n)<SG(p,n)
since SG(p,n) is a desirable state. Hence, at the
beginning 1-E(p,n)>0 and this quantity may
be taken as a distance to the goal. However, it
can also happen that our developments lead to

a speedup S(p,n)>SG(p,n), since generally we
do not know beforehand if the speedup SG(p,n)
is an upper bound of those possible. When that
happens, E(p,n)>1.

Conversely, a corresponding argument can
be made if the execution time and Eq.(5.3) are
used to define the parallel efficiency. The main
difference is that, in such a case, T(p,n)>TG(p,n)
at the beginning and T(p,n)<TG(p,n) is an
indication that the goal has been exceeded.

6. The concept of “ideal parallel speedup”

In the literature on scientific parallel computing
and on domain decomposition methods for
the numerical solution for partial differential
equations, the notion of “ideal parallel speedup”
is used when defining absolute efficiency.
However, its definition lacks precision. When
SA(p,n) is the ideal parallel speedup, the relation

 (6.1)

holds whenever S(p,n) is the acceleration
obtained in a parallel computation. If we try
to make this notion rigorous, we could say
that SA(p,n) is the supremum, but what is
never made clear is: of what set SA(p,n) is the
supremum.

Even so, when SA(p,n) is the ideal parallel
speedup, the absolute parallel efficiency is
defined to be

 (6.2)

Thereby, we mention that the subscript A
above, comes from Absolute.

However, if we do not know for sure
that Eq.(6.1) holds whenever S(p,n) is the
acceleration obtained in a parallel computation,
this is a risky definition. Indeed, if that is the
case and there is an execution for which

 (6.3)

Then, we would claim that S(p,n) is not
achievable and we would be satisfied with an
acceleration that is close to SA(p,n), even if
SA(p,n) is much smaller than S(p,n).

I. Herrera-Revilla, I. Contreras and G. S. Herrera.

32 Volume 58 number 1

7. The international DDM research goal

Generally, it is thought that Eq.(6.1) holds, with
SA(p,n)≡p; i.e.,

 (7.1)

Hence, the standard definition of efficiency
of Eq.(4.1):

 (7.2)

Comparing this equation with Eq.(5.2) it is
seen that Eq.(7.2) implies that the speedup
goal, sought by DDM research worldwide is:

 (7.3)

Here, we have written SS(p,n) for the
speedup goal of standard DDM research. In view
of the discussions here presented, this goal is
too modest and more ambitious goals should be
sought in the future.

8. The relative DVS efficiency of standard
approaches

In this Section we make a simple exercise in
which we compute the relative efficiency of
standard approaches when the goal speedup
is that achieved by the DVS-BDDC algorithm
in the numerical experiments here reported.
The notation here adopted for such a relative
efficiency is ES

DVS.

Applying the definition of Eq.(5.2), we get

 (8.1)

Inspecting the results of our numerical
experiments reported in the last column of Table
1, in view of Eq.(7.1), it is seen that the relative
efficiency of standard approaches with respect
to DVS-BDDC is only 9.7%, 6.7%, 3.5%,1.7%
and 1.4%, in these experiments. Hence, our
conclusion of this Section is that the speedups
goals sought in DDM research worldwide up to
now, are too small and should be revised.

9. The Speedup goal of the Divide and

Conquer Framework

As a starting point of this Section, we recall
the divide and conquer algorithmic paradigm
([23]), which is frequently considered as the
leitmotiv of domain decomposition methods
[21]. The divide and conquer strategy (DC-
strategy) consists in dividing the domain of
definition of the scientific or engineering model
into small pieces and then send each one of
them to different processors. If p is the number
of subdomains of the domain decomposition,
the size of each piece is approximately equal
to n/p ; hence, smaller than n when p>1 and
much smaller than n, when p is large.

This is the procedure used by domain
decomposition methods, for reducing the size
of the problems treated by each processor. It
constitutes an application of the DC-strategy. Of

course, for the divide and conquer strategy
being most effective it is necessary and
sufficient that each one of the local problems
be independent of all others. Such a condition
(each local problem being independent of all
others) is seldom fulfilled in practice, and it will
be referred to as the DC-paradigm. Adopting
the DC-paradigm as a guide in the development
of software implies to strive to construct
algorithms in which the local problems are as
independent of each other as possible. Thereby,
we mention that the DVS methodology, which

Table 3. The DC-execution-time goal and the DC-
speedup goal

p n/p TDC(p,n) SDC(p,n) p2 {p2-SDC

(p,n)}/ p2

1 106 29,278 1 1 0%

16 62,500 125.15 233.9 256 8.6%

25 40,000 51.45 596.1 625 4.6%

64 15,625 7.90 3,706 4,096 9.5%

256 4,096 0.55 53,233 65,536 18.8%

400 2,500 0.2 146,390 160,000 8.5%

Geofísica internacional

enero - marzo 2020 33

in the numerical experiments here reported has
been so effective, was developed following the
DC-paradigm.

Since the approximate size of each local
problem is n/p , when all them are independent,
T(1,n/p) would be the approximate execution-
time for each one of them, which when the
computation is carried out in parallel is also
the global execution-time. Therefore, in the
DC-framework we define the execution-time
goal (DC-execution-time goal), to be denoted
by TDC(p,n) , as:

 (9.1)

Correspondingly, the speedup goal for the
DC-approach is defined to be

 (9.2)

and the DC-efficiency is given by

 (9.3)

In Table 3, to illustrate the Divide and
Conquer concepts, they have been computed
in the conditions of the numerical experiments
that prompted this paper. The first and second
columns (counted from left to right) contain
the number of processors and the degrees of
freedom of the local problems, respectively.
The third column yields the DC-execution time
goals of the local problems, which were obtained
through numerical experiments; for each p only
one of the local problems was solved numerically
(and only one of the processors was used). Once

Table 4. The outstanding results in the DC-framework.

Table 5. Comparison of speedup goals

p SS(p,n) SDC(p,n) SDC (p,n) / SS(p,n)=
SDC(p,n)/p

SDC (p,n) / SDC(p,n)= p/
SDC(p,n)

1 1 1 1 1

16 16 233.9 14.6 .0685

25 25 596.1 23.8 .0420

64 64 3,706 57.9 .0173

256 256 53,233 207.9 .0048

400 400 146,390 365.0 .0027

p p2 TDVS(p,n) SDVS(p,n) TDC(p,n) SDC(p,n) SDVS(p,n)/P

1 1 29,278 1 29,278 1 100% 100%

16 256 178 164.5 125.15 233.9 70.3% 64.3%

25 625 78 375.4 51.45 596.1 63.0% 60.1%

64 4,096 16 1,829 7.90 3,706 49.4% 44.7%

256 65,536 2 14,639 0.55 53,233 27.5% 22.3%

400 160,000 1 29,278 0.2 146,390 20.0% 18.3%

I. Herrera-Revilla, I. Contreras and G. S. Herrera.

34 Volume 58 number 1

TDC(n,p) was known, SDC(p,n) was computed
applying straightforward formulas. The local
solvers used in our numerical experiments were
banded LU decompositions, whose algorithmic
complexity turned out to be p2 and is given
in the fifth column. An interesting fact, in
the numerical experiments here reported, is
that the algorithmic complexity approximates
SDC(p,n), and the last column of Table 3 gives
the corresponding relative errors in percentage
associated with such an approximation.

10. Incorporating the outstanding results
in the DC-framework

In this Section the results of our numerical and
computational experiments contained in Table
1, are incorporated in the DC-framework. Table
4 that follows, was so built. The seventh column
of Table 4 gives the DVS efficiency, relative to
the Divide and Conquer performance goal. The
last column gives it, relative to the complexity
of LU, p2 .

Table 6. Restrictions of performance for standard software

Table 7. Direct comparison of DC-efficiencies of standard and DVS-BDDC software

p 16 25 64 256 400

EDC(p,n) 70.3% 63.0% 49.4% 27.5% 20.0%

BOUNDS
FOR
ES

DC(p,n)

6.85% 4.20% 1.73% 0.48% 0.27%

p TS(p,n) ≥
T(1,n)/p

SS(p,n) ≤ p TDC(p,n) SDC(p,n) ES
DC(p,n) ≤ p/SDC(p,n)

1 _ _ 29,278 1 100%

16 TS(16,106)≥
1,830

SS(16,106)
≤ 16

125.15 233.9 ES
DC(16,106) ≤ 6.85%

25 TS(25,106)≥
1,171.1

SS(25,106)
≤ 25

51.45 596.1 ES
DC(25,106) ≤ 4.20%

64 TS(64,106)≥
457.5

SS(64,106)
≤ 64

7.90 3,706 ES
DC(64,106) ≤ 1.73%

256 TS(256,106)≥
114.40

SS (256,n)
≤256

0.55 53,233 ES
DC(256,106)

≤0.48%

400 TS(400,106)≥
73.20

SS(400, n) ≤
400

0.20 146,390 ES
DC(400,106) ≤
0.27%

Geofísica internacional

enero - marzo 2020 35

By inspection of this table, it is seen that the
superlinear results that prompted this paper
look perfectly normal when they are displayed
in the DC-framework. This shows that the DC-
framework is adequate for accommodating
the outstanding numerical and computational
results that we have obtained using the DVS-
BDDC algorithm.

11. Restrictions on parallel performance
imposed by the standard framework

Assuming S (p,n) ≤ p=SS (p,n) is limitative
and this Section together with the next one
we explore more thoroughly the restrictions on
parallel performance that such an assumption
imposes.

To start with, the standard speedup goal,
p, and the DC-speedup goal, SDC (p,n) ,
corresponding to the set of experiments we have
been discussing, are compared. Their ratios are
shown Table 5, where the values of SDC(p,n) are
taken from Table 4.

By inspection of Table 5, it is seen that the
standard goal-speedups are much smaller
than the goal-DC-speedups, and probably too
conservative and restrictive.

Table 6, which follows, shows the bounds
of performance for any software that satisfies
the restriction S (p,n) ≤ p. The last column
of this table shows such an assumption limits
severely the DC-efficiency that one can hope for,
when any of the standard methods is applied,
including BDDC and FETI-DP [22].

12. Additional comparisons

To have a clearer appreciation of the relevance
of the limitations imposed by the standard
framework, which have been established in
Section 9, a direct comparison with the results
obtained using the DVS-BDDC, which are given
in Table 3, can help. Such a comparison is
highlighted in Table 7.

In summary, for all the numerical and
computational experiments here discussed, the
efficiency one can hope to obtain using standard

software is only a small fraction of that, which
is obtained when the DVS-BDDC algorithm is
applied.

From all the above discussion, we draw
the conclusion that adopting the definition
SS(p,n) ≡ p, as is usually done in domain
decomposition methods, is too conservative and
hinders drastically the performance of methods
developed within such a framework.

13. Conclusions

This paper communicates the outstanding results
of numerical experiments in which the DVS-
BDDC algorithm [2] yields superlinear speedups,
which exceed the number of processors by a
large factor; 73.2 is the largest obtained in such
experiments. From the results and their analysis
here presented, the following conclusions are
drawn:

1. The belief that the speedup (or,
acceleration) is always less or equal to p (the
number of processors) is incorrect. Accelerations
much larger than p are not only feasible, but
have been achieved using the DVS-BDDC
algorithm;

2. The performance goal that research on
DDM has intended up to now, besides being too
small, has been very restrictive for the software
developed in that framework; and

3. The Divide and Conquer framework
here introduced is, by far, more adequate for
accommodating the superlinear behavior of
domain decomposition methods here reported.

Based on these conclusions, it recommended
that the Divide and Conquer framework be
adopted in future research on the applications
of parallel computation to the solution of partial
differential equations. Then, the performance
goal is defined in terms of the execution time
goal, as

 (13.1)

Or, the speedup goal,

I. Herrera-Revilla, I. Contreras and G. S. Herrera.

36 Volume 58 number 1

 (13.2)

Or, the divide and conquer efficiency:

 (13.3)

Acknowledgment

We want to thank DGTIC for its support and
computational resources assigned to this
research in the cluster Miztli, which is the
supercomputer of the National Autonomous
University of Mexico (UNAM) under project
LANDCAD-UNAM-DGTIC-065.

REFERENCES

Herrera I. & Contreras I. “Evidences that Software
Based on Non-Overlapping Discretization is
Most Efficient for Applying Highly Parallelized
Supercomputers to Solving Partial Differential
Equations” Chapter 1 of the book “High
Performance Computing and Applications”, J.
Xie et al. (Eds.), Lecture Notes in Computer
Science (LNCS), Springer-Verlag, pp. 1-16,
2016. DOI: 10.1007/978-3-319-32557-6_1

Herrera, I., de la Cruz L.M. and Rosas-Medina
A. “Non-Overlapping Discretization Methods
for Partial, Differential Equations”. Numer
Meth Part D E, 30: 1427-1454, 2014 (Open
source).

Herrera, I. & Rosas-Medina A. “The Derived-
Vector Space Framework and Four General
Purposes Massively Parallel DDM Algorithms”,
EABE (Engineering Analysis with Boundary
Elements), 37 pp-646-657, 2013.

Herrera I., Contreras I. “An Innovative Tool
for Effectively Applying Highly Parallelized
Hardware to Problems of Elasticity”. Geofísica
Internacional, 55 (1) pp., 39-53, 2015.

Herrera, I. “Theory of Differential Equations in
Discontinuous Piecewise-Defined-Functions”,
Numer Meth Part D E, 23(3), pp 597-639,
2007.

Herrera I. and R. Yates “Unified Multipliers-Free
Theory of Dual Primal Domain Decomposition
Methods”. Numer. Meth. Part D. E. 25:552-
581, 2009.

Herrera, I. & Yates R. A. “The Multipliers-free
Domain Decomposition Methods” NUMER.
METH. PART D. E. 26 pp874-905, July 2010.
(DOI 10.1002/num. 20462)

Herrera, I. & Yates R. A. “The Multipliers-Free
Dual Primal Domain Decomposition Methods
for Nonsymmetric Matrices” Numer. Meth.
Part D. E. 27(5) pp. 1262-1289, 2011.

DDM Organizat ion, Proceedings of 25
International Conferences on Domain
Decomposition Methods www.ddm.org,
1988-2018.

Toselli A. and O. Widlund, “Domain decomposition
methods- Algorithms and Theory”, Springer
Series in Computational Mathematics,
Springer-Verlag, Berlin, 2005, 450p.

Dohrmann C.R., A precondit ioner for
substructuring based on constrained
energy minimization. SIAM J. Sci. Comput.
25(1):246-258, 2003.

Mandel J. and C. R. Dohrmann, Convergence
of a balancing domain decomposition by
constraints and energy minimization, Numer.
Linear Algebra Appl., 10(7):639-659, 2003.

Mandel J., Dohrmann C.R. and Tezaur R.,
An algebraic theory for primal and dual
substructuring methods by constraints, Appl.
Numer. Math., 54: 167-193, 2005.

Farhat Ch., and Roux F. A method of finite
element tearing and interconnecting and
its parallel solution algorithm. Internat.
J. Numer. Methods Engrg. 32:1205-1227,
1991.

Mandel J. and Tezaur R. Convergence of a
substructuring method with Lagrange
multipliers. Numer. Math 73(4): 473-487,
1996.

Geofísica internacional

enero - marzo 2020 37

Farhat C., Lessoinne M. LeTallec P., Pierson K.
and Rixen D. FETI-DP a dual-primal unified
FETI method, Part I: A faster alternative to
the two-level FETI method. Int. J. Numer.
Methods Engrg. 50, pp 1523-1544, 2001.

Farhat C., Lessoinne M. and Pierson K. A scalable
dual-primal domain decomposition method,
Numer. Linear Algebra Appl. 7, pp 687-714,
2000.

Klawonn A., Lanser M. & Rheinbach O. “Toward
extremely scalable nonlinear domain
decomposition methods for elliptic partial
differential equations”, SIAM J. SCI. COMPUT.,
Vol. 37, No.6, pp. C667-C696, 2015.

Smith B., P. Björstad & W. Gropp, “Domain
Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations”,
Cambridge University Press, 621p, 1996

Toivanen J., Avery P. and C. Farhat “A multilevel
FETI-DP method and its performance
for problems with billions of degrees of
freedom”, Int. J. Numer Methods Eng. 2018;
116:661-682.

L. R. Scott, T. W. Clark, and B. Bagheri“Scientific
Parlallel Computing”, Princeton University
Press, 2005.

Mathew, T. “Domain Decomposition Methods for
the Numerical Solution of Partial Differential
Equations”, Lecture Notes in Computational
Science and Engineering. Springer Publishing
Company, Incorporated. 2008.

Herrera, I., D.E. Keyes, O.B. Widlund and R.
Yates “Domain decomposition methods in
science and engineering”, Proceedings of
the Fourteenth International Conference on
Domain Decomposition Methods, Cocoyoc,
Mexico, 490pp., 2002.

Ristov S., Prodan R., Gusev M., Skala K.
Superlinear “Superlinear Speedup in HPC
Systems: why and when?” Proc. of the
Federal Conference on Computer Science and
Information Systems, pp. 889-898, 2016.

