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Resumen

Este artículo surgió a partir de experimentos 
numéricos, en los cuales ciertos algoritmos, 
que en algunos textos científicos (DVS-BDDM) 
produjeron aceleración (o speedups) muchas 
veces mayores a la cantidad de procesadores 
utilizados (existen casos ya abordados de más 
de setenta, pero probablemente a menudo son 
mucho mayores). Con base en estos resultados 
sobresalientes, en este artículo se demuestra 
que creer en la aceleración ideal estándar, que 
se considera igual a la cantidad de procesadores, 
ha sido una limitante en el rendimiento buscado 
a través de distintas investigaciones sobre 
métodos de descomposición de dominio (MDD) 
y hasta el momento ha obstaculizado mucho su 
desarrollo. Por lo tanto, se propone una teoría 
mejorada en la que el objetivo de aceleración 
se base en el paradigma algorítmico “Divide y 
vencerás”, considerado con frecuencia como el 
leitmotiv de los métodos de descomposición de 
dominio, como un escenario adecuado para el 
MDD del futuro.

Palabras clave: MDD, DVS-DDM, computación 
paralela, aceleración paralela ideal, dividir y 
vencerás.

Abstract 

This paper was prompted by numerical 
experiments we performed, in which algorithms 
that Ismael Herrera Research Group previously 
developed (the DVS-BDDC) and are already 
available in the literature, yielded accelerations 
(or, speedups) many times larger (more than 
seventy in some examples already treated, but 
probably often much larger) than the number 
of processors used. Based on such outstanding 
results, this paper shows that believing that 
the ideal speedup is equal to the number of 
processors, has limited the performance-goal 
sought by researchers on domain decomposition 
methods (DDM) and has hindered much its 
development, thus far. Hence, an improved 
theory in which the speedup goal is based on 
the Divide and Conquer algorithmic paradigm, 
frequently considered as the leitmotiv of domain 
decomposition methods, is proposed as a 
suitable setting for the DDM of the future. 
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1. Introduction

The present paper was prompted by some 
outstanding results that we recently obtained 
in a sequence of numerical and computational 
experiments applying some parallel algorithms 
already available in the literature (the DVS-
BDDC [1-8]). They are extraordinary, because 
contradict the generally accepted belief that 
in parallel computation the acceleration, or 
speedup, cannot be greater than the processors 
number [9-22]. For example, in our numerical 
experiments using 400 processors in parallel 
we achieve a speedup of 29,278, which is 73.2 
times greater than the maximum acceleration 
that such a belief allows. 

In agreement with such a belief, the speedup 
goal sought in most, probably all, research that 
has been carried out in domain decomposition 
methods (DDM) up to now [9-20], is equal 
to the number of processors used. Since our 
results show that considerably larger speedups 
are feasible, the conclusion is drawn that the 
speedup goal sought so far is too modest and 
restrictive; hence, it should be replaced by a 
larger and more ambitious performance goals 
in future DDM research. To this end, we resort 
to the DIVIDE AND CONQUER STRATEGY, 
which for solving boundary-value problems 
of PDEs using parallel computation, probably 
is the most basic algorithmic paradigm [23]. 
Furthermore, we formulate it in a manner that 
yields precise and clearly defined quantitative 
performance goals, to be called DC-goals, 
which are larger, yet realistic. The adequacy of 
the modified framework so obtained is verified 
by satisfactorily incorporating the outstanding 
results just mentioned in it. 

It should be mentioned, before leaving this 
Section, that according to the Gustafson’s Law, 
the speedup is up-bounded by the number of 
processors, which is achieved when the linear 
speedup is attained. However, beyond such 
limits, the superlinear speedup may happen 
for plenty of reasons (see [24]), although it is 
not frequent and when it occurs it enhances the 
value of the software possessing it. 

The paper is organized as follows, Section 
2 presents some background material on 
the Derived-Vector Space (DVS) approach to 
DDM, and DVS-BDDC [1-8]. The outstanding 
performance results that prompted this article 
are introduced and explained in Section 3. 
An inconsistency of standard approaches to 
DDM that such results exhibit, is pointed out 
and discussed in Section 4, while Section 5 
introduces some measures of performance 
whose conspicuous feature is that they are 
defined with respect to a performance goal. 

The ideas and results contained in Sections 
3 to 5, are then used in Sections 6 and 7, to 
show that both, the concept of ideal parallel-
performance and the belief that the ideal parallel 
speedup is p , lack firm bases. The “divide and 
conquer” algorithmic paradigm ([23], p. v), -the 
DC-paradigm- is recalled and revised in Section
8, and a quantitative DC-performance goal  
adequate to be used in future DDM research, is
derived from it. There, it is also shown that in the
examples here discussed the latter performance
goal  is larger than p , by a big factor; indeed, in
the examples here treated, the DC-speedup goal
is close to p2 and the factor we are referring to, is
close to p= p2/p . We recall that p is the number
of processors, used and hence the ‘factor’ is large
when the number of processors is large.

When the extraordinary numerical and 
computational results that prompted this paper 
are incorporated in the DC-framework they look 
completely normal, as it is shown in Section 10, 
since their DC-efficiencies, for p≠1 , range from 
70.3% to 20.0%. Sections 11 and 12 are devoted 
to exhibit the severe restrictions that believing in 
the relation S(p,n)≤p, has imposed on software 
developed under that assumption. Finally, 
Section 13 states this paper’s conclusions. 

2. Some background

Ismael Herrera and some of his coworkers, have 
been working in domain decomposition methods 
(DDM) since 2002, when he organized and 
hosted the Fourteenth International Conference 
on Domain Decomposition Methods (DDM) [23]. 
In their work on DDM [1-8], they pointed out 
that it is extremely inconvenient using coarse 
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meshes in which some of the nodes are shared 
by several subdomains because, when this is 
done the system matrix is not block-diagonal. 
This, in turn, shatters one of the main objectives 
of the DDM strategy: processing in different 
processors the degrees of freedom belonging 
to different subdomains of the coarse mesh. 
So, according to the above discussion, standard 
methods (i.e., methods that follow the canons 
prevailing at present) share this handicap and, 
to overcoming it, we introduced the derived-
vector space methodology (DVS methodology) 
[1-8]. 

The algebraic venue  in which DVS 
methodology was built is the derived-vector 
space. Briefly, the derived-vector space 
construction consists in [2]: 

i). Firstly, the partial differential equation is 
discretized by means of a standard procedure 
in a fine mesh. This yields a system of linear 
discrete equations and a system of original 
nodes. When a coarse mesh is introduced, some 
of them are shared by several subdomains. 

ii). Replacing the original-nodes by the 
derived-nodes. The nodes of this latter class 
have the property that each one of them belong 
to one and only one of the subdomains. The 
whole set of derived-nodes is decomposed into 
non-overlapping subsets, with the property that 
there is a one-to-one correspondence between 
such subsets and sub-domains of the coarse 
mesh; 

iii). Then, the linear-space of functions 
defined in the derived-nodes, constitutes the 
derived-vector space, which is provided with 
an algebraic structure suitable for effectively 
carrying out the developments required for 
constructing the DVS methodology; 

iv). The concept of non-overlapping 
discretization is introduced [2]. The most 
significant and conspicuous property of such 
a kind of discretizations is that its application 
yields block-diagonal systems of equations; 

v). A non-overlapping discretization, 
equivalent to the standard discretization 
applied in i), is used. This permit transforming 
the original system of discrete equations into 
another whose system-matrix is block-diagonal. 

Up to now, the DVS methodology has 
produced four DVS-algorithms (see, [2] for 
further details): DVS-FETI-DP, DVS-BDDC, 
DVS-PRIMAL and DVS-DUAL. The first two 
were obtained by mimicking the well-known 
FETI-DP and BDDC procedures in the derived-
vector space., but the big and very significant 
difference is that such procedures are applied 
after the differential equations have been 
subjected to a non-overlapping discretization, so 
that the discrete system of linear equations we 
start with, is block-diagonal. The other two DVS-
algorithms: the DVS-PRIMAL and DVS-DUAL, 
were produced by completing the theoretical 
framework (again see, [2]). So far, only the 
DVS-BDDC algorithm has been numerically 
tested; in 2016, preliminary computational 
experiments were published, which proved 
that the DVS-BDDC was fully competitive with 
the top DDM algorithms that were available 
[1]. However, at that time we did not have yet 
obtained the extraordinary results we are now 
reporting. 

3. The outstanding results 

More recently, in 2018, the authors have 
developed a more careful code of the DVS-BDDC 
algorithm and tested it through a set of numerical 
experiments, obtaining the exceptional results 
that are presented and discussed in this Section. 
They are objectively outstanding because, for 

p n T(p,n) S(p,n) S(p,n) 
in terms 

of p

p/S(p,n)

1 106 29,278 1 1p 1

16 106 178 164.5 10.28p .097

25 106 78 375.4 15.02p .067

64 106 16 1,829 28.58p .035

256 106 2 14,639 57.18p .017

400 106 1 29,278 73.20p .014

 Table 1. Results of computational experiments
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example, when the number of processors used is 
400 the acceleration produced is 73.2 times by 
400; hence, in this application, the DVS-BDDC 
algorithm produces an acceleration 73.2 times 
larger than the largest possible according to 
canonical theory (i.e., theory that follows the 
canons prevailing at present). 

More specifically, the computational 
experiments here reported, consisted in treating 
a well posed 2D problem for Laplace differential 
operator in the highly parallelized supercomputer 
“Miztli” of the National Autonomous University 
of Mexico (UNAM), using successively 1, 16, 
25, 64, 256 and 400 processors. The notation 
used to report the numerical and computational 
results so obtained is given next: 

       (3.1)

Here, the size of the problem is equal to 
number of degrees of freedom, which in turn 
is equal to the number of nodes of the fine 
mesh. In general, the “execution time” and 
“speedup” are functions of the pair  . In the set 
of numerical experiments here reported the size 
of the problem is kept fixed and equal to 106; 
i.e.,n=106. 

The very impressive results of the numerical 
experiments are given in Table 1 (everywhere 
in this paper times are given in seconds), 
where the fifth column gives the speedup as a 
multiple of p, the number of processors, which 
in standard theory of domain decomposition 
methods is thought to be an unsurmountable 
speedup. However, in the set of experiments 
we are reporting, the speedup is much greater 
than the standard theory foresees, if p≠1 ; even 
more, it is greater than such an upper bound, by 
a large factor: 10.28, 15.02, 28.58, 57.18 and 
73.2, when the number of processors is 16, 25, 
64, 256 and 400, respectively. Observe that the 
factor increases with the number of processors, 
which is an enhancing feature. The last column 
is only included here, for later use. 

4. An inconsistency of standard DDM 

The standard definition of efficiency is 

      (4.1)

and it is usually expressed in percentage. The 
sub-index S used here, comes from Standard 
and it is used for clarity, since alternative 
definitions will be introduced later. 

The Table 2 that follows has been derived from 
Table 1, by expressing its last column in terms 
of standard efficiency, ES(p,n). By inspection 
of Table 2, where percentages much greater 
than 100% such as 1,028, 1,502, 2,858, 5,718 
and 7,320 occur, it is seen that the standard 
efficiency is not adequate for expressing the 
superlinear results of the numerical experiments 
we are reporting, because efficiencies far 
beyond 100% occur. 

5. Revisiting the measures of performance
 
In this Section we define some measures of 
parallel-software performance that will be used 
in the sequel. As usual, such measures will be 
based on the execution time that is required 
for completing a task; the shorter the better. 
According to Eq.(3.1), the notation T(p,n) 
means the execution time when the number 
of processors is p ; in particular, T(1,n) is the 
execution time when only one processor is 
applied. 

Table 2. Using standard efficiency for expressing our 
superlinear results

p n T(p,n) S(p,n) Es (p,n) in 
percentage

1 106 29,278 100%

16 106 178 164.5 1,028%

25 106 78 375.4 1,502%

64 106 16 1,829 2,858%

256 106 2 14,639 5,718%

400 106 1 29,278 7,320%
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For the sake of clarity, we recall the speedup 
(or, acceleration) definition: 

       (5.1)

The main objective in using a parallel 
computer is to get a simulation to finish faster 
than it would in one processor. Furthermore, let 
us take the position of a software designer who 
intends to develop software that performs well; 
so, he defines a performance goal  he intends 
to achieve. The following two procedures for 
specifying such a goal will be considered; fixing 
the execution-time goal, TG(p,n), or fixing the 
speedup goal, SG(p,n). Assume either one of 
them have been specified, then the relative 
efficiency (relative to a goal performance) is 
defined by 

       (5.2)

when SG (p,n) is given, or 

      (5.3)

when TG(p,n) is given. 

These two manners of defining relative 
efficiency are equivalent, if and only if: 

       (5.4)

Hence 

      (5.5)

The first one of these equalities can be used 
to obtain SG (p,n) when TG(p,n) is given, and 
the second one, conversely. 

According to Eq.(5.2), 

      (5.6)

Here the symbol ⇔ stands for the logical 
equivalence; i.e., if and only if. Actually, when we 
choose a goal we do not know if it is achievable, 
but the initial state satisfies S(p,n)<SG(p,n) 
since SG(p,n) is a desirable state. Hence, at the 
beginning 1-E(p,n)>0 and this quantity may 
be taken as a distance to the goal. However, it 
can also happen that our developments lead to 

a speedup S(p,n)>SG(p,n), since generally we 
do not know beforehand if the speedup SG(p,n) 
is an upper bound of those possible. When that 
happens, E(p,n)>1. 

Conversely, a corresponding argument can 
be made if the execution time and Eq.(5.3) are 
used to define the parallel efficiency. The main 
difference is that, in such a case, T(p,n)>TG(p,n)  
at the beginning and T(p,n)<TG(p,n) is an 
indication that the goal has been exceeded.

6. The concept of “ideal parallel speedup”
  
In the literature on scientific parallel computing 
and on domain decomposition methods for 
the numerical solution for partial differential 
equations, the notion of “ideal parallel speedup” 
is used when defining absolute efficiency. 
However, its definition lacks precision. When 
SA(p,n) is the ideal parallel speedup, the relation 

       (6.1)

holds whenever S(p,n) is the acceleration 
obtained in a parallel computation. If we try 
to make this notion rigorous, we could say 
that SA(p,n) is the supremum, but what is 
never made clear is: of what set SA(p,n) is the 
supremum. 

Even so, when SA(p,n) is the ideal parallel 
speedup, the absolute parallel efficiency is 
defined to be 

       (6.2)

Thereby, we mention that the subscript A 
above, comes from Absolute. 

However, if we do not know for sure 
that Eq.(6.1) holds whenever S(p,n) is the 
acceleration obtained in a parallel computation, 
this is a risky definition. Indeed, if that is the 
case and there is an execution for which 

      (6.3)

Then, we would claim that S(p,n) is not 
achievable and we would be satisfied with an 
acceleration that is close to SA(p,n), even if 
SA(p,n) is much smaller than S(p,n). 



I. Herrera-Revilla, I. Contreras and G. S. Herrera.

32       Volume 58 number 1

7. The international DDM research goal 
 
Generally, it is thought that Eq.(6.1) holds, with 
SA(p,n)≡p; i.e., 

       (7.1)

Hence, the standard definition of efficiency 
of Eq.(4.1): 

       (7.2)

Comparing this equation with Eq.(5.2) it is 
seen that Eq.(7.2) implies that the speedup 
goal, sought by DDM research worldwide is: 

      (7.3)

Here, we have written SS(p,n) for the 
speedup goal of standard DDM research. In view 
of the discussions here presented, this goal is 
too modest and more ambitious goals should be 
sought in the future. 

8. The relative DVS efficiency of standard 
approaches 

In this Section we make a simple exercise in 
which we compute the relative efficiency of 
standard approaches when the goal speedup 
is that achieved by the DVS-BDDC algorithm 
in the numerical experiments here reported. 
The notation here adopted for such a relative 
efficiency is ES

DVS. 

Applying the definition of Eq.(5.2), we get 

       (8.1)

Inspecting the results of our numerical 
experiments reported in the last column of Table 
1, in view of Eq.(7.1), it is seen that the relative 
efficiency of standard approaches with respect 
to DVS-BDDC is only 9.7%, 6.7%, 3.5%,1.7% 
and 1.4%, in these experiments. Hence, our 
conclusion of this Section is that the speedups 
goals sought in DDM research worldwide up to 
now, are too small and should be revised. 

9. The Speedup goal of the Divide and 

Conquer Framework 

As a starting point of this Section, we recall 
the divide and conquer algorithmic paradigm 
([23]), which is frequently considered as the 
leitmotiv of domain decomposition methods 
[21]. The divide and conquer strategy (DC-
strategy) consists in dividing the domain of 
definition of the scientific or engineering model 
into small pieces and then send each one of 
them to different processors. If p is the number 
of subdomains of the domain decomposition, 
the size of each piece is approximately equal 
to n/p ; hence, smaller than n when p>1 and 
much smaller than n, when p is large. 

This is the procedure used by domain 
decomposition methods, for reducing the size 
of the problems treated by each processor. It 
constitutes an application of the DC-strategy. Of 

course, for the divide and conquer strategy 
being most effective it is necessary and 
sufficient that each one of the local problems 
be independent of all others. Such a condition 
(each local problem being independent of all 
others) is seldom fulfilled in practice, and it will 
be referred to as the DC-paradigm. Adopting 
the DC-paradigm as a guide in the development 
of software implies to strive to construct 
algorithms in which the local problems are as 
independent of each other as possible. Thereby, 
we mention that the DVS methodology, which 

Table 3. The DC-execution-time goal and the DC-
speedup goal

p n/p TDC(p,n) SDC(p,n) p2 {p2-SDC 

(p,n)}/ p2

1 106 29,278 1 1 0%

16 62,500 125.15 233.9 256 8.6%

25 40,000 51.45 596.1 625 4.6%

64 15,625 7.90 3,706 4,096 9.5%

256 4,096 0.55 53,233 65,536 18.8%

400 2,500 0.2 146,390 160,000 8.5%
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in the numerical experiments here reported has 
been so effective, was developed following the 
DC-paradigm. 

Since the approximate size of each local 
problem is n/p , when all them are independent, 
T(1,n/p) would be the approximate execution-
time for each one of them, which when the 
computation is carried out in parallel is also 
the global execution-time. Therefore, in the 
DC-framework we define the execution-time 
goal  (DC-execution-time goal ), to be denoted 
by TDC(p,n) , as: 

       (9.1)

Correspondingly, the speedup goal for the 
DC-approach is defined to be 

       (9.2)

and the DC-efficiency is given by 

       (9.3)

In Table 3, to illustrate the Divide and 
Conquer concepts, they have been computed 
in the conditions of the numerical experiments 
that prompted this paper. The first and second 
columns (counted from left to right) contain 
the number of processors and the degrees of 
freedom of the local problems, respectively. 
The third column yields the DC-execution time 
goals of the local problems, which were obtained 
through numerical experiments; for each p only 
one of the local problems was solved numerically 
(and only one of the processors was used). Once 

Table 4. The outstanding results in the DC-framework.

Table 5. Comparison of speedup goals

p SS(p,n) SDC(p,n) SDC (p,n) / SS(p,n)= 
SDC(p,n)/p

SDC (p,n) / SDC(p,n)= p/
SDC(p,n)

1 1 1 1 1

16 16 233.9 14.6 .0685

25 25 596.1 23.8 .0420

64 64 3,706 57.9 .0173

256 256 53,233 207.9 .0048

400 400 146,390 365.0 .0027

p p2 TDVS(p,n) SDVS(p,n) TDC(p,n) SDC(p,n) SDVS(p,n)/P

1 1 29,278 1 29,278 1 100% 100%

16 256 178 164.5 125.15 233.9 70.3% 64.3%

25 625 78 375.4 51.45 596.1 63.0% 60.1%

64 4,096 16 1,829 7.90 3,706 49.4% 44.7%

256 65,536 2 14,639 0.55 53,233 27.5% 22.3%

400 160,000 1 29,278 0.2 146,390 20.0% 18.3%
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TDC(n,p) was known, SDC(p,n) was computed 
applying straightforward formulas. The local 
solvers used in our numerical experiments were 
banded LU decompositions, whose algorithmic 
complexity turned out to be p2 and is given 
in the fifth column. An interesting fact, in 
the numerical experiments here reported, is 
that the algorithmic complexity approximates 
SDC(p,n), and the last column of Table 3 gives 
the corresponding relative errors in percentage 
associated with such an approximation. 

10. Incorporating the outstanding results 
in the DC-framework 

In this Section the results of our numerical and 
computational experiments contained in Table 
1, are incorporated in the DC-framework. Table 
4 that follows, was so built. The seventh column 
of Table 4 gives the DVS efficiency, relative to 
the Divide and Conquer performance goal. The 
last column gives it, relative to the complexity 
of LU, p2 . 

Table 6. Restrictions of performance for standard software

Table 7. Direct comparison of DC-efficiencies of standard and DVS-BDDC software 

p 16 25 64 256 400

EDC(p,n) 70.3% 63.0% 49.4% 27.5% 20.0%

BOUNDS 
FOR
ES

DC(p,n)

6.85% 4.20% 1.73% 0.48% 0.27%

p TS(p,n) ≥ 
T(1,n)/p

SS(p,n) ≤ p TDC(p,n) SDC(p,n) ES
DC(p,n) ≤ p/SDC(p,n)

1 _ _ 29,278 1 100%

16 TS(16,106)≥ 
1,830

SS(16,106) 
≤ 16

125.15 233.9 ES
DC(16,106) ≤ 6.85%

25 TS(25,106)≥ 
1,171.1

SS(25,106) 
≤ 25

51.45 596.1 ES
DC(25,106) ≤ 4.20%

64 TS(64,106)≥ 
457.5

SS(64,106) 
≤ 64

7.90 3,706 ES
DC(64,106) ≤ 1.73%

256 TS(256,106)≥ 
114.40

SS (256,n) 
≤256

0.55 53,233 ES
DC(256,106) 

≤0.48%

400 TS(400,106)≥ 
73.20

SS(400, n) ≤ 
400

0.20 146,390 ES
DC(400,106) ≤ 
0.27%
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By inspection of this table, it is seen that the 
superlinear results that prompted this paper 
look perfectly normal when they are displayed 
in the DC-framework. This shows that the DC-
framework is adequate for accommodating 
the outstanding numerical and computational 
results that we have obtained using the DVS-
BDDC algorithm. 

11. Restrictions on parallel performance 
imposed by the standard framework 

Assuming S (p,n) ≤ p=SS (p,n) is limitative 
and this Section together with the next one 
we explore more thoroughly the restrictions on 
parallel performance that such an assumption 
imposes. 

To start with, the standard speedup goal, 
p, and the DC-speedup goal, SDC (p,n) , 
corresponding to the set of experiments we have 
been discussing, are compared. Their ratios are 
shown Table 5, where the values of SDC(p,n) are 
taken from Table 4. 

By inspection of Table 5, it is seen that the 
standard goal-speedups are much smaller 
than the goal-DC-speedups, and probably too 
conservative and restrictive. 

Table 6, which follows, shows the bounds 
of performance for any software that satisfies 
the restriction S (p,n) ≤ p. The last column 
of this table shows such an assumption limits 
severely the DC-efficiency that one can hope for, 
when any of the standard methods is applied, 
including BDDC and FETI-DP [22].  

12. Additional comparisons 

To have a clearer appreciation of the relevance 
of the limitations imposed by the standard 
framework, which have been established in 
Section 9, a direct comparison with the results 
obtained using the DVS-BDDC, which are given 
in Table 3, can help. Such a comparison is 
highlighted in Table 7. 

In summary, for all the numerical and 
computational experiments here discussed, the 
efficiency one can hope to obtain using standard 

software is only a small fraction of that, which 
is obtained when the DVS-BDDC algorithm is 
applied. 

From all the above discussion, we draw 
the conclusion that adopting the definition 
SS(p,n) ≡ p, as is usually done in domain 
decomposition methods, is too conservative and 
hinders drastically the performance of methods 
developed within such a framework. 

13. Conclusions 

This paper communicates the outstanding results 
of numerical experiments in which the DVS-
BDDC algorithm [2] yields superlinear speedups, 
which exceed the number of processors by a 
large factor; 73.2 is the largest obtained in such 
experiments. From the results and their analysis 
here presented, the following conclusions are 
drawn: 

1. The belief that the speedup (or, 
acceleration) is always less or equal to p (the 
number of processors) is incorrect. Accelerations 
much larger than p are not only feasible, but 
have been achieved using the DVS-BDDC 
algorithm; 

2. The performance goal  that research on 
DDM has intended up to now, besides being too 
small, has been very restrictive for the software 
developed in that framework; and 

3. The Divide and Conquer framework 
here introduced is, by far, more adequate for 
accommodating the superlinear behavior of 
domain decomposition methods here reported. 

Based on these conclusions, it recommended 
that the Divide and Conquer framework be 
adopted in future research on the applications 
of parallel computation to the solution of partial 
differential equations. Then, the performance 
goal  is defined in terms of the execution time 
goal, as 

       (13.1)

Or, the speedup goal, 
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      (13.2)

Or, the divide and conquer efficiency: 

      (13.3)
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