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RESUMEN

Se presenta un método para obtener el centro de curvatura (polo) asi como los puntos de inflexién de trincheras sobre una
Tierra esférica. Dicha informacién es necesaria para proyectar secciones hipocentrales sobre el arco (trinchera) o perpendicular a él.
Este tipo de proyecciones permite una caracterizacién més exacta de la zona de Wadati-Benioff que el método tradicional de la linea
recta. También se presentan las expresiones de proyeccidn arqueada para tenerlas como referencia. Se calculan, como ejemplo, los
polos y puntos de inflexién de la trinchera mesoamericana. Esta informacién es usada para obtener secciones hipocentrales de esta
zona a fin de compararlas con secciones tradicionales ya publicadas.

PALABRAS CLAVE: Perfiles hipocentrales, curvatura de la trinchera.

ABSTRACT

A method is shown for obtaining the center of curvature, or pole, as well as the points of inflection of arcuate features such as
trenches, on a spherical Earth. This information is needed, among other things, for projecting hypocenters along the arc or per-
pendicular to it, which is better for depicting the geometry of Wadati-Benioff zones than the traditional straight-line approach. As
a reference, the basic expressions for arcuate hypocentral projections are also given. As an example, the poles and points of inflec-
tion for the Middle America Trench are obtained. Using these parameters, hypocentral cross-sections projected along the arc and
perpendicular to it for this region are shown. The advantage of such sections as compared to straight-line sections from the litera-

ture is demonstrated.

KEY WORDS: Hypocentral cross-sections, trench curvature.

INTRODUCTION

Traditionally, hypocentral cross-sections have been ob-
tained by projecting hypocenters perpendicularly onto a
plane normal to the surface of the Earth. Examples of this
kind of projection abound in the literature, from classic pa-
pers [e.g., Benioff, 1954; Isacks et al., 1968; Isacks and
Barazangi, 1977] to more recent ones [e.g, Taylor and
Karner, 1983; Burbach et al., 1984; Burbach and Frohlich,
1986; Cahill and Isacks, 1992; Ponce et al., 1992; Sudrez
and Comte, 1993; Kao and Chen, 1994]. Projecting
hypocenters along or across an arcuate feature {e.g., Kawa-
katsu, 1986; Ekstrom and Engdahl, 1989; Engdahl et al.,
19891 is a reasonable approach if one wishes to study fea-
tures rclated to the curvature of the Earth or to the curva-
ture of trenches, such as the geometry of a subducted slab
or the position of a volcanic arc relative to a trench.

Hypocentral projection along (or across) an arcuate fea-
tures is an exercise in elementary geometry if the curvature
of the feature (or equivalently the center of curvature) is
known. It is the purpose of this note to: (1) Present a
method to obtain the location of the centers of curvature
(or poles) for segments of constant curvature along a
trench; (2) Show how to locate the points of inflection be-
tween such segments; (3) Provide basic unpublished ex-
pressions for projecting hypocenters {either along the arc or
perpendicular to it}; 4) Show examples for the Middle
America Trench in which we compare published straight-
line projections with arcuate projections.
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METHOD

Turcotte and Schubert [1982] and Yamaoka and Fukao
[1987] suggest that ocean trenches may be divided into seg-
ments of constant curvature, which represent arcs of small
circles on a sphere. For simplicity, we call these segments
arcs.

We begin by digitizing the trench of interest. Next we
visually inspect it and divide it into tentative segments of
constant curvature. For each arc a center of curvature, or
pole, is obtained, using only points that definitely fall on a
single arc. Arcas near a change of curvature (inflection
points) must be avoided because at this stage the location
of each inflection point is not known,

Inflection points between arcs are located next. Each arc
is now completely defined by its center of curvature and its
two inflection points with neighboring arcs (Figure 1a). In
general, this procedure yields statistically good results at
the first try.

In what follows we discuss how to obtain the center of
curvature and the points of inflection for each arc, We also

provide expressions for projection along or perpendicular to
arcuate features.

Center of curvature and points of inflection

Let x=(x,,X2,X3) be the Cartesian coordinates of the
pole to be determined. Let y=(y1,y,,y3) and z=(z,,2,,24) be
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Fig. 1. a) Parameters related to arc-trench curvature and used for projecting hypocenters along the arc or perpendicular to it. An additional

parameter not shown is the depth of the earthquake. b) Projection perpendicular to the arc is performed through a small circle centered at

the pole. ¢) Hypocenters are projected along the arc through a great circle which passes trough the pole and the epicenter. The arc itself is

later unrolled to obtain a two-dimensional view. See text for details. Figures (except those from Burbach et al., 1984) were generated using
the GMT mapping programs [Wessel and Smith, 1991].

the coordinates of any two points along the arc. All three
points are located on the surface of the Earth and y and z
are known. For convenience, we consider the Earth to be a
sphere of radius unity. Thus all position vectors x, y, and
Z are unit vectors.

The angular distance at the center of the Earth from the
pole to any point on the arc is constant and equal to the dot
product between the corresponding position vectors. Thus:

X'y=X-2Z )

From (1) we may define the total least-square error for all
points along the arc as

N
=Yl -xoP @

i=]
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where N is half the number of digitized points because we
are taking pairs of points along the arc (y and z) at the
same time. In practice, we take the first half to be the y's
and the last half the z's. We minimize (2) to solve for x,
which leads to the homogeneous system of equations

Ax=0 (3a)

where the symmetric matrix of coefficients is

Yo-a?  Yo-ae-n) Y -a)n-n)
A= Z(Yl‘zl)()’Z_ZZ) Z(Yz-lz)z Z(Yz-zz)(y‘rla)

Y o-adn-n) Y on-aln-u) Y 0-n)
(3b)

with all summations from 7 to V.



Instead of trying to solve for x directly from (3), we
may take advantage of some properties of homogeneous
systems of equations and symmetric matrices.

For a homogeneous system of equations to have a non-
trivial solution its matrix of coefficients must be singular.
A matrix is singular if, and only if, at least one of its
eigenvalues (}) is zero [e.g., Wylie and Barrett, 1982, p.
718]. Thus, for the system defined by (3) to have a non-
trivial solution at least one of the eigenvalues of A must
be zero. At the same time, the eigenvector of A corre-
sponding to A=0 is directly a solution of (3) because the
characteristic equation

[A-a1][x] =[0] @)
becomes identical with (3) when we substitute for A=0.

A simple way to find eigenvalues and eigenvectors of a
symmetric matrix is by using Jacobi (orthogonal similar-
ity) transformations. For a 3x3 matrix these are rotations
about one of the coordinate axis {e.g., Press ef al., 1986].
This method allows the three eigenvalues and their corre-
sponding eigenvectors to be found at the same time. The
eigenvector corresponding to A=0 will be the center of cur-
vature,

The location of a pole thus obtained is considered
satisfactory if the average deviation defined as

1 N
Adev = -A—,ZJAi -3, (5)

[Press et al., 1986] is less than 0.1°. Here A, is the angular
distance from the ith point of the arc to the pole and A is
the average distance. Where curvature is large, such as in
the Marianas, the distance from the center of curvature to
the arc is in the order of 5°; thus an average deviation of
0.1° represents an error of 2 %. For more typical pole-arc
distances of the order of 10° (such as in the Middle America
Trench; Table 1), this average deviation means that relative
errors are around 1 %.

Once the centers of curvature are determined, the points
of inflection are found in a simple manner. The point
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where two arcs intersect (i.€., the point of inflection) be-
longs to both arcs, whether they meet tangentially (as in
the Middle America Trench) or whether they cross, forming
a cusp (as in Kamchatka, for example). We take advantage
of this fact to locate the inflection points.

Consider two neighboring arcs, a; and a;, and their
respective poles P; and P,. Let §; be the angular distance
from P; to a;, and &, the distance from P, to a;. If the
inflection point belongs to both arcs its distance to P; will
be &; and at the same time its distance to P, will be &,.
The location of the inflection point is found by the inverse
procedure, i.¢., searching for a point along the trench such
that the distance to P, is §, and the distance to P, is &, .

Projection of hypocenters

In this section we show the basic expressions for
projecting hypocenters perpendicular to the arc or along it.
For sections perpendicular to the arc the hypocenters are
projected through small circles with center at the pole onto
a plane perpendicular to the arc. That is, hypocenters are
projected as a function of their latitude with respect to the
pole and of depth, holding constant their longitude with
respect to the pole (Figure 1b).

Projection along the arc is a two-step process. First,
the hypocenters are projected onto the arc as a function of
their longitude and depth with respect to the pole, that is,
through great circles from the pole to the arc (Figure 1c).
But the arc itself is a curved surface; thus the next step is
projecting this curved surface onto a plane.

A hypocenter is selected for projection if it falls within
certain prescribed limits in regard to latitude (angular dis-
tance subtended at the center of the Earth) and longitude
(azimuth) with respect to the pole. A third dimension may
be added by restricting the depth of the earthquakes to be
projected. Let A; and A, be the minimum and maximum
angular distances from the pole. Let A; and A, be the min-
imum and maximum azimuth from the pole (Figure 1a)
and H the maximum depth. For each individual earthquake,
d is the angular distance from the pole, o the azimuth
from the pole, and z the depth.

Projection on paper is achieved by plotting each
hypocenter as a function of the proper spherical parameters,

Table 1

Parameters for arc-like segments along the Middle America Trench

N Pole A (®) Adev (°) Initial point Final point
Lat Lon Lat Lon Lat Lon
1 20.89 -103.70 2,17 0.007 21.16 -106.70 18.62 -105.38
2 33.13 -93.21 18.19 0.060 18.62 -105.38 15.11 -96.09
3 13.15 -96.32 2.00 0.005 15.11 -96.09 14.84 -95.24
4 34.10 -80.55 2341 0.016 14.84 -95.24 12.19 -89.64
5 537 -92.00 7.18 0.016 12.19 -89.64 9.31 -85.95
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depending on what kind of projection is desired (along the
arc or perpendicular to it). As most plotting packages for
computers work with Cartesian coordinates it is convenient
to convert hypocentral coordinates to these coordinates. For
projection perpendicular to the arc, the Cartesian coordi-
nates of a projected hypocenter are

x=x1—[(R—z)-sin§] (6a)
y=y1+[(R—z)-cos 6] (6b)
where R is the radius of the Earth, and

_AitAr

6 5 S (7a)
xlzR-sin[(Ag —-Al)/2] (7b)
yi=(H—-R)-cosl(Az2—A1)/2) {7c)

The Cartesian coordinates of projection along the arc are

x=xz —[(R-2z)-cos(y+B)] (8)
y=y2 +[(R=2z)-sin(y+B)] (8b)

where
Xy =R-sin[(Ay — A;)-sinA, /2] (9a)
y2=(H = R)-cos[(Ay — A;)-sinAz /2] (9b)
B=(o—A)-sinA, 9¢)
y=cos™ (x2/R) Od)

Coordinates for projection along the arc already take
into account the projection of the curved arc onto a plane.

AN EXAMPLE: THE MIDDLE AMERICA
TRENCH

The geometry of the Cocos Plate, as it is being sub-
ducted along the Middle America Trench (MAT), has been
studied in some detail [e.g., Hanus and Vanek, 1978; Bur-
bach et al., 1984; Pardo, 1993]. The dip of subduction
changes along the MAT, from around 20° in the northwest-
e portion, deepening to some 40°-50° along Central
America [e. g., Bevis and Isacks, 1984]. The change in cur-
vature at different places along the MAT prevents a good
depiction of the geometry of the subducted Cocos Plate
when straight-line cross-sections are used, such as in the
studies mentioned above. We use this region as an example
of how the center of curvature and inflection points may be
calculated and what advantages may be obtained when ar-
cuate projection is used along areas of changing curvature.
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From visual inspection, we identify five arcs along the
MAT. From northwest to southeast, the first onc spans the
northwestern end of the MAT to about the place where the
Rivera Fracture Zone intersects the trench (around 105° W;
Figure 2). It is concave towards the continent (negative
curvature), with a strong curvature. The second segment is
also concave towards the continent, but with a larger radius
of curvature. In a bathymetric map (Figure 2) it appears 1o
span from the Rivera Fracture Zone to about 96° W, where
the isobath curves broaden and the 3,500 m isobath
changes its trend from NW-SE to NE-SW. The next arc in-
cludes the Gulf of Tehuantepec (approximately 96° W to
95° W), with a positive (concave seaward) curvature. It
ends at the Tehuantepec Fracture Zone (TFZ). The fourth
segment is concave landward, and goes from the TFZ to
about 88.5° W. It approximately spans the region where
the MAT reaches its maximum depth at about 5,500 m.
The last segment is concave seaward and spans from about
88.5° W to the southeastern end of the MAT, where it in-
tersects the Cocos Ridge.

We use the method described above to find the centers
of curvature (poles) and the points of inflection for the five
tentative segments. Results are shown on Figure 2 and
Table 1.  All segments have an average deviation of less
than 0.1°. Actually the largest deviation is 0.06° and:the
smallest one 0.005°, well within our tolerance. Given the
small deviations, we consider that the five segments ini-
tially proposed from visual inspection agree well with the
arc-like segments. Note that the technique was applied only
once, that is, the first visual inspection already yielded all
five segments. Interestingly, the inflection point between
each segment is marked by a bathymetric feature.

The study of Burbach et al. [1984] may serve as a point
of departure for comparing straight cross-sections versus ar-
cuate ones. The location of cross-sections along the MAT
obtained by these authors is reproduced in Figure 3a. Fi-
gure 3b shows an alternative distribution of arcuate-projec-
tion cross-sections which span approximately the same
arca, except for the region around the Isthmus of Tehuante-
pec (section g7). The same data base is used in both cases:
well-located hypocenters reported by the International Seis-
mological Centre (ISC) and compiled by Burbach et al.
[1984). The correponding cross-sections are shown in
Figure 4.

On map view, notice that the arcuate sections provide
an improved fit to regions of changing curvature, such as
the Isthmus of Tehuantepec. In the straight-line projection
{Figure 3a) one must choose between projecting perpendic-
ular to the trench as it trends northwest of the isthmus or
southeast of it. Burbach e al. [1984] chose the latter.
Arcuate projection (Figurc 3b), on the other hand, fits the
change of curvature of the trench in the area. The difference
is important for reasons discussed below.

The position of the trench in cross-section view is
more easily determined from arcuate projection: it is al-
ways located in the upper-left corner of the section, unless
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Fig. 2. Segments of constant curvature adjusted to the Middle America Trench. Arrows show location of inflection points and therefore in-
dicate the limit between two neighboring segments. Numbered circles are the centers of curvature for each segment. Light line indicates the
3,500 km depth contour.

one choses to project with respect to a different feature.
Furthermore, the position of the trench in a straight-line
projection corresponds to the place where the central line of
the section crosses the trench, This position is not the
same as one moves away from this line. For the arcuate
projection, the position of the trench stays the same for the
entire projection area (Figures 3 and 4).

There is a well-documented major change in the dip of
subduction of the Cocos Plate around the Isthmus of Te-
huantepec at about longitude 96° W [Hanus and Vanek,

1978; Bevis and Isacks, 1984]. Northwest of this point,
the Cocos plate subducts with a shallow angle of about 20°
and reaches far inland, as evidenced by the presence of the
Trans-Mexican Volcanic Belt, some 400 km from the
MAT. To the southeast, on the contrary, the angle of sub-

_duction is steeper (some 45°) and the volcanic chain is

close to the trench.

An arcuate projection depicts well this situation (Fi-
gures 3 and 4): the change is evident from section g’ to sec-
tion A, right at the Isthmus of Tehuantepec where it takes
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Fig. 3. Location of cross-sections along the Middle America Trench. A) With traditional methodology (from Burbach et al., 1984). B)
Using projection perpendicular to the arc. Notice that it is easier to sample the Wadati-Benioff zone around the Isthmus of Tehuantepec
’ (-95° longitude) with arcuate sections.
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Fig. 4. Cross-sections corresponding to Figure 2. Capital letters indicate traditional sections from Burbach er al. {1984]. Sections obtained

by arcuate projection are shown with lower-case letters with horizontal tic marks every 100 km and vertical tic marks at 50 km intervals.

Refer to Figure 3 for location of sections. Hypocentral data base is the same for both cases. Notice that with arcuate projection there is no
need to mark the position of the trench because it is always located in the upper-left comer of the section.

place (see Bevis and Isacks, 1984). Using a straight-line
projection, however, this change of dip seems to take place
further to the northwest, from section H to I.

Projection along the arc also shows the advantage of
the arcuate as compared with the straight-line methods. In
the arcuate projection the entire length of the arc is used
whereas in the linear projection one has to select a straight

line that best fits the trench, This leads to differences in the
length of the section, the arcuate section is always longer.
In the case of the MAT, the difference in distance between
end points of the section is only 28 km (Figure 5) because
of the small curvature -of the arc. Much of the MAT has a
radius of curvature 20° subtended at the center of the Earth,
For arcs with larger curvatures the difference may become
critical. In extreme cases, such as the Marianas, the radius
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Fig. 4. (Cont.)

of curvature is about 5° with an azimuthal span of more
than 180°, thus making it virtually impossible to project
the entire arc with a single straight-line projection.

DISCUSSION AND CONCLUSIONS

Depicting a three-dimensional geometry on a plane will
always lead to some distortion, no matter which projection
is used. In this work we develop a simple method for pro-
jecting hypocenters that minimizes distortion when the ge-
ometry of the Wadati-Benioff Zone or other trench-related
features are studied. This method has several advantages
over traditional straight-line methods: (1) It is easier to ob-
tain cross-sections in regions where the curvature of the
trench changes abruptly, such as in the Isthmus of Tehuan-
tepec, or in regions of large curvature; (2) The position of
the trench is constant for all the section considered; (3) The
relative position of a hypocenter with respect to the trench
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is also constant. There are obviously some instances where
straight-line projection may be preferable, such as the
study of seismicity associated to strike-slip faults which
may be considered straight lines.

The use of the method may be extended to other situa-
tions. For example, one may take the Euler vector of a
plate pair and take it as the center of curvature in order to
study seismicity or plate geometry as a function of age of
subduction, or as a function of distance from the Euler
pole. In this case the arc would not be the trench (or a por-
tion of it) but the path of convergence.

Other applications are beyond the scope of this paper.
As an example, there is a bathymetric feature at each in-
flection point along the MAT. Is this unique to the MAT
or is it found at other trenches? Is there a cause-effect rela-
tionship between the location of an inflection point and the
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presence of a bathymetric feature? Other possible topics
are: the relationship between trench curvature and subduc-
tion geometry before and after subduction, that is, determi-
nation of Gaussian curvature [e.g., Bevis, 1986; Cahill and
Isacks, 1992]; the state of stress in the subducted slab
where the trench curvature changes from concave to con-
vex, etc. The method may also be used to determine the di-
rection normal to the trench, a parameter widely used in
studies of oblique convergence [e.g., Burbach and Frohlich,
1986; Jarrard, 1986; McCafrey, 1992].

The method of projection is intuitively very simple and
the mathematical expressions are straight-forward. Often
there is a clear advantage in using arcuate projection over
straight-line projection, as shown by the example of the
Middle America Trench.
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