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RESUMEN 
Se presenta un método para obtener el centro de curvatura (polo) así como los puntos de inflexión de trincheras sobre una 

Tierra esférica. Dicha información es necesaria para proyectar secciones hipocentralcs sobre el arco (trinchera) o perpendicular a él. 
Este tipo de proyecciones permite una caracterización más exacta de la zona de W adati-Benioff que el método tradicional de la linea 
recta. También se presentan las expresiones de proyección arqueada para tenerlas como referencia. Se calculan, como ejemplo, los 
polos y puntos de inflexión de la trinchera mesoamericana. Esta información es usada para obtener secciones hipocentrales de esta 
zona a fin de compararlas con secciones tradicionales ya publicadas. 

PALABRAS CLAVE: Perfiles hipocentrales, curvatura de la trinchera. 

ABSTRACT 
A method is shown for obtaining the center of curvature, or pole, as well as the points of inflection of arcuate features such as 

trenches, on a spherical Earth. This information is needed, among other things, for projecting hypocenters along the are or per
pendicular to it, which is better for depicting the geometry of Wadati-Benioff zones than the traditional straight-line approach. As 
a reference, the basic expressions for arcuate hypocentral projections are also given. As an example, the poles and points of inflec
tion for the Middle America Trench are obtained. Using these parameters, hypocentral cross-sections projected along the are and 
perpendicular to it for this region are shown. The advantage of such sections as compared to straight-line sections from thc litcra
ture is dcmonstrated. 

KEY WORDS: Hypocentral cross-sections, trench curvature. 

INTRODUCTION 

Traditionally, hypocentral cross-sections have been ob
tained by projecting hypocenters perpendicularly onto a 
plane normal to the surface of the Earth. Examples of this 
kind of projection abound in the literature, from classic pa
pers [e.g., Benioff, 1954; Isacks et al., 1968; Isacks and 
Barazangi, 1977] to more recent ones [e.g, Taylor and 
Kamer, 1983; Burbach et al., 1984; Burbach and Frohlich, 
1986; Cahill and Isacks, 1992; Ponce et al., 1992; Suárez 
and Comtc, 1993; Kao and Chen, 1994]. Projecting 
hypocentcrs along or across an arcuate fcature [c.g., Kawa
katsu, 1986; Ekstrom and Engdahl, 1989; Engdahl et al., 
1989] is a reasonable approach if one wishes to study fea
tures rclated to the curvature of the Earth or to the curva
turc of trenches, such as the geometry of a subducted slab 
or thc position of a volcanic are relative to a trench. 

Hypocentral projection along (or across) an arcuate fea
tures is an exercise in elementary geometry if the curvaturc 
of thc fcaturc (or cquivalcntly the ccnter of curvaturc) is 
known. It is the purposc of this note to: (1) Present a 
mcthod to obtain thc locatíon of the centers of curvature 
(or polcs) for segments of constant curvature along a 
trcnch; (2) Show how to loeate thc points of inflcction bc
twcen sueh segmcnts; (3) Providc basie unpublished ex
prcssions for projccting hypocentcrs (cither along the are or 
perpendicular to it); 4) Show examplcs for thc Middle 
America Treneh in whieh we compare published straight
linc projcctions with arcuate projections. 
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METHOD 

Turcotte and Schubert [1982] and Yamaoka and Fukao 
[1987] suggest that ocean trenches may be divided into seg
ments of constant curvature, which represent ares of small 
circlcs on a sphcre. For simplicity, we call these segments 
ares. 

We begin by digitizing the treneh of interest. Next we 
visually inspect it and divide it into tentative segments of 
constant curvature. For each are a centcr of curvature, or 
pole, is obtaincd, using only points that definitely fall on a 
single are. Arcas near a change of curvature (inflection 
points) must be avoided beeause at this stage the loeation 
of eaeh inflection point is not known. 

Inflcction point'> bctwcen ares are located next. Each are 
is now complctcly dcfined by its center of eurvature and its 
two inflection points with neighboring ares (Figure la). In 
general, this procedure yields statistically good results at 
the first try. 

In what follows we discuss how to obtain the eentcr of 
curvature and thc points of inflcction for each are. We also 
providc expressions for projection along or perpendicular to 
areuate fcaturcs. 

Center of curvature and points of inflection 

Let x=(x 1,x2,x3) be thc Cartesian coordinatcs of the 
pole to be determincd. Let y=(y1,Y2,y3) and z=(z1,z2,z3) be 



M. Guzmán-Speziale 

-100' -95' -90' -85' -80' -75º 
-95' -90' 

40' +-....,...,.,._..,...-.,.,.,....,_.,.,...._.,...,,,......,.,...,__,_._,...-_...,--..1.-,...-,.....,...--1- 40, 

20' 20º 

35' 35º 

30' 30' 15' 15º 

"""" q 
25' (). 

'1i 
4\ 25' -95' -90' 

-95' -90' 

20' 20º 

~ 20' 20' 

lnflection 
15' point 15' 

10' 10' 15' 15' 

5º -+--~~...---~-,..----,..----.-----''-'---+5' 
-100' -95' -90º -85' -80' -75' -95º -90º 

Fig. 1. a) Parameters related to arc-trench curvature and used for projecting hypocenters along the are or perpendicular to it. An additional 
parameter not shown is the depth of the earthquake. b) Projection perpendicular to the are is performed through a small circle centered at 
the pole. e) Hypocenters are projected along the are through a great circle which pa~ses trough the pole and the epicenter. The are itself is 
later unrolled to obtain a two-dirnensional view. See text for details. Figures (except those from Burbach et al., 1984) were generated using 

the GMT mapping programs [Wessel and Smith, 1991]. 

the coordinates of any two points along the are. All three 
points are loeated on the surfaee of the Earth and y and z 
are known. For eonvenienee, we eonsider the Earth to be a 
sphere of radius unity. Thus all position veetors x, y, and 
z are unit veetors. 

The angular distance at the center of the Earth from the 
pole to any point on the are is eonstant and equal to the dot 
produet between the eorresponding position vectors. Thus: 

x·y=x·z (1) 

From (1) wc may define the total Ieast-square error for ali 
points along the are as 

N 

e2 = L.J(x·y)-(x·z)f, (2) 

i=J 
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where N is half the number of digitized points beeause we 
are taking pairs of points along the are (y and z) at the 
same time. In praetiee, we take the first half to be thc y's 
and the last half the z's. We minimize (2) to solvc for x, 
whieh Ieads to the homogeneous system of equations 

Ax=O (3a) 

where thc symmetrie matrix of eoeffieients is 

I(y¡ -z¡)2 

A= L(y1-z1)(y2-z2) 

I (y¡ - Z¡ )(Y3 - Z3) 

L (y¡ - z¡ )(yz - z2) 

L.,(yz - z2)2 

L., (Y2 - z2 )(y3 - 23) 

with all summations from J to N. 

L. (y¡ -z¡)(y3 -23) 

L (y2 -z2)(y3 - 23) 

I (y3- Z3)
2 

( 3b) 



Instead of trying to solve for x directly from (3), we 
may take advantage of sorne propcrties of homogeneous 
systcms of equations and symmetric matrices. 

For a homogeneous systcm of equations to have a non
tri vial solution its matrix of coefficients must be singular. 
A matrix is singular if, and only if, at least one of its 
eigenvalues (A.) is zero [e.g., Wylie and Barrett, 1982, p. 
718]. Thus, for the system defined by (3) to have a non
trivial solution at least one of the eigenvalues of A must 
be zero. At the same time, the eigenvector of A corre
sponding to A=O is directly a solution of (3) because the 
characteristic equation 

[A-,U][x]=[O] (4) 

becomes identical with (3) when we substitute for A=O. 

A simple way to find eigenvalues and eigenvectors of a 
symmetric matrix is by using Jacobi (orthogonal similar
ity) transformations. For a 3 x 3 matrix these are rotations 
about one of the coordinate axis [e.g., Press et al., 1986]. 
This mcthod allows the three eigenvalues and their corre
sponding eigenvectors to be found at the same time. The 
eigenvector corresponding to A=O will be the center of cur
vature. 

The location of a pole thus obtained is considered 
satisfactory if the average deviation defined as 

1 N 
Adev = - L..l~i -Xj , 

N i=I 

(5) 

[Press et al., 1986] is less than 0.1°. Here ~; is the angular 
distance from the ith point of the are to the pole and X is 
the average distance. Where curvature is large, such as in 
the Marianas, the distance from thc center of curvature to 
the are is in thc order of 5º; thus an average deviation of 
0.1 º represents an error of 2 %. Far more typical pole-arc 
distances of the order of 10º (such as in the Middle Amcrica 
Trench; Table 1), this average deviation means that relative 
errors are around 1 % . 

Once the centers of curvature are determined, the points 
of inflection are found in a simple manner. The point 

Cross-sections and trench curvature 

where two ares interscct (i.e., the point of inflection) be
longs to both ares, whether they meet tangentially (as in 
the Middle America Trench) ar whether they cross, forming 
a cusp (as in Kamchatka, for example). We take advantage 
of this fact to locate the inflection points. 

Consider two neighboring ares, a 1 and ai, and their 
respective poles P 1 and P2 • Let 81 be the angular distance 
from P 1 to a1, and 82 the distance from P2 to a2 . If the 
inflection point belongs to both ares its distan ce to P 1 will 
be 81 and at the same time its distance to P2 will be 82• 

The location of the inflection point is found by the inverse 
procedure, i.e., searching for a point along the trench such 
that the distance to P1 is 81 and the distance to P2 is Di. 

Projection of hypocenters 

In this section we show the basic expressions for 
projceting hypocenters perpendicular to the are or along it. 
For sections perpendicular to the are the hypocenters are 
projected through small circles with center at the pole anta 
a plane perpendicular to the are. That is, hypocenters are 
projected as a function of their latitude with respect to the 
pole and of dcpth, holding constant their longitude with 
respect to the pole (Figure lb). 

Projection along the are is a two-step process. First, 
the hypocenters are projected onto the are as a function of 
their longitude and depth with respect to the pole, that is, 
through great circles from the pole to the are (Figure le). 
But the are itself is a curved surface; thus the next step is 
projecting this curved surface onto aplane. 

A hypocenter is selccted for projection if it falls within 
certain prescribed limits in regard to latitude (angular dis
tance subtended at the center of the Earth) and longitude 
(azimuth) with respect to the pole. A third dimension may 
be added by restricting the dcpth of thc earthquakes to be 
projected. Let ~ 1 and ~2 be the minimum and maximum 
angular distances from the pole. Let A1 and A2 be the min
imum and maximum azimuth from the pole (Figure la) 
and H the maximum dcpth. For each individual earthquake, 
8 is the angular distance from the pole, a the azimuth 
from the pole, and z the depth. 

Projection on paper is achieved by plotting each 
hypocenter as a function of the proper spherical parameters, 

Table 1 

N 

1 
2 
3 
4 
5 

Lat 

20.89 
33.13 
13.15 
34.10 

5.37 

Parameters far arc-like scgments along the Middle America Trench 

Poi e 
Lon 

-103.70 
-93.21 
-96.32 
-80.55 
-92.00 

~ (º) 

2.77 
18.19 
2.00 

23.41 
7.18 

Adev (º) 

0.007 
0.060 
0.005 
0.016 
0.016 

Initial point 
Lat Lon 

21.16 -106.70 
18.62 -105.38 
15.11 -96.09 
14.84 -95.24 
12.19 -89.64 

Final point 
Lat Lon 

18.62 -105.38 
15.11 -96.09 
14.84 -95.24 
12.19 -89.64 
9.31 -85.95 
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depending on what kind of projection is desired (along the 
are or perpendicular to it). As most plotting packagcs for 
computers work with Cartesian eoordinates it is convenicnt 
to eonvert hypoeentral coordinates to these eoordinatcs. Por 
projeetion perpendicular to the are, the Cartcsian eoordi
nates of a projected hypocenter are 

x=x 1-[(R- z)· sin O] (6a) 

y=y 1+ [(R-z)· eos8] (6b) 

where R is the radius of the Earth, and 

B=A1+A2 0 
2 

x 1 =R-sin[(A 2 -A1)/2] 

Y1 =(H-R)·cos[(A2 - A1)/2) 

(7a) 

(7b) 

(7e) 

The Cartesian eoordinates of projection along the are are 

x=x2 -[(R- z)·eos( y+ /3)] (8a) 

y=yz +[(R-z)·sin(y+j3)] (8b) 

where 

x2 =R · sin[(A2 -A1) ·sinA2 /2] (9a) 

Yz =(H - R) ·eos[(A2 -A¡ )·sinA2f2] (9b) 

J3=(a-A1 )·sin A2 (9c) 

r= cos-1 (x2 / R) (9d) 

Coordinates for projcction along the are already take 
into aeeount thc projeetion of thc eurvcd are onto a plane. 

AN EXAMPLE: THE MIDDLE AMERICA 
TREN CH 

The geomctry of the Cocos Plate, as it is being sub
dueted along the Middle America Treneh (MAn, has been 
studied in sorne detaíl [e.g., Hanus and Vanek, 1978; Bur
bach et al., 1984; Pardo, 1993]. The dip of subduction 
changes along the MAT, from around 20º in thc northwest
em portion, deepening to sorne 40º-50º along Central 
Amcriea [e. g., Bevis and Isacks, 1984]. The changc in eur
vature at differcnt places along the MAT prevents a good 
depiction of the geomctry of the subducted Cocos Plate 
when straight-line cross-sections are used, such as in the 
studies mentioned above. We use this region as an example 
of how the center of curvature and inflection points may be 
calculatcd and wh11t advantages may be obtaincd when ar
cuate projection is used along arcas of changing curvature. 
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From visual inspection, we identífy five ares along the 
MAT. From northwest to southeast, the fírst one spans the 
northwestem cnd of the MA T to about the place where the 
Rivera Fracture Zonc intersects the trench (around 105° W; 
Figure 2). It is concave towards the eontinent (negative 
curvature), with a strong curvature. The second segment is 
also concave towards the eontinent, but with a larger radius 
of curvature. In a bathymetric map (Figure 2) ít appears to 
span from the Rivera Fracture Zone to about 96° W, where 
the isobath curves broaden and the 3,500 m isobath 
changes its trend from NW-SE to NE-SW. The next are in
cludes the Gulf of Tehuantepec (approximately 96º W to 
95° W), with a positive (concave seaward) curvature. It 
ends at the Tehuantepec Fracture Zone (TFZ). The fourth 
segment is concave landward, and goes from the TFZ to 
about 88.5° W. It approximately spans the region where 
the MAT reaches its maximum depth at about 5,500 m. 
The last segment is concave seaward and spans from about 
88.5° W to the southeastern end of the MAT, where it in
tersects the Cocos Ridgc. 

W e use the method described above to find the centers 
of curvature (poles) and the points of inflection for the five 
tentative segments. Results are shown on Figure 2 and 
Table l. All segments have an average deviation of less 
than 0.1 º. Actually the largest dcviation is 0.06º and the 
smallest one 0.005º, well within our tolerance. Gíven the 
small deviations, we consider that the five segments ini
tially proposed from visual inspection agree well with the 
arc-like segments. Note that the technique was applied only 
once, that is, thc first visual inspection already yielded all 
five segments. Interestingly, the inflection point between 
each segment is marked by a bathymetric feature. 

The study of Burbach et al. [1984] may serve as a point 
of departure for comparing straight cross-sections versus ar
cuate ones. The location of cross-sections along the MAT 
obtained by these authors is reproduced in Figure 3a. Fi
gure 3b shows an altemative distribution of arcuate-projec
tion cross-sections which span approximately the same 
arca, except for the region around the Isthmus of Tehuante
pec (seetion g '). The same data base is used in both cases: 
weU-located hypocenters reported by the Intemational Seis
mological Centre (ISC) and compiled by Burbach et al. 
[1984). The correponding cross-sections are shown in 
Figure 4. 

On map view, notice that the arcuate sections provide 
an improvcd fü to regions of changing curvature, such as 
the Jsthmus of Tehuantepec. In the straight-line projection 
(Figure 3a) one must choose between projecting perpendic
ular to the trench as it trends northwest of the isthmus or 
southeast of it. Burbach et al. [1984] chose the latter. 
Arcuate projection (Figure 3b), on the othcr hand, fits the 
change of curvature of the trcnch in the area. Thc differencc 
is important for rcasons discussed below. 

The position of the trcnch in cross-scction vicw is 
more easily determined from arcuate it is al-
ways located in the uppcr-left comer unless 
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Fig. 2. Segments of constant curvature adjusted to the Middle America Trench. Arrows show location of inflection points and therefore in
dicate the limit between two neighboring segments. Numbered circles are the centers of curvature for each segment. Light line indicates the 

3,500 km depth contour. 

one choses to project with respect to a different feature. 
Furtherrnore, the position of the trench in a straight-line 
projection corresponds to the place where the central line of 
the section crosses the trench. This position is not the 
sarne as one rnoves away frorn this line. For the arcuate 
projection, the position of the trench stays the same for the 
entire projection arca (Figures 3 and 4). 

There is a wcll-docurncnted rnajor change in the dip of 
subduction of the Cocos Plate around the Isthrnus of Te
huantepec at about longitude 96º W [Hanus and Vanek, 

1978; Bevis and lsacks, 1984]. Northwest of this point, 
the Cocos plate subducts with a shallow angle of about 20º 
and reaches far inland, as evidenced by the presence of the 
Trans-Mexican Volcanic Belt, sorne 400 km from the 
MAT. To the southeast, on the contrary, the angle of sub
duction is steeper (sorne 45º) and the volcanic chain is 
close to the trench. 

An arcuate projection depicts well this situation (Fi
gures 3 and 4): the change is evident frorn section g' to sec
tion h, right at the Isthrnus of Tehuantepec where it takes 

135 



M. Guzmán-Speziale 

o 
1 o 

N 

20º 

10º 

1osºW 

-105º 

-105º 

- ----

100 

-100º 

-100º 

-- -
--

-95º 

-95º 

o 
90 

-90º 

-90º 

8 5 o 

-85º 

2ü° 

10' 

-85º 

Fig. 3. Location of cross-sections along the Middle America Trench. A) With traditional methodology (from Burbach et al., 1984). B) 
Using projection perpendicular to the are. Notice that it is easier to sample the Wadati-Benioff zone around the lsthmus ofTchuantepec 

· (-95° longitude) with arcuate sections. 
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Fig. 4. Cross-sections corresponding to Figure 2. Capital letters indicate traditional sections from Burbach et al. [1984]. Sections obtained 
by arcuate projection are shown with lower-case letters with horizontal tic marks every 100 km and vertical tic marks at 50 km intervals. 
Refer to Figure 3 for location of sections. Hypocentral data base is the same for both cases. Notice that with arcuate projection there is no 

need to mark the position of the trench because it is always located in the upper-left comer of the section. 

place (see Bevis and Isacks, 1984 ). Using a straight-line 
projection, however, this change of dip seems to take place 
further to the northwest, from section H to J. 

Projeetíon along the are also shows the advantage of 
the arcuate as compared with the straight-line methods. In 
the arcuate projection the entire length of the are is used 
whereas in the linear projection one has to select a straight 

line that best fits the trench. This leads to differences in the 
length of the section, the arcuate section is always longer. 
In the case of the MA T, the difference in distance between 
end points of the section is only 28 km (Figure 5) because 
of the small eurvature of the are. Mueh of the MA T has a 
radius of curvature 20º subtended at the center of the Earth. 
For ares with larger curvatures the difference may become 
critica!. In extreme cases, such as the Marianas, the radius 
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of curvature is about 5° with an azimuthal span of more 
than 180º, thus making it virtually impossible to project 
the entire are with a single straight-line projection. 

DISCUSSION AND CONCLUSIONS 

Depicting a three-dimensional geometry on a plane will 
always lead to sorne distortion, no matter which projection 
is used. In this work we develop a simple method for pro
jecting hypoccnters that minimizes distortion when the ge
ometry of thc Wadati-BenioffZone or other trench-related 
features are studied. This method has severa! advantages 
over traditional straight-line methods: (1) It is easier to ob
tain cross-scctions in regions where the curvature of the 
trench changes abruptly, such as in the Isthmus of Tehuan
tepcc, or in regions of largc curvature; (2) The position of 
the trench is constant for all the section considered; (3) The 
relative position of a hypocenter with respect to the trench 
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is also constant. There are obviously sorne instances where 
straight-line projection may be prcferable, such as the 
study of seismicity associated to strike-slip faults which 
may be considered straight lines. 

Thc use of thc mcthod may be extended to other situa
tions. For example, one may take the Eulcr vector of a 
plate pair and take it as the center of curvature in order to 
study seismicity or plate geometry as a function of age of 
subduction, or as a function of distance from the Euler 
polc. In this case the are would not be the trench (ora por
tian of it) but the path of convergence. 

Other applications are beyond the scopc of this paper. 
As an example, there is a bathymetric feature at each in
flection point along thc MAT. Is this unique to the MAT 
or is it found at other trenches? Is there a cause-effect rela
tionship between the location of an inflcction point and the 
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presence of a bathymetric feature? Other possible tapies 
are: the relationship between trench curvature and subduc
tion geometry befare and after subduction, that is, determi
nation of Gaussian curvature [e.g., Bevis, 1986; Cahill and 
Isacks, 1992); the state of stress in the subducted slab 
where the trench curvature changes from concave to con
vex, etc. The method may also be used to determine the di
rection normal to the trench, a parameter widely used in 
studies of oblique convergence [e.g., Burbach and Frohlich, 
1986; Jarrard, 1986; McCafrey, 1992]. 

The method of projection is intuitively very simple and 
the mathematical expressions are straight-farward. Often 
there is a clear advantage in using arcuate projection over 
straight-line projectíon, as shown by the example of the 
Middle America Trench. 
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