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RESUMEN  
La mayoría de los métodos para estimar velocidades geostróficas "absolutas", en ausencia de 
mediciones directas de velocidad, utilizan restricciones que definen la dirección del flujo a 
diferentes niveles verticales. Estas restricciones permiten determinar, a menudo mediante la 
solución de problemas de cuadrados mínimos, las constantes de integración de la ecuación de 
viento térmico. Ejemplos de tales direcciones son las definidas por la intersección de superficies 
de temperatura potencial constante y de superficies isohalinas, que, bajo aproximaciones 
adecuadas, son superficies materiales.  En este trabajo nos enfocamos en la circulación oceánica 
de gran escala que puede considerarse como un flujo adiabático, no difusivo, en balance 
hidrostático y geostrófico, pero que puede ser compresible.  Bajo estas suposiciones definimos 
dos restricciones ortogonales mas estrechamente relacionadas con la dinámica que las de 
conservación de temperatura potencial y salinidad para determinar la dirección del flujo. 

Dichas restricciones son la conservación de densidad potencial "local" y la de vorticidad 
potencial en su reducción consistente con las características del flujo antes mencionadas. En la 
literatura se han definido superficies denominadas "Neutrales", "Ortobáricas" y "Topobáricas" 
las cuales son aproximadamente superficies materiales que resultan de la conservación de 
densidad potencial "local", pero su construcción como superficies globales requiere de 
suposiciones adicionales. Esto se debe a que la restricción de conservación de densidad potencial 
“local” es una ecuación diferencial inexacta que no permite definir, unívocamente, dichas 
superficies.  En este trabajo mostramos explícitamente que para definir la dirección del flujo no 
hay necesidad de construir superficies globales partir de diferenciales inexactos y hacer 
suposiciones adicionales, como sería el caso si buscáramos superficies de vorticidad potencial 
constante. En su lugar, utilizamos "Trayectorias preferenciales" que son trayectorias bien 
definidas que se obtienen al  integrar a lo largo de la dirección del flujo sin necesidad de ser la 
intersección de superficies globales. Se incluyen ejemplos con fines ilustrativos. Análisis 
adicionales incluyendo el de propagación de errores está más allá del alcance de este trabajo y se 
deja para futuros estudios 

Palabras clave: circulación geostrófica de gran escala, compresibilidad, restricciones de dirección, 
superficies neutrales. 
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ABSTRACT 

Most schemes to estimate ‘absolute’ geostrophic velocities, in the absence of actual velocity 
measurements, use directional constraints of the flow at different vertical levels. These 
constraints allow the determination, often as a least square problem, of the integration constants 
in the thermal-wind equation. Examples of such directions are those defined by the intersection 
of constant potential temperature and isohaline surfaces, which under appropriate 
approximation are material surfaces. Here we show that under adiabatic, non-diffusive, 
geostrophic, hydrostatic motions, but allowing for compressibility, hence the focus being on the 
large-scale circulation, a pair of orthogonality constraints, much closely related with dynamical 
balances than the conservation of potential temperature and salinity, yield a flow direction. 

These constraints are the conservation of ‘local’ potential density and potential vorticity, in their 
reduction consistent with such approximations. ‘Neutral’, ‘Orthobaric’, and ‘Topobaric’ surfaces 
are approximately material surfaces defined as a result of the conservation of ‘local’ potential 
density, but in order to build such global surfaces additional assumptions are required. The 
conservation constraint is an inexact differential equation that cannot define, uniquely, a global 
surface. Here we explicitly show that to define the flow direction, there is no need to build 
global surfaces out of inexact differentials, as would also be the case with the iso-potential 
vorticity surfaces, thus avoiding additional assumptions. The ‘Preferred Trajectories’ are then 
well-defined paths as integrals along this flow direction without being the intersection of global 
surfaces. Some examples are included for illustrative purposes. Further analysis including error 
propagation are beyond the scope of this work and left for future studies. 

 
Key words: large-scale geostrophic, compressibility, direction constraints, neutral surfaces. 
 
 
INTRODUCTION 
Geostrophic balanced flows for large scale, steady, mean flow are the primordial ingredient to 
decipher and understand long term effects of the ocean circulation (e.g., Wunsch and Ferrari, 
2019). The thermal wind equation (e.g., system (7) in Wunsch and Ferrari, 2019) is the classical 
step to infer absolute geostrophic velocities at depth. However, it needs reference velocities or 
directional constraints that vary with depth. The classical study of Stommel and Schott (1977), 
or, for example, Needler (1985) and Chu (1995), address the topic of achieving the geostrophic 
reference velocity from directional constraints. These studies are done using potential isopycnal 
surfaces as material surfaces, which is the common shortcut to deal with compressibility. In the 
incompressible fluid limit, the intersection of isopycnal and iso-potential vorticity surfaces set 
the direction of geostrophic flows. In this study, the ocean fluid compressibility is amply 
considered, without the need of global material surfaces. 

Present-day knowledge of the mean surface circulation (e.g., Niiler et al., 2003; Chu, 2020) 
provides, directly, the integration constant, although for abyssal flows such reference velocity is 
far away; hence the integration is prone to cumulative errors for the deep, slow motion 
environment. Deep flows still deserve the traditional perspective: Do mean hydrographic 
distributions allow a robust estimate, via geostrophic and other approximate balances, of the 
mean circulation? The question of determining flow properties with hydrographic information 
alone still deserves attention. The essential physical nature of conditions to derive the absolute 
(mean) velocity are given in numerous studies, all of which relate to thermocline theories, for 
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example Behringer (1979), Chu (1995), Coats (1981), Davis (1978), Killworth (1984), Killworth 
(1986), Needler (1985), Olbers and Willebrand (1984), Stommel and Schott (1977), McDougall 
(2013) and Wunsch (1994), to mention just a few. This list is far from exhaustive, but all of them 
deal with mapping potential vorticity on some sort of isopycnal surfaces. Any simplified 
thermodynamic and dynamical models in use have corresponding reduced versions of the mass 
and potential vorticity conservations, and therefore directional constraints. 

Jackett and McDougall (1997) argue that for the compressible ocean fluid, a better approximation than 
potential density iso-surfaces are the ‘Neutral surfaces’, in which case the intersection of ‘Neutral 
surfaces’ and iso-potential vorticity surfaces set the directional constraints. Alternatives to ‘Neutral 
surfaces’ are the ‘Orthobaric surfaces’ (de Szoeke et al., 2000), ‘Topobaric surfaces’ (Stanley, 2019), as 
proposed by Eden and Willebrand (1999) or Klocker et al. (2009), all these versions are here considered 
as improvements of potential isopycnals. Examples of flow trajectories, under several simplifying 
assumptions, are commonly shown by plotting contours of potential vorticity over these 
improvements of potential isopycnals (Needler, 1985; McDougall, 2013; Chu, 2000). This practice is 
used even in numerical models (Zhang et al., 2003). Before the advent of ‘Neutral surfaces’, or its close 
relatives (i.e., ‘Orthobaric’, ‘Topobaric’ and others), iso-potential densities surfaces were used with the 
same purpose (Coats, 1981).  

Even in numerical studies, trajectories to characterize flow properties are useful, for example, 
in Malanotte-Rizzoli et al. (2000), following Killworth (1986), contours of the Bernoulli function 
along outcropping isopycnal surfaces signal distinctive features of the North Atlantic 
Subtropical Cell. These trajectories are in agreement with observations shown by Zhang et al. 
(2003), which benefit from direct measurements of the surface circulation and therefore allows 
the determination of the Bernoulli function. 

In addition to the polemic concept of ‘Neutral surfaces’ (Tailleux, 2016, McDougall et al., 2017, 
Tailleux, 2017), Bennett (2019) points out the ill-defined mathematical problem of constructing 
‘Neutral surfaces’, which is a well-known limitation (McDougall and Jackett, 1988, McDougall, 
1995). We show here that ‘Neutral surfaces’ are unnecessary for determining flow trajectories. 
This study shows that, without the incompressibility and Boussinesq approximations, the 
fundamental restrictions (i.e., orthogonality conditions on the velocity field) that oblige the 
conservation of ‘local’ potential density, and potential vorticity in their limit of the geostrophic 
steady mean flow, fully define unique trajectories; here called ‘Preferred Trajectories’. The added 
condition, brought by the conservation of potential vorticity, on the neutral trajectories of 
Bennett (2019) selects a unique subset of them (i.e., the ‘Preferred Trajectories’). 

The following section presents the theory, framed within some historical perspective, as well as 
the discussion, a third section shows examples of ‘Preferred Trajectories’ in the North Atlantic, 
and the fourth and last section summarizes the conclusion.  

 

THEORY AND DISCUSSION 

A) BACKGROUND THEORY 
Under steady, adiabatic, non-diffusive, geostrophic, and incompressible flow conditions, the 
equations 
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                                                                             (1.1) 

 

and 

 

,                                                                       (1.2) 

 

where  and  are the mass density and velocity fields respectively, z is the vertical coordinate 
in the direction opposite to gravity, and  is the Coriolis parameter (  is the 
magnitude of Earth’s angular velocity,  is the latitude), are the conservations of mass and 
potential vorticity. It should be noted that the incompressibility approximation is far from valid 
in deep regions, but required for system (1). These constraints on velocity, or their close relatives 
in less simplified models, are the prime candidates for determining ‘absolute’ geostrophic 
velocities. The reason for naming ‘absolute’ the velocities derived under such constraints is that 
provided the isopycnal and iso-potential vorticity surfaces do not coincide, they determine the, 
previously free, integration constants of the thermal wind equations. 

Compressibility effects make Eq (1.1) useless when dealing with the global-scale flow, but 
modified versions of system (1) might be acceptable. A thermodynamic variable not affected by 
compressibility is salinity (S), hence the equation 

 

,                                                                               (2.1) 

 

implies that displacements take place along isohaline surfaces (i.e., isohaline surfaces are then 
material surfaces), and therefore is another candidate to help determine constants in the 
integration of the thermal wind equations. However, for this equation to hold, non-diffusive 
conditions are the natural requisite. A similar non-diffusive condition on heat does not imply 
displacements along isotherms (neither on constant potential temperature surfaces, except for 
the pressure level where the potential temperature is referenced to). Under non-diffusive and 
adiabatic conditions, and allowing for compressibility, the temperature equation reads: 

 

,                                                                 (2.2) 

 

where T is temperature, P is pressure and  is the adiabatic temperature lapse rate 
(i.e., , the partial derivative of temperature respect to pressure at constant 
salinity and entropy ( )). Rewriting Eq. (2.2) as , serves better to show the 
orthogonality condition explicitly. 

Let us remind first that, system (2) under large-scale zero-order dynamics might provide the 
constraint on the direction. Only in regions where  and  are neither null nor 
parallel (i.e., linearly independent) system (2) restricts  to be unidirectional. 
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At this point, it should be mentioned the need for the equations of state 

 

,                                                                         (3.1) 

                                                                         (3.2) 

 

to deal with compressibility issues (i.e., sound speed). 

Below we show that other orthogonality conditions, besides system (2), arise closer to dynamical 
balances. 

The reduction of the equations of motion to a geostrophic and hydrostatic balance, proper for 
large-scale motions, is stated by: 

 

,                                                                         (4.1) 

,                                                                                    (4.2) 

,                                                                                (4.3) 

 

where  is the longitude,  is the latitude, r is the radial (or vertical ) coordinate, u and v are 
the zonal and meridional velocity components and g is the magnitude of gravity. Eq.s (4.1) to 
(4.3) can be rewritten as  where ,  and  are the unitary 
vectors in the zonal, meridional and radial (vertical) directions; a spherical coordinate system 
where  with w as the vertical component of velocity and . Mass 
conservation is expressed by 

 

 .                                                                               (4.4) 

 

Notice the absence of the incompressibility and Boussinesq approximations in system (4). The 
mass flux density (i.e., ) is used throughout the rest without needing a Boussinesq 
approximation. The null rotational of  defines the thermal wind equations and, in addition 
with Eq. (4.4), the Svedrup relationship or vorticity equation, in the geostrophic approximation: 
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, and                                                                                  (5.2) 

 

                                                                                    (5.3) 

 

where . The horizontal divergence of the mass density flux (i.e., 
of ) allowed in the large-scale geostrophic balance relates (via Eq. (4.4), the mass conservation) 
the ‘vertical’ stretching/contraction of seawater parcels with their meridional excursion; Eq. (5.3) 
is the Svedrup relation. Notice that geometric factors, pertinent to the spherical frame of 
reference, modify the usual ‘Cartesian’ expressions of the conventional -plane approximation 
(i.e., Eq. (5.3) reduces to under the notation and approximations assumed in 
system (1). From system (4) it follows that 

 

                                                                                   (6) 

 

This result is slightly more general, because Eq.s (4.1) to (4.3) are , 
where  is Earth’s angular velocity, with the horizontal component of  neglected. Notice 
in the previous notation (i.e.,  in Eq. (1.2)),  is . This slightly more general 
Eq. than Eq.s (4.1) to (4.3), also leads, in the simple incompressible limit (see Killworth, 1986), 
to the conservation of the Bernoulli function (i.e., , where  is the 
Bernoulli function). 

 

B) MATERIAL SURFACES AND INEXACT DIFFERENTIALS. 

For any differentiable vector field  where  is the position vector, a valid temptation 
is to build surfaces (or contours in 2D) such that a scalar function  solves the 
differential form , or at least  for  (which says that  is parallel 
to ). In steady flows, the orthogonality condition  leads to the same desire via 

, where  is an ‘integrating factor’. If such desire is 
fulfilled, particles on any iso- surface remain on that surface; all particle motions occur on its 
specific surface and do not cross it; they are material surfaces. The condition for the existence 
of a scalar function  that satisfies  everywhere parallel to is that , the 
‘helicity’, must be null, which in 2D is always satisfied (see for example Eden and Willebrand 
(1999), Jackett and McDougall (1997), and Phillips (1956, sec. 47)). This condition is less 
restrictive than , in which case the integrating factor is trivial and there is a  
such that  Alternatively Eden and Willebrand (1999) use a slight variation of 
Helmholtz Theorem to build an optimized scalar function (in which case surfaces are set) whose 
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gradient best reproduces a vector field . When the helicity is not null, the form 
 does define ‘local’ surface differentials but is unable to produce well-defined 

global surfaces. Thus, for example, using  or Eq. (2.2) sets ‘local’ surface 
differentials but does not warrant global surfaces. 

 

C. THE ORTHOGONALITY CONDITION RELATED WITH MASS CONSERVATION. 
From systems (2) and (6) it follows that 

 

,                                                                       (7) 

 

where c is the speed of sound, a thermodynamic state variable given by system (3) since 
 (i.e., Eq. (3.2) can be replaced by 

). The field c=c( ) is determined by the hydrographic distributions. In light of 
Eq. (6) in its coordinate independent form (i.e., ), it follows that  

 

,                                                                                  (8) 

 

where  is a vector that only depends on the hydrographic distributions. 
Specifically, the vector field , in spherical coordinates, is  where

, , and . Static stability is warranted if 

 (i.e., a positive Brunt-Väisällä frequency). Eq. (8) is a simple local 
orthogonality constraint on the flow, closer to the dynamics than system (2) for the simple fact 
that density enters directly in the equations of motions. In the limit of incompressibility (i.e., 

) Eqs. (7) and (8) reduce to Eq. (1.1).  

Eq. (8) is the main ingredient to build ‘Neutral surfaces’ (see McDougall, 1995 and references 
therein); these surfaces are ill-defined in the global sense (Bennett, 2019), because the helicity 
of  is not null, but various schemes have been offered to minimize the problem and 
produce global surfaces (Eden and Willebrand, 1999; Jackett and McDougall, 1997; de Szoeke 
et al., 2000; Stanley,2019; see below).  

In the proposition by de Szoeke et al. (2000) use is made of the fact that if the sound speed is 
only a function of density and pressure, the helicity of  (see Eq, (7), or Eden and 
Willebrand (1999)) is null. de Szoeke et al. (2000) use directly a sound speed which only depends 
on pressure and a single potential-temperature vs salinity distribution, which is equivalent to a sole 
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component thermodynamic model instead of the usual binary model for seawater). The approximate 
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global material surfaces are then termed ‘Orthobaric’, or ‘Topobaric’ when refined by dividing 
geographical domains (Stanley, 2019). Eden and Willebrand (1999) optimize via a slight variation of 
the Helmholtz decomposition of a vector. Any vector field (having continuous derivatives) can be 
represented as the sum of one irrotational contribution that accounts for the divergence of the field in 
question and another solenoidal (i.e., non-divergent) contribution that has the curl of the field in 
question. The non-uniqueness of such decomposition arises in bounded domains; from boundary 
conditions and if a contribution of the field is irrotational and solenoidal (i.e., biharmonic), in which 
case it might be distributed in multiple fashions on the two contributions or even as a third 
contribution. Eden and Willebrand (1999) find a scalar function whose gradient best reproduces, in a 
least square fashion that takes into account the large difference in lateral and vertical density gradients, 
the vector field  Such a contribution to the field  absorbs its biharmonic fraction. The 
scalar function defines global iso-surfaces along which the flow almost remains (i.e., almost material 
surfaces).   

 

D. THE ORTHOGONALITY CONDITION RELATED TO POTENTIAL VORTICITY CONSERVATION. 

The remnant version of the conservation of potential vorticity, given (2), (3) and (4), implies 
another local orthogonality condition. This version of the conservation of potential vorticity, a 
less simplified version than (1.2), has a closer relationship with dynamics than system (2). The 
‘vertical’ derivative of  produces  

 

.                                                           (9) 
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In addition, from the Svedrup relation (Eq. (5.3)) it follows that 

 

,                                               (10.2) 

 

hence, because of Eq.s (8) and system (10) , where 

. The result is that the vertical derivative of Eq. (8) also produces a 
similar directional constraint, which can be written as 

 

,                                                                                (11) 

 

where . Constraint (11) includes the 

Svedrup relation as a significant effect (see Eq. (10.2)). A modification, to produce the same 
units in Eq.s (1.2) and (11), is the use of  instead of . However, such use should be avoided 
as explained by McDougall (2013, see his arguments in the section of Planetary Potential 
Vorticity). In the limit of incompressibility, f-plane approximation, and disposing of a negligible 
geometric term (  in front of ), Eq. (11) reduces to Eq. (1.2). 

In order to produce ‘iso-potential vorticity’ surfaces, the method used by Eden and Willebrand 
(1999) to define ‘Neutral surfaces’ might be used with constraint Eq. (11). 

 

E. THE DIRECT USE OF THE ORTHOGONALITY CONDITIONS: ‘PREFERRED TRAJECTORIES’. 
For the intrinsic purpose of defining the flow direction, there is no need of constructing ‘large 
scale surfaces’. Instead of ‘repairing’ somehow ill-defined surfaces and then finding their 
intersection, the straightforward implication, from Eq.s (8) and (11) is to look, wherever  and 

 are linearly independent, for solutions of 
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normalization is for dimensional reasons, and forward or backward integration are equally valid for 
the trajectory; the sign of  is undetermined by the orthogonality conditions. The vector defined in 
Eq. (12) reduces, within the incompressibility and Boussinesq approximations, to the P Vector of Chu 
(1995) or Chu (2000). Solutions of Eq. (12) are what we call ‘Preferred Trajectories’.  

÷÷
ø

ö
çç
è

æ
-+-=÷÷

ø

ö
çç
è

æ
-=

¶
¶

r
w

f
vAwA

rr
w

f
vA

r
wA brrrbrr

3333
2

buuA ×=-=¶¶× -- rbrr )(/ 11
3 wrvfAr

)( 11
3 rrfA eeb -- -= jb

0=×Bu

rr
A

r
A

f
A

r
A

r
A

r
eeebAB ÷
ø
ö

ç
è
æ -
¶
¶

+÷÷
ø

ö
çç
è

æ
+

¶
¶

+
¶
¶

=+
¶
¶

= 33321
jl

b

Bf B

rA /3 rA ¶¶ /3

A
B

||/)(/ BABAr ´´=dsd

u



Geofísica Internacional (2020) 59-3: 195-207   

 203 

The implementation of these results might prove that the differences of directions defined by 
Eq. (12) and ‘intersections’ of ill-defined global surfaces are indistinguishable within the noise. 
Nevertheless, given that no additional assumptions are used to construct the ‘Preferred 
Trajectories’, these should be preferred. Also note that near parallelism of vectors  and , 
makes Eq. (12) unsuitable. This limitation is equivalent to Coats’ (1981) description of uniform 
potential vorticity on isopycnal surfaces. 

Conditions as Eq.s (8) and (11) add to Eq.s (2.1) and (2.2), hence, either these conditions are 
compatible among them or the velocity is null. The last statement is an exaggeration, because 
we know that none of such orthogonality conditions should be taken as exact given that: 1) the 
measured hydrography has some inherent noise and 2) the flow does not follow such rules 
‘exactly’ since, among other issues, diffusive and mixing processes have been neglected. In fact, 
the deviation of the actual flow relative to the direction set by the intersection of ‘Neutral 
surfaces’ and ‘iso-potential vorticity surfaces’ measures a Peclet number (O’Dwyer et al., 2000) 
and is the subject of many studies (McDougall, 1995; Chu, 1995). A plausible use of several 
directional constraints is to weight them differently, according to some criteria, into which we 
will not dwell. Subsequent partial derivatives respect depth of Eq. (11) produces orthogonality 
conditions, in each derivative level, which only depend on hydrography; under systems (2), (3) 
and (4); there is an infinity set of orthogonality conditions. 

 

SOME EXAMPLES OF ‘PREFERRED TRAJECTORIES’ 
Simple and crude calculations show a few solutions of Eq. (12) for Levitus’ estimate of the mean 
hydrographic distribution in the North Atlantic (http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/). 
The positions defining the trajectories are shown in Table 1. The measured hydrography and 
the approximation of differentials via finite differences and interpolations cannot be considered 
error-free. A complete analysis is not carried out, errors and comparisons with other methods 
are left for future studies. The purpose here is just to illustrate that well know features of the 
North Atlantic circulation are present in the ‘Preferred Trajectories’. The qualitative comparison 
with well-known features of the circulation shows the ‘Preferred Trajectories’ to better 
reproduce flow directions than thermodynamic rules, as the system (2). 
 

Table I. Starting positions, shown in Figures 1 and 2 as small circles, for examples of trajectories computed either 
with Eq. (12) in Fig. 1 or the parallel result with system (2) in Fig. 2. 

Trajectory 
Number 

Latitude 
North 

Longitude 
West 

Depth 
(m) 

 
1 37° 30' 49° 30' 600 
2 37° 30' 38° 30' 500 
3 37° 30' 33° 30' 500 
4 15° 30' 38° 30' 100 
5 15° 30' 27° 30' 50 
6 15° 30' 27° 30' 30 

 

Integrations of Eq. (12) are shown in Figure 1. In order to estimate the terms of  and  at any 
position in the domain, finite differences and linear interpolations were amply used. Finite differences 
provide estimates of partial derivatives in any mid-point of the grid, and linear interpolations between 

A B

A B
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such mid-points are used in other points. Figure 1 shows the ‘Preferred Trajectories’ within the 
Subtropical Gyre and the Subtropical Cell. Further examples, as shown in Fig. 1, are in Castro (2005). 
Figure 2 is the calculation of trajectories defined with the system (2), i.e., the conservation of salinity 
and the ‘local’ potential temperature. The discrepancy shown in the comparison of Figures 1 and 2 
with known features of the circulation (Zhang et al., 2003) signals the benefit of using constrains as 
close as possible with dynamic rather than thermodynamic rules. In particular, the Subtropical Cell is 
non-existent in Fig. 2, but quite clear in Fig. 1 (see Fig.s 3 and 4 of Zhang et al., 2003). 

 

 
Figure 1. In the upper frame the Mercator projection and in the lower frame the meridional-depth projections of 
six ‘Preferred Trajectories’ (thick lines), three of them to signal the Subtropical Gyre and three of them the 
Subtropical Cell. The lower frame shows, in thin lines, contours of potential density referred to the surface at the 
longitude of 28° 30’ W. Both frames show the starting positions, with a small circle, for the integration of Eq. (12) 
(see Table I). 
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Figure 2. As in Figure 1, but with constraints of the system (2), rather than Eq. (12). 

 

 
 CONCLUSIONS 
Multiple orthogonality constraints on the flow vector follow from the steady, non-diffusive, 
adiabatic, geostrophic and hydrostatic ocean model. The Boussinesq approximation is unneeded 
for such constraints. A pair of such constraints are Eqs. (8) and (11), which are related to: 1) the 
(ill-defined) ‘Neutral surfaces’ or conservation of ‘local’ potential density, and 2) the potential 
vorticity conservation set in the model defined by systems (2), (3) and (4). Compressibility 
effects and the Svedrup relation are essential in Eq.s (8) and (11). This pair of conditions 
produces a well-defined ‘local’ flow direction field (i.e., Eq. (12)), and, by integration, the 
‘Preferred Trajectories’. Eq. (11) further restricts the ‘Neutral Paths’ (Bennett, 2019) of Eq. (8), 
hence producing individual, fully connected, ‘Preferred Trajectories’. We emphasize that: 1) the 
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additional approximations to define and build global surfaces are, for the purpose of defining 
flow direction, unnecessary and 2) that this pair of constraints is closer to dynamical rules (i.e., 
to system (4)) than to thermodynamic rules (i.e., to systems (2) and (3)). The algebra, done in 
spherical coordinates, stresses the pertinence of the formalism to large-scale motions. 
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