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RESUMEN 
En el presente trabajo se discuten los efectos de Ia presi6n y Ia temperatura sobre Ia conductividad termica basados en da

tos publicados. El problema de transferencia de calor por conducci6n en estado estacionario, tomando en cuenta Ia produc
ci6n de calor y considerando 1a conductividad termica como una funci6n de Ia presi6n y de Ia temperatura. satisface una com
plicada ecuaci6n diferencial no lineal. Aquf se discuten dos so1uciones a dicha ecuaci6n: i) una soluci6n anaHtica utilizando 
Ia aproximaci6n de integrales transcendentales y ii) una soluci6n numerica usando un esquema centrado de diferencias fmi
tas. En ambos casos se supone que Ia producci6n de calor debida a Ia presencia de elementos radiogenicos en las rocas satis
face un decaimiento exponencial dependiendo de Ia profundidad. 

Con el fin de observar el efecto de Ia conductividad A.(T,P) sobre el campo de temperaturas se reso~vi6 un ejemplo supo
niendo una estructura continental de 3 estratos con distintos parametros geotermicos hasta una profundidad de 35 km (dis
continuidad de Moho) y se consider6 un flujo de calor en superficie variando de 50 a 110 mWm-2. Los resultados obtenidO$ 
muestran que los efectos de Ia presi6n en Ia conductividad termica pueden ser despreciados en los estratos superiores; sin 
embargo para los casos en que el flujo de calor superficial es grande, el efecto se vuelve importante a partir de 5 km de pro
fundidad. En todos los casos el efecto de Ia temperatura sobre Ia conductividad termica muestra variaciones importantes del 
campo de temperaturas debajo de Ia discontinuidad de Conrad. 

PALABRAS CLAVE: Conductividad termica, geotermia. estado termico de Ia corteza. 

ABSTRACT 
Pressure and temperature effects on the thermal conductivity of crustal rocks are discussed on the basis of published data. 

The solution of the steady-state conductive heat equation with pressure-dependent thermal conductivity and heat production 
leads to a complex non-linear form. Two solutions are discussed: (i) an analytical solution based on an approximation of 
the transcendental integrals ; (ii) a numerical solution using a finite-difference scheme. In both cases, the heat production 
due to radiogenic elements is assumed to decay exponentially with depth. An example based on a 3-layer continental struc
ture was solved in order to evaluate the temperature differences at a depth of 35 km (Moho discontinuity). A surface heat 
flow ranging between 50 and 110 mW/m2 was assumed. The calculations show that the pressure effect on thermal 
conductivity can be neglected in the uppermost layers, but for large surface heat flow values, the effect can be important 
below 5 km. 

KEY WORDS: Thermal conductivity, geotherm, thermal state of the crust. 

INTRODUCTION 

The distribution of temperatures within the crust is of 
great importance in many geological problems including 
petroleum maturation, geothermal resources, thermal state 
of the crust, and mantle heat flow. Near-surface temperature 
evolution and thermophysical parameters can be directly de
termined from drillholes, but the extrapolation to greater 
depths is less accurate. The use of Fourier's equation as
suming steady-state conditions requires a knowledge of the 
thermal properties, i.e. thermal conductivity and heat gen
eration as a function of depth. Laboratory measurements 
and deep seismic information can also be used to constrain 
these parameters. 

The value of thermal conductivity is easily measured in 
the laboratory. However, thermal conductivity under crust 
conditions may greatly differ from laboratory measure
ments. Although the temperature dependence of thermal 
conductivity is well known (Kappelmeyer and Haenel, 

1974), the pressure effect has been generally considered to 
be negligible. However, experimental data indicate that 
pressure has a non-negligible positive effect on thermal 
conductivity (Seipold and Gutzeit, 1980). 

In this paper, we investigate the effect of pressure on 
thermal conductivity and we compare it with temperature 
dependence. The effect of pressure dependence was quanti
fied on the position of geotherms and at the crust-mantle 
boundary. 

HEAT EQUATION AND CRUSTAL MODELS 

There are several tectonic mechanisms that can induce 
thermal perturbations which modify the thermal field. The 
variables affecting the thermal field are pressure, tem
perature, heat generation, heat flow from the mantle, thick
ness of the crust and duration of the tectonic process. From 
a knowledge of the thermal field evolution in a given area, 
t~'•e tectonic regime can be inferred. 
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In the absence of a complete knowledge of the physico
chemical state, equilibrium conditions are often assumed in 
tectonic processes. In this case, the thermal field and the 
thermal properties of geological materials must be known 
with some accuracy. 

All materials can store and transport heat. When two 
points of a solid body are at different temperatures, under 
steady state conditions heat will be transported by conduc
tion according to Fourier's law (Carslaw and Jaeger, 1959): 

1/J = - A. grad T , (1) 

where 1/J is the heat flow (Wm·2), T{0 C) is the temperature, 
and A. is the thermal conductivity (Wm·l °C·l). 

When an amount A of heat is produced in the interior 
of the medium, the energy balance equation takes the form 

div (A. grad 1) = -A (2) 

where A is the volumetric heat production (Wm·3). 

Thus a one-dimensional steady state heat transfer prob
lem in an isotropic medium involves the general equations 

(3a) 

(3b) 

where z is the depth (km) assumed to increase downwards, 
and A and A. depend on the physico-chemical parameters of 
the medium. 

The application of the heat equation to crustal models 
is possible under certain assumptions. At the scale of ob
servation, the crust must be in equilibrium with the sur
rounding media. The erosion at the surface should be neg
ligible, and the mantle flow must be considered constant 
and of regional extent (Nielsen and Balling, 1985). 

The crust is assumed to be composed of N horizontal 
layers of constant thermal properties and varying rules. The 
lithology and the thermal properties of each layer are sup
posed to be known. The layers are assumed to be in perfect 
thermal contact between each other, and heat transfer takes 
place only by thermal conduction. 

Boundary conditions 

The integration constants of Eq. (3) are given by the 
boundary conditions, e.g. the values of heat flow and tem
perature at boundaries in the crust. The boundary condi
tions are given at the surface; the conditions at the mantle
crust interface are unknown. 

Surface temperatures are greatly influenced by atmo
spheric conditions. However the thickness of the interface 
is only a few meters wide (Courtillot and Francheteau, 
1976). A mean temperature ranging between 5° to 10°C 
can be assumed in Europe (Royer and Danis, 1988). 
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Surface heat flow has been measured in a large variety 
of geological settings all around the world. It varies from 
40-50 mWm·2 in old Precambrian platforms, but it can ex
ceed 100 mWm·2 in recent granitic crust (Vosges massif, 
Royer and Danis 1988; French Massif Central, Royer and 
Danis, 1987, Vasseur, 1982). 

Heat generation 

Heat generation within the crust is related to the decay 
of radiogenic elements, particularly 238U, mu, 232Th and 
40K. Because those elements are incompatible, their distri
bution depends on the fractionation occurring during the 
formation of the crust. Radiogenic elements are concen
trated in the upper crust and their concentration decreases 
with depth. 

Another aspect influencing rock composition is the 
time of residence of the radiogenic elements. The disinte
gration reactions are responsible for the disappearance of 
reactive cores and for the decrease of the radiogenic content. 
Thus the heat due to radiogenic elements in an old crust is 
expected to be smaller that in a younger crust 

Seismic velocity profiles can be used to determine heat 
production with depth (Rybach and Buntebarth, 1984). Dif
ferent distribution models with depth have been proposed 
(linear, exponential, hyperbolic, and others) (Cermak eta/., 
1991). The exponential model (Lachenbruch, 1970) is 
currently accepted: 

(4) 

where D is a parameter with the dimension of a length, A0 

is the surface heat generation and z0 the reference depth 
(generally z0 =0). The D parameter is taken to represent the 
vertical distribution of radiogenic elements. Thus, the state 
of differentiation of the crust is of great importance. 
According to Cermak et al. (1991), the D value is about 
10-15 km in Hercynian terrains and more than 15 km in 
old Precambrian platforms. The surface heat generation A0 

varies from 0.5 ~Wm-3 for Precambrian units to 3 ~Wm·3 
in Phanerozoic terrains, though it may locally exceed this 
value (Royer and Danis, 1988). 

Thermal conductivity 

Thermal conductivity characterizes the heat transport in 
solids. Conduction of heat in solids takes place by thermal 
vibrations of the mineral lattice and by radiative transfer. 
At low temperatures, the main heat transport process is by 
phonons produced by lattice conductivity, i.e, the vibra
tions of atoms around their equilibrium position in the 
crystal lattice (Courtillot and Francheteau,l976). In this 
case, thermal conductivity decreases with temperature as 
l{f. At higher temperatures, energy transport occurs by 
photons as T3 (radiative conductivity; MacPherson and 
Schloessin, 1982). Classically, conductivity is considered 
as the sum of lattice and radiative conductivities even 
though radiative transfer does not play a major role because 



of the opacity of most common minerals (Poirier, 1991). 
Besides, for the range of temperatures in the crust, radiative 
conductivity can be neglected (Birch and Clark, 1940). 

Temperature effect on thermal conductivity 

Investigations of sing le mineral properties show that 
thermal conductivity varies from 1.5 Wm·l°C·l in plagio
clases to more than 5.5 Wm·l°C·t in some pyroxenes and 
in halite and more than 7.7 Wm·l°C·l in quartz (Horai, 
1971). However, thermal conductivity in minerals gener
ally depends on the crystallographic orientation and is thus 
a tenso r of order 3. Modifications of the crystallographic 
form (polymorphism), for instance the a/~ quartz transi
tion, can cause drastic changes in thermal conductivity. 

Thermal conductivity of rocks depends on mineralogi
cal composition and structure. Rocks with a high feldspar 
content have a small conductivity (Birch and Clark, 1940) . 
In acid rocks, thermal conductivity depends on quartz con
tent (Koutsikos, 1985). 

Anisotropy in rocks is produced by preferential orienta
tions of minerals. It is particularly evident in sedimentary 
and metamorphic rocks (schists and gneisses). In some cas
es, the thermal conductivity of granitic rocks can be taken 
as isotropic because of the random orientation of rock
forming minerals (Flores, 1992). 

The thermal conductivity is taken to vary as the inverse 
of a linear function of temperature (Carslaw and Jaeger, 
1959): 

(5) 

where A,To is the thermal conductivity measured at T0 and b 
is a material constant generally comprised between 5xJQ-4 
and 1Q-3 °C·t (Royer and Danis, 1988), or taken to be equal 
to 1.5xiQ-3 °C·l (Chapman, 1986). For rocks with a high 
quartz content the a/~ quartz transition has a detectable 
though very small effect on bulk conductivity. 

Figure I shows the evolution of thermal conductivity 
for typical rocks in the temperature range observed in the 
crust (0 to 600°C}. Thermal conductivities always decrease 
with increasing temperature. Values of b rang ing from 
5xJQ-4 to 29xJQ-4°C·l have been reported. 

Pressure effect on thermal conductivity 

Because thermal conductivity reflects the ability of 
atoms to vibrate around their equilibrium position, pres
sure is expected to have some influence on thermal proper
ties. The higher the pressure, the shorter is the interatomic 
distance and the higher the ability of atoms to transfer en
ergy to their neighbours. Hence thermal conductivity is 
expected to increase with pressure. 

However, only few data are available on the thermal 
conductivity pressure dependence. Experimental results in 
crystalline and sedimentary rocks show a rapid initial in-
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crease which then levels off (Figure 2). The initial rapid 
increase is lacking for some roc ks, e.g. charnockite 
(Seipold and Gutzeit, 1980). 
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Fig. 1. Thermal conductivity decrease with temperature as 1{[. 
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ted using A.., and b in Eq. (5). Data from Kappelmeyer and 
Haenel (1974). 
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The rapid increase of thermal conductivity at low pres
sures is attributed to the closing of pores and cracks (Walsh 
and Decker, 1966; Seipold and Gutzeit, 1980). In crys
talline rocks, this increase is observed up to 1 kbar. It is 
mainly due to closing cracks and never exceeds one percent. 
Porosity of Casco granite, Maine, is 0.004 (Brace, 1965). 
A similar behaviour is found for sedimentary rocks (Kap
pelmeyer and Haenel, 1974), but the initial increase is only 
observed over the first 50 bars. 

At higher pressures (> 1 kbar for granite and >50 bars 
for sedimentary rocks), thermal conductivity slowly in
creases with pressure, and the pressure dependence in most 
cases can be approximated by a straight line (Seipold and 
Gutzeit, 1980; Seipold, 1992). 

The dependence of thermal conductivity A. on P is 
g iven by the linear re lation (Gueguen and Palciauskas, 
1992): 

(6) 

where A_Po is the thermal conductivity measured at surface 
pressure (I atm), C is a dimensionless constant, Ks is the 
iso-entropic incompressibility constant (bar1) and Pis the 
pressure. 

Combining Eq. (5) and (6) leads to (Chapman, 1986): 

c 
l +K[P- P0 ] 

A.(T,P) = A. r •. P. ----"-' ---

1 + b(T-To) 
(7) 

where A,To.Po is the thermal conductivity at surface condi
tio ns. 

Assuming lithostatic pressure, Eq. (7) can be written 

where p is the rock density (kgm·3), g is gravity (ms·2) and 

z is depth (m). C:g = C is a constant for a given geolog-
s 

ical formation; a representative value of l.SxlQ-4 km·1 is 
proposed by Chapman ( 1986). 

Analytical expressions for the geotherms 

Considering the exponential form of Eq. (4) for the 
heat production, the heat now is derived by integration of 
Eq. (3a). For a layer whose top is situated at depth z1, the 
heat now at a depth z>z1 is given by: 

380 

Using Eq. (3b), (5) and (7), the temperature distribution as 
a function of depth is calculated from 

dT =~= ~(z)(1+b(T-T0 )) (IO) 

dz A.(T, z) A.,(l+c(z-z,)) 

which leads to 

T z I 1 ~ = -1 I ~(() d( (11) 
T, (l+b(~-T,) A0 z, 1+c((-z0 ) 

The mathematical form of the temperature distribution 
T(z) depends on A.(T,z). Three cases of interest are discussed 
(Table 1): 

(A): A. is assumed to be constant (b=e=O). Here r ... (z) is 
the sum of an exponential function and a linear function of 
z. 

(B): A. depends only on temperature (b~; c=O). The 
solution of Eq. (10) shows that the temperature T8(z) is an 
exponential function of T,..(z). 

(C): combined dependence upon temperature and depth 
~; c~). which leads to the following expression: 

(12) 

which is a transcendental integral. 

We use two methods in order to solve this last case. 
The first method is based on the iterative solution of Eq. 
(3) using a finite difference scheme. The crust is divided 
into a number of sub-layers of constant thickness Llz=z;
z ;.1. A 100 meter interval was chosen. In each layer, the 
bottom temperature T;.1 was calculated from the top tem
perature T; assuming constant thermal conductivity and 
heat production (Nielsen and Balling, 1985; Chapman, 
1986). For a layer Llz the temperature T;.1 may be ex
pressed by 

F.,. 1 A.,. 1 z 
T. = T. + ...!..!:!:.... Llz - ...!..!:!:.... Llz 

•+1 • A. . 2A. . 
• • 

(13) 

where A;1;. 1 is the mean heat production taken as the aver
age of the heat production A; in the upper layer and the 
heat production A;.1 in the lower layer, estimated from Eq. 

(4). Similarly, F ;1;.1 is the mean heat now as computed 
from F;, the heat now at the base of the layer, and F;+l> the 
heat now at the top, estimated from Eq. (8). Thermal con
ductivity A.; is calculated from T; and z; using Eq. (8). 

The second method uses an approximation of the trans
cendental integral (12). If we define 

s= 
l +c((-z

0
) 

( 14) 
cD 



Pressure and temperature effects on thermal conductivity 

Table 1 

Analytical expressions of the geotherm when the thermal conductivity depends on temperature and pressure. T0 and zo are the 
reference temperature and depth at which A0 is applied, while T1 and z1 are the temperature and depth at the upper boundary 

of the considered layer. 

Thermal 
conductivity model 

1 1 1 1 + b(T - T ) 1 ""="" T8 (z) = 1 0 exp(bF(z))--+T
0 0 

1+b(T -T
0

) b b 

Solution 

Tc(z) = 1 0 exp -G(z) --+To 1 + b(T -T ) [ b ]1 
A =A 1+c(z -z0 ) b CA0 b 

0 1+b(T-T
0

) with(*) 

G(z) = Ao exp(-1 )[E1(1 + c(z,- zo))- E1(1 +c(z- zo>)]+(l/>(z,)- AoDexp(- z,- zo ))Log 1 + c(z- zo) 
cD cD cD D 1+c(z1 -z

0
) 

(*) for definition of the E 1 function; see text 

then I(z"z) can be expressed analytically as 

I( ) 1 ( 1 )[+J .. exp(-s)d +J .. exp(-s)d ] z1,z =-exp - s- s 
c cD s s 

So Sl 

. (15) 

+oo 

The function J exp(- s) ds is the exponential integral 
s .. 

E1(x) which can be approximated by the functions given in 
Table 2 (Abramowitz and Stegun, 1970, pp. 228-231). The 
expression of Tc(z) is given in Table 1. 

APPUCATION TO CRUSTAL MODELS 

A crustal model was developed to estimate the influ
ence of pressure and temperature on thermal conductivity. 
This model is composed from top to bottom of a 3 km 
thick sedimentary layer, a 13 km granitic basement, and a 
granulitic lower crust reaching down to the Moho at 35 km 
(Cermak, 1989). 

The thermophysical properties, based on average values 
for continents, are given in Table 3 . The heat production of 
the lower crust was taken as a constant since it is very low 
relative to the other layers (Chapman, 1986). Surface heat 
flow values ranging from 50 to 110 m Wm-2 were assumed 

and three models of thermal conductivity dependence were 
compared: following Eq. (5), following Eq. (7) and with a 
constant conductivity . 

Table 2 

Approximation of the E 1 function (after Abramowitz and 
Stegun, 1970, pp. 228-231) 

Validity O<s<l s > l 

5 

E1(s) :La/ - ln(s)+e(s) 

i=O 

error el(s) < 2 w-7 

0 
1 
2 
3 
4 
5 

- 0.57721 566 
0.99999 193 

- 0.24991 055 
0.05519 968 

-0.00976 004 
0.00107 857 

el(s) < 2 I0-8 

b; 

1 
8.573~2 9.57332 23454 

18.0590169730 25.6329 61486 
8.6347608925 21.0996 30827 
0.2677737343 3.95849 69228 
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A decrease of thennal :onduclivity with depth is ob
served in all models except in the deepest zone correspond
ing to the lower crust, where thennal conductivity is prac
tically constant (Figure 3). In the upper zones, the decrease 
of thennal conductivity is less important when taking into 
account the pressure effect. This confirms the work of 
Seipold (1992), who showed thatthennal conductivity of a 
granite sample decreases regularly with depth. At contacts 

A. ( /K) Temperature (°C) 

between geological units, thennal conductivity shows dras
tic discontinuities due to conductivity contrasts. 

The influence of the thermal conductivity model on the 
shapes of the geotherms was also investigated (Figure 3). 
It appears that, for very low surface heat flow values, the 
difference between the three models is negligible. With in
creasing heat flow the geotherms diverge and in the ex-

A. ( /K) Temperature (°C) 
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Fig. 3. Variation of thermal conductivity A. (W/mK) and temperature T (0 C) with depth z (km) for surface heat flow ¢s ranging from 
50 to 110 mW/m2. Labels a, band c correspond to models of dependence of the thermal conductivity: constant, temperature depen
dent and pressure+ temperature dependent. Layers number 1, 2 and 3 refer to the sedimentary cover, the granitic layer and the gran-

ulitic lower crust. 
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Table 3 

Thermophysical parameters used in the crust model 
(Stegena and Meissner, 1985; Chapman, 1986). 

Sedimentary Granitic Lower 
cover layer crust 

Lithology sandstone granite !granulite 
Thickness (lan) 3 13 19 
Thermal conductivity 2.9 4.0 6x1Q-3 
(W cm·l •c-1) 

T-z dependance b (°C·t) 1.5x1Q·J 1.0x10· 4 

c (lan-1) 1.5x 10· 

Heat production Ao(v,Wm·l) 2.8 I 5.0 0 .4 
D (km·l) 8 -too 

Surface Heat flow (mW m·2 50 I 70 I 901 110 
conditions Temperature ("C) 5 

treme case the difference in temperatures at the Moho can 
reach 100°C. Thermal conductivity discontinuities are re
sponsible for visible changes of the geotherm shape. 

In the uppermost layers accessible to drilling, the com
puted temperature is quite similar for the three models of 
thermal conductivity, whatever the surface heat flow. In 
Earth temperature modelling dealing with the shallower 
levels, thermal conductivity can therefore be taken as inde
pendent of temperature and pressure, corresponding to the 
measured values for surface conditions. 

CONCLUSIONS 

Thermal conductivity is an essential parameter for char
acterizing heat transport by conduction only. Conductivity 
measurements are usually made under surface conditions 
but the in situ values depend on the physical (pressure
temperature) properties of the medium. 

The geotherms obtained by including the pressure effect 
are close to those made by considering only the tempera
ture effect. The errors are small and probably less signifi
cant than the errors in the thermal properties for mainly 
surface heat flow. The pressure effect on thermal conductiv
ity can be neglected in future calculations for sub-surface
layers, but in cases of high surface heat flow this effect can 
be important below 5 km depth. In all cases, the effect of 
pressure and temperature on conductivity values is impor
tant below the Conrad discontinuity. 
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