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Resumen

Se desarrollan modelos de red neuronal artificial para predecir la duración del movimiento fuerte del 
terreno de eventos de subducción en suelos firme y blando. Para entrenar la red neuronal artificial se 
emplea una base de datos con un total de 3153 registros sísmicos con dos componentes horizontales 
para eventos de interplaca e intraslab. El método de componente principal es usado para realizar una 
reducción dimensional de los parámetros de entrada para desarrollar los modelos de red neuronal 
artificial. Los valores predichos de la duración del movimiento fuerte del terreno por la red neuronal 
entrenada son comparados con aquellos estimados con expresiones empíricas. En general, la duración 
del movimiento fuerte del terreno predicha con la red neuronal artificial sigue la misma tendencia 
que la calculada con las ecuaciones empíricas, aunque en algunos casos, ésta presenta cambios repen-
tinos en su comportamiento. Por esta razón, es recomendado llevar a cabo varias verificaciones de los 
modelos entrenados de la red neuronal artificial antes de usarlos para más aplicaciones ingenieriles, 
por ejemplo, la simulación de registros sintéticos o la evaluación de índices sísmicos de daño.
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Abstract

Artificial neural network models are developed to predict strong ground motion duration of sub-
duction events for soft and firm soils. To train the artificial neural network a database with a total 
of 3153 seismic records with two horizontal components for interplate and inslab earthquakes is 
employed. The principal component method is used to carry out a dimensionality reduction of the 
input parameters to develop the artificial neural network models. The predicted values of the strong 
ground motion duration trained by the artificial neural network models are compared with those 
estimated with empirical expressions. In general, the strong ground motion duration predicted with 
the artificial neural networks follows the same tendency of that calculated with the empirical equa-
tions, although in some cases, the strong ground motion duration predicted by using the artificial 
neural network models presents sudden changes in its behavior. For this reason, it is recommended 
to carry out several verifications of the trained artificial neural network models before using them for 
further engineering applications, for example the simulation of synthetic records or the evaluation 
of seismic damage indices.

Key words: Artificial neural network, strong ground motion duration, subduction events, empirical 
expressions and Mexico.

Introduction

An artificial neural network (ANN) is an effective tool that has been used to solve a great variety of 
engineering problems due to its flexibility to cope highly nonlinear problems. It is worth mentioning 
that ANN models as any other prediction technique have advantages and disadvantages (Pande and 
Shin, 2004). Some advantages of using ANN models include the storage information of the ANN 
with multidimensional inputs, the prediction of multiple outputs with a single ANN model, the 
ability to work with incomplete knowledge and machine learning. Perhaps two of the major draw-
backs of ANN models are the loss of transparency and the unexpected behavior of the ANN model 
that may produce erroneous results. 

The employ of ANNs in seismic engineering is vast, for example, García et al. (2007), used ANNs to 
estimate peak ground accelerations (PGA) for Mexican subduction earthquakes. Hong et al. (2012), 
employed 39 California earthquakes to predict pseudospectral accelerations (SA) and PGA. More 
recently, Pozos-Estrada et al. (2014) developed ANNs models to predict PGA and SA for Mexi-
can inslab and interplate earthquakes. They showed that the predicted PGA and SA values by the 
trained ANN models, in general, follow a similar trend to those predicted by ground motion predic-
tion equations (GMPEs). ANNs have also been used to estimate strong ground motion duration 
(SGMD) of earthquakes. Alcántara et al. (2014), developed ANNs to predict SGMD by using 
information compiled from the Mexican states of Puebla and Oaxaca. The prediction of SGMD has 
also been applied to other tectonic regions, for example Arjun and Kumar (2011), used ANN models 
to estimate the SGMD by using Japanese earthquake records, and more recently, Yaghmaei-Sabegh 
(2018), used a general regression neural network to estimate earthquake ground-motion duration 
recorded at the Iranian plateau.

The study of SGMD to estimate the structural damage has also been carried out by several research-
ers (Housner et al. 1952; Salmon et al., 1992; Bommer and Martínez, 1999; Strasser and Bommer 
2009; and Lindt and Goh, 2004). The general agreement among these studies is that the structural 
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damage not only depend on the maximum intensity or frequency content of the ground motion, but 
also on the SGMD. For the estimation of the seismic-induced structural response, the amplitude and 
frequency content of the ground motions are of paramount importance; however, if the cumulative 
structural damage or structural degradation of systems with hysteretic behavior is of interest, SGMD 
should be integrated as design parameter (Reinoso and Ordaz, 2001). More recently, Bhargavi and 
Raghukanth (2019), carried out a statistical analysis of several ground motion parameters, including 
SGMD, to rate damage potential of ground motion records. 

The main objective of this study is to develop ANN models to estimate SGMD of interplate and 
inslab ground motion records of Mexican earthquakes from a broad network of stations. Ground 
motion records from 1985 up to 2017 are employed. Multilayer perceptron ANN models with back-
propagation training were considered. The input parameters considered in the development of the 
ANN models include the moment magnitude (Mw), closest distance to the fault (RC), focal depth 
(H), the vibration period of the soil (T), the seismic moment (M0), as well as the strike (), dip 
() and rake () angles. The principal component method is used to carry out a dimensionality 
reduction of the input parameters to evaluate the ability of ANN models with different number of 
input parameters to predict the SGMD. The predicted SGMD values by the trained ANN models 
are compared with those estimated with empirical equations for comparison purposes. 

Strong Ground Motion Database and SGMD Calculation

The strong ground motion database employed integrates information from different networks. A 
total of 3153 strong ground motion records, each one with two horizontal components from 71 
earthquakes were used to develop the ANN models. Table 1 and 2 summarize the interplate and in-
slab seismic events considered, respectively. The database for interplate includes 50 events with Mw 
from 5.0 to 8.1, while de database for intermediate-depth normal-faulting inslab events considers 21 
with Mw within 5.1 and 7.1. It is noted that the seismic event occurred on September 7, 2017 was 
not included in the inslab database since it did not cause important damage in Mexico City (Pozos-
Estrada et al., 2019) and because the peak ground acceleration registered in Mexico City at lake-bed 
was below 4 Gal, which was the threshold recommended by Reinoso and Ordaz (2001) as selection 
criterion of records to calculate SGMD. However, the inslab event occurred on September 19, 2017, 
which was, together with the interplate event occurred on September 19, 1985, one of the deadliest 
for Mexico City (Singh et al., 2018, Franke et al., 2019) was included. A map showing the epicenters 
and recording stations considered is presented in Figure 1. Also in Figure 1, the geotechnical zones 
(i.e., firm, transition and lakebed) according to the Mexico City design code (2017) are presented. 
It is worth mentioning that the Mexico City design code (2017) includes rock in the firm soil zone. 
Figure 2 presents the distribution of Mw, H and M0 with respect to RC for the seismic events used. 

For the analyses, only two type of soils were considered (soft and firm soil). The transition zone was 
included in the classification of soft soil on the basis that the dominant period of the soil at such zone 
is greater than 0.5 s, which is the limiting value used in the Mexican design code to separate firm 
soil from the rest, and that no evidence that duration is affected by amplification effects on strong 
ground motion (Singh and Ordaz, 1993). It is worth mentioning that the soft soil of Mexico City 
consists of lacustrine deposits with saturated clays and sand lenses, the transition soil is composed by 
alluvial deposits and the firm soil consists of basaltic and andesitic lava, ashes and epiclastic deposits 
(Marsal and Mazari, 1959; Flores-Estrella et al., 2007). The firm soil of Mexico City can be classified 
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Event 
No.

No. of 
Rec.

Date (dd/
mm/yy) Mw

Lat.  
°N

Long 
°W

H  
(km) Institution*

1 9 19/09/85 8.1 18.081 102.94 15 CFE-GIEC, II**, IG**
2 22 21/09/85 7.6 18.021 101.48 15 CFE-GIEC, II**, IG**
3 8 29/10/85 5.4 17.583 102.64 20.3 CFE-GIEC, II**, IG**
4 19 30/04/86 7.0 18.024 103.06 20 CFE-GIEC, II**, IG**
5 8 05/05/86 5.5 17.765 102.80 19.9 CFE, II**, IG**
6 60 08/02/88 5.8 17.494 101.16 19.2 CFE, CIRES, FICA, II**, IG**
7 114 25/04/89 6.9 16.603 99.4 19 CFE, CIRES, FICA, II**, IG**
8 112 31/05/90 5.9 17.106 100.89 16 CENAPRED, CIRES, FICA, GIEC, II**, IG**
9 50 01/04/91 5.4 16.044 98.39 25.6 CENAPRED, CIRES, FICA, II**, IG**
10 22 31/03/92 5.1 17.233 101.30 11 CENAPRED, CFE, FICA, II**, IG**
11 74 15/05/93 5.5 16.47 98.72 15 CIRES, II**, IG**
12 200 24/10/93 6.6 16.54 98.98 5 CENAPRED, RIIS, GIEC, CIRES, II**, IG**
13 6 13/11/93 5.4 15.63 99.02 15 CIRES, II**, IG**
14 240 10/12/94 6.3 18.02 101.56 20 CENAPRED, RIIS, GIEC, CIRES, II**, IG**
15 149 14/09/95 7.3 16.31 98.88 22 CENAPRED, CIRES, RIIS, II**, IG**
16 138 09/10/95 7.3 18.74 104.67 5 CENAPRED, CIRES, GIEC, RIIS, II*, IG**
17 55 12/10/95 5.5 19.04 103.70 11 CENAPRED, CIRES, IG**
18 62 25/02/96 6.9 15.83 98.25 5 CENAPRED, CIRES, II**, IG**
19 186 15/07/96 6.5 17.45 101.16 20 CENAPRED, CIRES, GIEC, RIIS, II**, IG**
20 196 11/01/97 6.9 17.9 103.04 16 CPRED, CIRES, GIEC, RIIS, II**, IG**
21 18 21/01/97 5.4 16.44 98.15 18 CENAPRED, CIRES, II**, IG**
22 32 19/07/97 6.3 15.86 98.35 5 CENAPRED, CIRES, II**, IG**
23 18 16/12/97 5.9 15.7 99.04 16 CIRES, II*, IG**
24 22 22/12/97 5.0 17.14 101.24 5 CENAPRED, CIRES, II**, IG**
25 82 03/02/98 6.2 15.69 96.37 33 CENAPRED, CIRES, II**, IG**
26 12 05/07/98 5.0 16.83 100.12 5 CENAPRED, II**, IG**
27 246 30/09/99 7.5 15.95 97.03 16 CENAPRED, CIRES, II**, IG**, RIIS
28 149 09/08/00 6.1 17.99 102.66 16 CIRES, II**, IG**
29 48 08/10/01 5.4 16.94 100.14 10 II**, IG**
30 68 18/04/02 5.4 16.77 101.12 22 CIRES, II*, IG**
31 32 22/01/03 7.5 18.6 104.22 9 II**, IG**
32 67 01/01/04 5.6 17.34 101.42 6 CIRES, II**, IG**
33¥ 186 13/04/07 6.3 17.09 100.44 41 CIRES, II**, IG**
34 46 06/11/07 5.6 17.08 100.14 9 II**, IG**
35 74 27/04/09 5.7 16.9 99.58 7 CIRES, II, IG
36 48 09/02/10 5.8 15.9 96.86 37 II, IG
37 124 30/06/10 6.0 16.22 98.03 8 CIRES, II, IG
38 176 20/03/12 7.4 16.251 98.521 16 CIRES, II, UAP, IG
39 162 02/04/12 6.0 16.27 98.47 10 CIRES, II, UAP, IG
40 17 11/04/12 6.4 17.9 103.06 16 CIRES, II, IG
41 48 22/09/12 5.4 16.23 98.30 10 CIRES, II

Table 1. Interplate events used in training the ANN models

as class B according to NEHRP Recommended provisions for seismic regulations for new buildings 
and other structures (2004). 
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Table 2. Inslab events used in training the ANN models.

42 36 22/04/13 5.8 17.87 102.19 10 II
43 60 21/08/13 6.0 16.79 99.56 16 II
44 193 18/04/14 7.2 17.18 101.19 10 CIRES, II
45 190 08/05/14 6.4 17.11 100.87 17 CIRES, II
46 50 10/05/14 6.1 17.16 100.95 12 CIRES, II
47 46 11/10/14 5.6 15.97 95.61 10 II
48 58 23/11/15 5.8 16.86 98.94 10 II
49 78 08/05/16 6.0 16.25 97.98 35 II
50 38 27/06/16 5.7 16.2 97.93 20 II
Notes: * II: Institute of Engineering from UNAM (http://aplicaciones.iingen.unam.mx/AcelerogramasRSM/Consultas/
Filtro.aspx); IG: Institute of Geophysics from UNAM (http://www2.ssn.unam.mx:8080/catalogo/); CENAPRED: 
National Center for Disaster Prevention (http://geografica.cenapred.unam.mx:8080/reporteSismosGobMX/
BuscarAcelerograma); CIRES: Instrumentation and Seismic Record Center (http://www.cires.org.mx/racm_historico_
es.php); RIIS: Interuniversity Network of Seismic Instrumentation; FICA: ICA Foundation; GIEC: Experimental 
Engineering and Control Management; UAP: Autonomous University of Puebla. ** Some of the records used were 
compiled by García (2005) and García et al. (2006). ¥Interplate event according to Franco et al., (2007).

Event No. No. of 
Rec.

Date (dd/
mm/yy) Mw

Lat.  
°N

Long.  
°W

H  
(km) Institution*

1¥ 10 05/08/93 5.1 17.08 98.53 32 CENAPRED, II**, IG**
2¥ 16 23/02/94 5.4 17.82 97.30 5 II**, IG**, CENAPRED
3¥ 166 23/05/94 5.6 18.03 100.57 23 CENAPRED, CIRES, RIIS, II**, IG**
4¥ 130 10/12/94 6.4 18.02 101.56 20 CIRES, II**, IG**
5¥ 124 11/01/97 6.9 17.9 103.00 16 CIRES, II**, IG**
6¥ 4 03/04/97 5.1 17.98 98.33 30 II**, IG**
7 144 22/05/97 6.0 18.41 101.81 59 CENAPRED, CIRES, RIIS, II**, IG**
8 38 20/04/98 5.1 18.37 101.21 66 CENAPRED, CIRES, RIIS, II**, IG**
9 254 15/06/99 6.5 18.18 97.51 69 CENAPRED, CIRES, RIIS, II**, IG**
10 172 21/06/99 5.8 17.99 101.72 54 CENAPRED, CIRES, II**, IG**
11 202 13/04/07 6.3 17.37 100.14 42 CIRES, II**, IG**
12 88 12/02/08 6.5 16.35 94.51 87 CIRES, II**, IG**
13 52 22/05/09 5.7 18.13 98.44 45 II**, IG**
14 40 21/07/00 5.4 18.09 98.97 48 II**, IG**
15 80 07/04/11 6.7 17.2 94.34 167 CIRES, II
16 210 11/12/11 6.5 17.89 99.84 58 CIRES, II, UAP
18 156 15/11/12 6.1 18.17 100.52 40 CIRES, II, UAP
19 50 29/07/14 6.4 17.7 95.63 117 CIRES, II
20 148 19/09/17 7.1 18.4 98.72 57 CIRES, II, UAP
21 68 23/09/17 6.1 16.48 94.90 75 CIRES

Notes: * II: Institute of Engineering from UNAM  (http://aplicaciones.iingen.unam.mx/AcelerogramasRSM/Consultas/
Filtro.aspx); IG: Institute of Geophysics from UNAM (http://www2.ssn.unam.mx:8080/catalogo/); CENAPRED: 
National Center for Disaster Prevention (http://geografica.cenapred.unam.mx:8080/reporteSismosGobMX/
BuscarAcelerograma); CIRES: Instrumentation and Seismic Record Center (http://www.cires.org.mx/racm_historico_
es.php ); RIIS: Interuniversity Network of Seismic Instrumentation; FICA: ICA Foundation; GIEC: Experimental 
Engineering and Control Management; UAP: Autonomous University of Puebla. **Some of the records used were 
compiled by García (2005) and García et al., (2006). ¥Cortical events Lowry et al., (2001).
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Figure 1. Location of events and recording stations employed.

The total number of records from interplate and inslab events were organized into three groups. The 
first group corresponds to seismic records registered at soft soil of Mexico City (SS-MC), the second 
group corresponds to seismic records registered at firm soil of Mexico City (FS-MC), and the third 
group includes the rest of records registered outside Mexico City at firm soil (i.e., rock) (FS-M). 
For the development of the ANN models and the empirical equations, a database with all horizon-
tal components of motion without combining them was considered. Figure 3 presents a plot with 
the percentage of seismic records from interplate and inslab earthquakes used in each group as well 
as the type of soil. It is observed from Figure 3 that the distribution of records per group is similar 
between the interplate and inslab earthquakes, and that the records for sites with soft soil in Mexico 
City have the greatest percentage.

Data Processing

A program was developed in MATLAB (2019), to build a database of seismic records for each type of 
earthquake. The information considered for each record included the name of the file, station name, 
station coordinates, magnitude of the event, epicentral coordinates, date and hour of the seismic 
event, orientation of each sensor channel, peak ground acceleration and maximum seudoaccelera-
tion for each component for the soil period, strong ground motion duration and the acceleration 
values for each component. Bad quality records were discarded. A baseline correction of all the time 
histories of the records was carried out. Further, for events registered at firm soil (including rock) 
with Mw >6.5, a high-pass filter with a cut-off frequency of 0.05 Hz was used, for the rest events, a 
high-pass corner frequency 0.1 Hz was employed. This processing criterion was guided by the work 
of García et al. (2005) and García (2006). For events registered at soft soil, a band-pass filter with 
corner frequencies from 0.1 to 10 Hz was employed (Jaimes et al., 2015).

SGMD Calculated from the Processed Data

The study of the SGMD has been carried out by several researchers in the past (Trifunac and Brady 
et al., 1975; Trifunac and Westermo et al., 1982). In this study the SGMD was calculated based on 
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Figure 2. Distribution of Mw, H and M0 with respect to RC: (a), (b) and (c) for interplate events; (d), (e) and (f ) for 
inslab events.
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the accumulation of energy along time of the strong ground motion records. Arias intensity (Arias, 
1970) has been widely used to relate the SGMD with the acceleration time history energy, although 
it has also been used to study the damage patterns and principal direction of seismic excitations 
(Arias, 1996; Hong and Goda, 2007; and Hong et al., 2009). In this study the SGMD is assessed 
based on the Arias intensity, defined as

	 I
g

a t dtA

t

= ( )∫
2 2

0

0π
,	 (1)

where a(t) is the acceleration time history, t0 is the total duration of the strong ground motion and g 
is the acceleration due to gravity. Several procedures have been reported in the literature to determine 
the SGMD (Bommer and Martínez, 1999), based on lower and upper bounds of duration related 
to IA. According to Reinoso and Ordaz (2001), SGMD for Mexican earthquakes can be obtained 
based on the duration of the strong ground motion between 2.5 and 97.5% of IA, which is useful for 
engineering problems. These limits are adopted in the present study, since the records employed in 
the databases also include most of those used in Reinoso and Ordaz (2001).

Artificial Neural Network Modeling and Training 

The ANN architecture with multiple hidden layers and neurons used in this study is shown in Figure 
4, where three main layers can be identified: input, hidden and output layer. The flow of informa-
tion starts from the input layer, this information is weighted to optimize the mapping between the 
input and the hidden layer(s), and finally transferred it into output value(s). The information trans-
ferred from the hidden layer(s) to the output layer is affected by biases that modified the output of 
the neuron. If an ANN model with a single output neuron and two hidden layers is considered, the 
mathematical expressions that relate the output neuron in the output layer with the neurons in input 
and hidden layers are given by, 

Figure 3. Distribution of percentage of seismic records at soft and firm soils.



R. Flores-Mendoza, Use of Artificial Neural Networks to predict strong ground motion...

161

y f w Ooutput k HL HL
k

m

= [ ] + ( )−
=
∑3 3 1 1 2 3 1
1

, ,φ 	 (2a)

,	 (2b)

	 (2c)

where youtput is the value of the output neuron, OIL-HL1 is the outcome obtained when the information 
given in the input layer has passed through the first hidden layer, OHL1-HL2 is the outcome obtained 
when the information from the first hidden layer has passed through the second hidden layer, m 
is the total number of neurons in the hidden layers, n is the total number of neurons in the input 
layer, f1( ), f 2( ) and f3( ) are activation functions between the input and the first hidden layer, the 
first and the second hidden layer and between the second hidden layer and the output layer, respec-
tively; [w1]i,j , [w2]j,k and [w3]k,1 are the weights that map the information between the input and the 
first hidden layer, between the first and second hidden layer and between the second hidden layer 
and output layer, respectively; (f1)j, (f2)k and (f3)1 are the biases associated with the hidden and 
output layers and xi is the i-th neuron in the input layer. 

The optimization of the weights and biases of the ANN model is carried out during the training 
process. Although a variety of algorithms is available in the literature (Swingler, 1996; Principe and 
Euliano, 1999; and Haykin, 1999), the back-propagation algorithm (Rumelhart et al., 1986) is one 
of the most popular. The back-propagation algorithm employs a predefined error function, which 
is minimized to evaluate the weights and biases. The back-propagation algorithm is adopted in the 
present study to train the ANN models. Aside from the back-propagation algorithm, in the last 

Figure 4. ANN architecture with multiple hidden layers and neurons.
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decade the constant improvement of Machine Learning techniques has allowed the development of 
deep learning that employs the deep neural network. The use of deep neural networks has gained 
much attention due to their ability to solve complex problems. The use of deep neural networks is 
outside of the scope of the present study.

Estimation of Strong Ground Motion Duration Using Ann

Application of Principal Component Analysis to Identify the Inputs of the ANNs Models

Dimensionality reduction methods have been widely used to reduce the number of input parameters 
to develop ANN models (Yuce et al., 2014). One of the classical dimensionality reduction methods 
is the principal component analysis (PCA), which transforms a set of observations of correlated 
variables into a set of principal components, which are linearly uncorrelated. Based on the identified 
principal components, the amount of total variance contributed by each component is assed to select 
a reduced number of principal components which cumulative variance is within predefined accept-
able values. Once a reduced number of principal components is selected, the relative importance of 
each input parameter to a particular component is evaluated by using correlation coefficients that 
relate the reduced set of principal components and input parameters. The reduced number of input 
parameters is selected based on predefined thresholds of correlation coefficients.     

To illustrate the use of PCA in the dimensionality reduction of the input neurons for the develop-
ment of the ANN models, we use the data for inslab events for firm soil for places outside Mexico. To 
proceed with the calculation of the principal components, the correlation coefficient matrix between 
the input variables is given in Table 3.

The correlation coefficient matrix is then decomposed by using the singular value decomposition 
to calculate the amount of total variance contributed by each principal component. Table 4 sum-
marizes the percentage of variance associated with each principal component and its corresponding 
eigenvalue.

It is noted that there are different criteria to select the reduced number of principal components. Ac-
cording to Lovric (2011), the reduced number of principal components can be selected when they 
account for a cumulative variance within 70 to 90%. A simpler criterion, which is adopted in this 
study, is to select those principal components whose eigenvalues are greater than one. Based on the 
afore-mentioned criterion, from Table 4, the reduced number of principal components is equal to 4. 

RC Mw T H M0
  

RC 1 0.220 0.347 0.242 0.124 0.215 -0.028 -0.101
Mw 0.220 1 0.087 0.397 0.659 0.123 0.384 -0.002
T 0.347 0.087 1 0.119 0.033 0.099 -0.056 -0.015
H 0.242 0.397 0.119 1 0.046 0.457 0.200 -0.284
M0 0.124 0.659 0.033 0.046 1 0.160 0.124 -0.210
 0.215 0.123 0.099 0.457 0.160 1 -0.308 -0.053
 -0.028 0.384 -0.056 0.200 0.124 -0.308 1 0.326
 -0.101 -0.002 -0.015 -0.284 -0.210 -0.053 0.326 1

Table 3. Correlation coefficient matrix for input variables for inslab events for firm soil for places outside Mexico.
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Principal 
component 1 2 3 4 5 6 7 8

Eigenvalue 2.24 1.64 1.19 1.03 0.87 0.63 0.29 0.11
Variance (%) 27.99 20.46 14.84 12.90 10.89 7.82 3.66 1.41
Cumulative 
variance (%) 27.99 48.46 63.30 76.20 87.10 94.92 98.59 100

Table 4. Percentage of variance associated with each principal component and its corresponding eigenvalue.

Input parameter 1 2 3 4
RC 0.531 -0.261 0.466 -0.255
Mw 0.784 0.476 -0.114 -0.069
T 0.321 -0.254 0.638 -0.414
H 0.688 -0.153 0.046 0.582
M0 0.635 0.289 -0.437 -0.424
 0.495 -0.511 -0.017 0.420
 0.193 0.823 0.242 0.225
 -0.284 0.483 0.546 0.211

Table 5. Correlation coefficients that relate the reduced set of principal components and input parameters.

By using the first 4 principal components, the correlation coefficients that relate the reduced set of 
principal components and input parameters is presented in Table 5.

It is observed in Table 5 that there are considerable variation in the correlation coefficients. To 
identify the reduced input parameters, we use two thresholds of correlation coefficients (Moore et 
al., 2013), the first one equals 0.7 and the second one equals 0.55. It is noted that strong relation 
between variables is associated with correlation coefficients greater than 0.7, while moderate relation 
is associated with correlation coefficients greater than 0.55. Table 6 presents the reduced number of 
input parameters when the correlation thresholds are adopted. Also in Table 6, the reduced number 
of input parameters for the rest of the database are summarized. It is observed from Table 6 that the 
number of input parameters with strong correlation for interplate events ranges from 2 to 3, while 
for inslab it varies from 2 to 6. For the input parameters with strong correlation, the greater number 
of input parameters are related to the SS-MC case. If moderate correlation is considered, the number 
of input parameters is within 6 to 7 and 5 to 7 for interplate and inslab events, respectively. Based on 
the PCA results, ANN models are developed by using the identified input parameters based on the 
type of relation (i.e., strong and moderate relation). Furthermore, for the sake of comparison, ANN 
models by using the complete set of input parameters, referred to as ‘all inputs’, was included. One 
more ANN model with predefined input parameters is considered, this model includes Mw, natural 
logarithmic of Rc, H and T as input neurons and is referred to as ‘original case’. This last ANN model 
is considered as much of the information available in applications of engineering include those 
parameters. It should be pointed out that all the ANN models employ the natural logarithmic of RC 
instead of the RC. The output layer of the ANN models consists of a single neuron that represents 
the natural logarithmic of the SGMD for a considered earthquake and soil type. 

The activation functions as well as the setups used during the training process are presented in Table 
7. Some authors have suggested rules to identify the number of hidden neurons and their relation 
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Earthquake  
Type Case

Type of relation
Strong Moderate

Interplate 
SS-MC Mw, RC,  Mw, RC, T, M0, , 
FS-MC Mw, M0 Mw, RC, H, M0, , 
FS-M Mw,  Mw, RC, H, T, M0, , 

Inslab
SS-MC Mw, RC, H, M0, ,  Mw, RC, T, M0, , , 
FS-MC Mw,  Mw, RC, H, M0, , , 
FS-M Mw,  Mw, H, T, M0, 

Table 6. Reduced number of input parameters after applying the PCA method.

Layer Activation function
Input to hidden layer

Hidden to hidden layer
Tan-Sigmoid

Hidden to output layer

Training and testing

Linear

f x e e
e e

x x

x x( ) = −
+

−

−

Training data 80% of the complete database (randomly selected)
Testing data 20% of the complete database not selected for training
Error function Mean square error (MSE)
Minimization algorithm Levenberg-Marquardt (Marquardt (1963)), Press et al. (1992))

Table 7. Activation functions and training setups.

with the hidden layers (Masters, 1993; Swingler, 1996; Berry and Linoff, 1997), yet no closed-form 
expression is available to indicate the total number of hidden layers and neurons, a trial and error 
scheme is adopted to determine the structure of the ANN model (Shahin et al., 2004). 

During the trial and error process, ANN models with one and two hidden layers with 3 and up to 50 
hidden neurons in each hidden layer were considered. The former was carried out to avoid potential 
overfitting of the ANN model. 

It is noted that different metrics as the mean square error (MSE) or the mean absolute error (MAE) 
are available to evaluate the performance of the ANN models, each metric has advantages and dis-
advantages depending of the problem at hand. According to Twomey and Smith (1995), there is no 
consensus as to which measure should be reported, and thus, comparisons among techniques and 
results of different researchers are practically impossible. In this study we adopted the MSE to evalu-
ate the performance of the ANN models.

To evaluate the impact of the number of hidden neurons and layers on the trained ANN models 
by using both: the samples used for training and those not employed for training, the average MSE 
based on 300 trials (Pozos-Estrada et al., 2014), is presented in Figure 5. It is observed in Figure 
5 that, in general, when the data used for training is employed, the average MSE decreases as the 
number of hidden neurons increases. It is also observed from Figure 5 that the average MSE when 
the samples used for testing are employed is greater than that observed when the samples used for 
training are considered. This can be explained by noting that the trained ANN models are tested 
with input parameters that are different than those used during the training process. This trend is 
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Figure 5. Average MSE for the developed ANN models by using the samples employed for training (in blue) and testing 
(in gray). Interplate events with one hidden layer: (a) Mexico City soft soil, (b) Mexico City firm soil, (c) Outside 
Mexico City firm soil. Interplate events with two hidden layers: (d) Mexico City soft soil, (e) Mexico City firm soil, (f ) 
Outside Mexico City firm soil. Inslab events with one hidden layer: (g) Mexico City soft soil, (h) Mexico City firm soil, 
(i) Outside Mexico City firm soil. Inslab events with two hidden layers: (j) Mexico City soft soil, (k) Mexico City firm 
soil, (i) Outside Mexico City firm soil.

observed for the ANN models with different number of input neurons (i.e., all inputs, strong rela-
tion, moderate relation and original case) with one and two hidden layers, irrespective of the type of 
earthquake or soil considered. It is also observed from Figure 5 that the lowest average MSE associ-
ated with the testing stage is obtained for ANN models with 3 to 50 hidden neurons, and that the 
best ANN models for interplate and inslab are associated with 1HL and 2HL, respectively. Based on 
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Table 8. Summary of the minimum MSE of ANN models for interplate and inslab events.

Soil type Case
Interplate Inslab

MSE ANN model MSE ANN model

SS-MC

All inputs 0.013 3N-1HL 0.032 15N-2HL
Strong relation 0.024 5N-1HL 0.065 15N-2HL
Moderate relation 0.013 30N-1HL 0.032 45N-2HL

Original case
0.014 5N-1HL 0.031 50N-2HL
0.014 3N-1HL* 0.031 30N-2HL*

FS-MC

All inputs
0.028 3N-1HL 0.010 50N-2HL

- - 0.032 15N-2HL*
Strong relation 0.034 20N-1HL 0.011 5N-2HL
Moderate relation 0.020 3N-1HL 0.011 3N-2HL
Original case 0.036 5N-1HL* 0.015 3N-2HL

FS-M

All inputs
0.013 3N-1HL 0.010 5N-2HL

- - 0.009 10N-2HL*
Strong relation 0.064 3N-1HL 0.054 30N-2HL
Moderate relation 0.014 3N-1HL 0.046 15N-2HL
Original case 0.017 20N-1HL* 0.016 30N-2HL

Notes: SS-MC = Soft soil Mexico City; FS-MC = Firm soil Mexico City; FS-M = Firm soil for places outside Mexico 
City; N = Neurons; HN = Hidden neurons; * ANN models employed in Figure 9.

these observations, the parameters of the optimum ANN models (those associated with the mini-
mum average MSE) are summarized in Table 8. It is observed in Table 8 that the number of hidden 
layers for the cases with different number of input neurons (i.e., all inputs, strong relation, moderate 
relation and original case) for interplate events ranges from 3 to 30, while that for inslab ranges from 
3 to 50. This observation indicates that the selection of the inputs neurons is of paramount impor-
tance. Based on the identified optimum models with different number of input neurons, a further 
selection was carried out to employ a single ANN model (i.e., a single ANN model among all inputs, 
strong relation, moderate relation and original case) to predict the SGMD for SS-MC, FS-MC and 
FS-M. The criterion used to identify a single ANN model was based on selecting the ANN model 
which exhibits the best prediction behavior under several case scenarios. The ANN models selected 
to predict the SGMD for SS-MC, FS-MC and FS-M are indicated in Table 8 in italics. The obtained 
weights and biases for the selected trained ANN models for interplate and inslab, summarized in 
Table 8, are presented in Appendix A.

Comparison Between the Observed and the Predicted SGMD by Using Trained ANN

Figure 6 presents a comparison between the observed and the predicted SGMD by using the trained 
ANN models with the datasets used for training and testing to those obtained from the actual records. 
It is observed from Figure 6 that there is good agreement between the observed and predicted values 
in most of the cases, with a correlation coefficient, , ranging from 0.50 to 0.92 when the dataset 
used for testing is considered, and from 0.74 to 0.96 when the dataset used for training is employed. 
It is also observed from Figure 6 that the highest  values are associated the ANN models for inslab. 
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Figure 6. Comparison of the predicted SGMD with the trained ANN models and the observed values. Interplate events: 
(a) Mexico City soft soil, (b) Mexico City firm soil, (c) Outside Mexico City hard soil. Inslab events: (d) Mexico City 
soft soil, (e) Mexico City firm soil, (f ) Outside Mexico City firm soil.
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D = c1 exp(Mw) + (c2Mw + c3)RC + (c4Mw + c5)(T + c6) + 

Interplate events
Case c1 c2 c3 c4 c5

SS-MC 0.0237 -0.0212 0.3063 6.345 -25.013
FS-MC 0.0332 0.0035 0.1528 - -
FS-M 0.0160 -0.0090  0.2361  -  -

Inslab events
Case c1 c2 c3 c4 c5

SS-MC 0.0684 -0.0852 0.6722 -2.6447 38.11
FS-MC 0.0501 -0.0931 0.764 - -
FS-M  0.027  -0.0233  0.3278  - -
Notes: ci, i = 1,2,3,4,5, are regression coefficients; c6 = 0.5; T is set equal to 0.5 s for firm soils (Reinoso E. Ordaz M 
(2001), NTC-SISMO (2017));  is the error term.

Table 9. Coefficients of the empirical equation.

Among all the ANN models developed, those that predict the SGMD for sites outside Mexico City 
present the highest  values for interplate and inslab events. Further, the ANN model developed 
for soft soil in Mexico City for interplate events is similar to the ANN model for inslab events. On 
the other hand, the ANN model developed for hard soil in Mexico City for inslab events showed 
better predicting results that the ANN model for interplate events. 

Comparison of the Predicted SGMD Using Trained ANN and Empirical Equations

Empirical Models to Estimate SGMD for Interplate and Inslab Events

The functional form of the empirical equation adopted in this study for soft and hard soils is the one 
proposed in Reinoso and Ordaz (2001), which is shown in Table 9, where D denotes the SGMD, 
in s, Mw is the moment of magnitude, RC is the closest distance to the fault, in km, and T is the soil 
period, in s. In this study the model coefficients were estimated using a least-squares regression al-
gorithm, implemented in MATLAB (2019). It is noted that that more accurate regression methods 
are available in the literature (Joyner and Boore, 1993; Boore et al., 1997; Bommer et al., 2010) and 
that the use of the traditional least-squares method is an oversimplification; however, for simplicity, 
and since the main focus of this work is on the development and discussion of the ANN models to 
predict the SGMD, we adopted the traditional least-squares method.

The estimated coefficients for each type of earthquake and soil are summarized in Table 9. Figure 7 
presents a comparison of the predicted SGMD with the fitted empirical models and the observed 
values for interplate and inslab events for soft and firm soils. Similar conclusions to those draw from 
Figure 6 are applicable to Figure 7, except that the correlation coefficients between the observed and 
predicted values are in general slightly smaller than those obtained when the ANN models are used. 
This difference is related to the number of data used to fit the empirical models, which is greater than 
that employed to test the ANN models.

Comparison Between Predicted SGMD Using Trained ANN and Empirical Equations

Figure 8 presents a comparison of the variation of the SGMD predicted with the trained ANN mod-
els and that obtained with the empirical equations as a function of Mw and modal values of Rc, T, H, 
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Figure 7. Comparison of the predicted SGMD with the fitted empirical models and the observed values. Interplate 
events: (a) Mexico City soft soil, (b) Mexico City firm soil, (c) Outside Mexico City firm soil. Inslab events: (d) Mexico 
City soft soil, (e) Mexico City firm soil, (f ) Outside Mexico City firm soil.
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M0, ,  and  for soft soil and modal values of Rc, H, M0, ,  and  and T = 0.5 (s) for 
firm soil. It is noted that the use of H, M0, ,  and  are input parameters of the trained ANN 
models; however, they were not considered as input parameter in the empirical expressions. In Figure 
8, the empirical model developed in Reinoso and Ordaz (2001), is also included for comparison pur-
poses. It is observed from Figure 8, that in general, the predicted values by using the ANN models 
follow those predicted by the developed empirical equations. It is also observed that, for interplate 
events, the SGMD predicted with the trained ANN models oscillates within those predicted with 
the empirical equations. It is further observed that, for inslab events, the SGMD predicted with the 
trained ANN models follows the trend of the SGMD predicted with the empirical equation devel-
oped in this study. For case 8c that corresponds to the SGMD for inslab events for firm soil for places 
outside Mexico, the SGMD predicted by using the ANN model presents a bump for MW within 5.5 
and 6.5. The rest of the cases showed a smoother behavior. In practically all the cases presented in 
Figure 8, the model proposed in Reinoso and Ordaz (2001), predicted smaller SGMD values with 
respect to those predicted by the trained ANN models and the empirical equations developed in this 
study. The differences between the SGMD values predicted by the ANN models and those with the 
empirical equation given in Reinoso and Ordaz (2001), was also observed in the study by Alcántara 
et al. (2014).

Figure 9 presents a comparison of the variation of the SGMD predicted with the trained ANN mod-
els and that obtained with the empirical equations as a function of RC and selected values of Mw 
and modal values of T, H, M0, ,  and . Similar conclusions to those drawn for Figure 8 are 
applicable to Figure 9, except that a better behavior of the predictions made with the ANN models 
are observed for both inteplate and inslab events. It is noted that the ANN models used to predict 
the SGMD for Figure 8, were also employed for Figure 9; however, it was observed that better pre-
dictions could be obtained if ANN models with different number of neurons were used. The ANN 
models employed in Figure 9 are also reported in Table 8. The previous observation indicates that the 
trained ANN models for the considered records are not very robust because the trained models with 
almost identical mean square errors do not always lead to the same predicted SGMD.

To further compare the trained ANN models and the empirical equations, a probabilistic character-
ization of the error, defined as the difference of the logarithmic of the predicted values of SGMD 
by using the trained ANN models or the empirical equations for the results presented in Figure 8, 
and the logarithmic of the observed values is carried out. Figure 10 presents a comparison of the 
calculated errors in Normal probability paper. It is observed from Figure 10 that the error could be 
modeled as a normal variate. This was also verified with the Kolmogorov-Smirnov goodness-of-fit 
test (Benjamin and Cornell, 1970), which indicates that the normality hypothesis could not be re-
jected at a significance level of at least 1% for both type of seismic events. The mean and standard 
deviation of the errors presented in Figure 10 are summarized in Table 10. It is observed from Table 
10 that the trained ANN models and the empirical equations are only slightly biased and that the 
statistics of the error for the developed ANN models are similar to those of the empirical equations. 
Similar results were observed for the ANN models and the empirical equations presented in Figure 
9 and for that reason they are not shown.
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Figure 8. Comparison of SGMD predicted by the trained ANN models and by the empirical models with variation in 
Mw. Interplate events: (a) Mexico City soft soil, (b) Mexico City firm soil, (c) Outside Mexico City firm soil. Inslab 
events: (d) Mexico City soft soil, (e) Mexico City firm soil, (f ) Outside Mexico City firm soil.
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Figure 9. Comparison of SGMD predicted by the trained ANN models and by the empirical models with variation 
in RC. Interplate events: (a) Mexico City soft soil, (b) Mexico City firm soil, (c) Outside Mexico City firm soil. Inslab 
events: (d) Mexico City soft soil, (e) Mexico City firm soil, (f ) Outside Mexico City firm soil.
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Figure 10. Normal probability paper of the error.

Table 10. Statistics of the error.

Type of 
earthquake Type of soil

ANN models Empirical equations
Case Mean Std. Dev. Mean Std. Dev.

Interplate
SS-MC All inputs -3.98E-02 0.24 2.70E-01 0.19
FS-MC All inputs 1.07E-02 0.31 1.01E-01 0.38
FS-M Original case -2.03E-02 0.21 6.39E-03 0.3

Inslab
SS-MC All inputs -5.50E-03 0.16 -2.51E-01 0.32
FS-MC Original case -4.14E-02 0.10 1.22E-02 0.18
FS-M All inputs -1.05E-01 0.26 1.58E-02 0.24

Conclusions

Mexican records from interplate and inslab events were employed to develop Artificial Neural Net-
work models to predict the strong ground motion duration. The principal component method was 
used to carry out a dimensionality reduction of the input parameters to develop the artificial neural 
network models. Several ANN architectures were tested. For the training of the ANN models, the 
input layer considered four different cases (i.e., all inputs, strong relation, moderate relation and 
original case), while the logarithmic of the SGMD is used to represent the output neuron. 

The model tested considered up to 50 hidden neurons with one and two hidden layers. Additionally, 
new regression coefficients to fit empirical equations to estimate the strong ground motion duration 
were also obtained. The main observations that can be drawn from the analysis results are:

1.	 The analyses results indicated that the best prediction of the SGMD is obtained with ANN 
models with one hidden layer and 3, 5 and 20 hidden neurons when interplate events are con-
sidered; however, when inslab events are considered, the ANN models with two hidden layers 
and 3, 5, 15, 20 an 30 hidden neurons provide the best predictions. 
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2.	 The best ANN models for interplate and inslab events are associated with the cases referred to 
as all inputs and original case, which considered 8 and 4 input neurons, respectively. The later 
indicates that the selection of the inputs neurons is of paramount importance and that the ANN 
models could improve their prediction ability if the number of input neurons is increased.

3.	 The number of neurons per hidden layer of the ANN models that presented the smallest average 
MSE during the testing process were within 3 to 50. 

4.	 In general, the predicted values by using the ANN models follow those predicted by the devel-
oped empirical equations. This indicates that the ANN models represent a good alternative to 
the empirical equations in some applications if one does not have to understand the causality to 
apply the ANN model.

5.	 In some cases, the SGMD predicted by using the ANN models presented physically unrealistic 
trends in its behavior. For this reason, caution is warranted when the model is extrapolated and 
it is recommended to carry out several verifications of the trained ANN models before using 
them for further engineering applications, for example the simulation of synthetic records or the 
evaluation of damage indices.
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Appendix A. Weights and Biases for the Trained Models

The coefficients of the ANN models summarized in Table 8 in italics are given in the following table.

Table A1. Trained ANN models for interplate events.

Case Weights Biases

[W1]i,j [W2]j,k [φ1]j [φ2]k

SS-MC

FS-MC

FS-M
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