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Resumen

En este artículo, se describen dos métodos de modelado inverso basados en la descomposición de va-
lor singular amortiguado (DSVD) como inversor lineal y el algoritmo de optimización de Marquardt 
como inversor no lineal. El SVD amortiguado resuelve los problemas mal planteados y especifica 
directamente la contribución de la densidad de la superficie inferior. La inversión de Marquardt 
estima los parámetros del modelo. La eficiencia de ambos métodos se investiga utilizando los datos 
de gravedad sintéticos, con y sin ruido aleatorio, según se obtengan los resultados aceptables. Los 
enfoques introducidos se emplean para la interpretación de un conjunto de datos de gravedad real 
de Irán. La masa causante de la gravedad en el área de estudio son casi el depósito magmático con 
un alto porcentaje de dióxido de manganeso donde han penetrado dentro de las fracturas y aproxi-
madamente se han formado las estructuras tabulares. Las estructuras invertidas de ambos métodos 
son casi correspondientes. El ancho, la extensión y la profundidad evaluados hasta la parte superior 
e inferior de la estructura enterrada mediante la técnica SVD amortiguada son 15 m, 22 m, 7.5 m 
y 25 m, respectivamente, y según el algoritmo de Marquardt son 15.8 m, 20.3 m, 9.4 m y 21.9 m, 
respectivamente. La fuente simulada tiene una tendencia NW-SE con una caída de 38,04 grados.
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Abstract

In this paper, two inverse modeling methods based on the damped singular value decomposition 
(DSVD) as a linear inverter and Marquardt optimization algorithm as a nonlinear inverter are de-
scribed. The damped SVD solve the ill-posed problems and specify the subsurface density contribu-
tion directly. The Marquardt inversion estimate the model parameters. The efficiency of the both 
methods is investigated using the synthetic gravity data, with and without random noise, as the 
acceptable results attained. The introduced approaches are employed for the interpretation of a real 
gravity data set from Iran. The gravity causative mass in the study area are almost the magmatic 
deposit with a high percent of the Manganese dioxide where there have penetrated inside of the frac-
tures and have approximately formed the tabular structures. The inverted structures from the both 
methods are almost corresponding. The evaluated width, extension and depth to the top and bottom 
for the buried structure via the damped SVD technique are 15 m, 22 m, 7.5 m and 25 m, respectively 
and by the Marquardt’s algorithm are 15.8 m, 20.3 m, 9.4 m and 21.9 m, respectively. The simulated 
source has a trend NW-SE with a dip of 38.04 degree.

Key words: damped singular value decomposition (DSVD), gravity and Marquardt

Introduction

Gravity investigation plays an important role in geological studies and has been used widely over 
the years for modeling buried geological structures and deposit, especially in mineral reconnaissance 
projects. The non-uniqueness in the linear inverse problem of gravity, i.e., the existence of a large va-
riety of distribution of subsurface density distribution models that generate a similar gravity effect on 
measurement plane, makes one to hesitate on the reliability of solution (Skeels, 1947; Parker, 1972). 
In order to obtain a correct unique solution and to decrease the ambiguities, various researchers have 
been proposed different algorithms to increase the amount of extracted information from inversion 
for simulating the geometry of a density distribution related to a known gravity anomaly, such that 
the proposed model be geologically realistic.

Tsuboi (1983) introduced a simple but effective approach based on the equivalent stratum tech-
nique to estimate 3D topography of a density interface. Oldenburg (1974) proved that the Parker’s 
expression could be applied in order to specify the geometry of the density interface from its gravity 
anomaly. The geological maps and petrophysical data from rock samples were used to constraint the 
model parameters to realistic values (Farquharson et al., 2008; Williams, 2008; Heincke et al., 2010; 
Lelièvre et al., 2012; Tschirhart et al., 2013, 2017). Kamm et al. (2015) used the petrophysical infor-
mation conduct a joint inversion of gravity and magnetic data. Ialongo et al. (2014) show that there 
are invariant models in the inversion of gravity and magnetic fields and their derivatives.

Using a joint inversion of multiple data sets can also diminish the nonuniqueness of the inverse 
problem. examples of joint inversion of gravity and magnetic data are given by, e.g., Zeyen and Pous 
(1993), Gallardo and Meju (2003), and Pilkington (2006) using deterministic inversion techniques 
and by Bosch and McGaughey (2001), Bosch et al. (2006) and Shamsipour et al. (2012) using sto-
chastic methods. Shamsipour et al. (2010, 2011, 2012) proposed geostatistical techniques of cokrig-
ing and conditional simulation for the separate three-dimensional inversion of gravity and magnetic 
data respectively, including geological constraints.

One way to eliminate the inherent ambiguity is to propose a geologically sound geometry as the 
source of the anomalous body with a known density as the start point of the inversion of gravity 
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anomalies (Chakravarthi and Sundararajan, 2004). Although simple models may not be geologically 
realistic, they usually are sufficient to analyze sources of many isolated anomalies (Abdelrahman and 
El-Araby, 1993). The interpretation of a given anomaly aims essentially to estimate the parameters 
such as shape, depth, radius, thickness and so on. Thus, in this case it is dealed with nonlinear in-
verse modeling. The many of the proposed nonlinear techniques are based on an initial guess of the 
geological structure parameters, 1) in the case of least-squares minimization approaches (Gupta, 
1983; Lines and Treitel, 1984; Abdelrahman, 1990; Abdelrahman et al., 1991; Asfahani and Tlas, 
2007, 2008) 2) different neural networks (Eslam et al., 2001; Osman et al., 2006 and 2007; Al-garni 
et al., 2013; Eshaghzadeh and Kalantari, 2015; Eshaghzadeh and Hajian, 2018); 3) Continual least 
squares methods (Abdelrahman and Sharafeldin 1996; Abdelrahman et al. 2001, 2001a, 2001b; 
Essa 2012, 2013); 4) effective quantitative interpretations using the least-squares method based on 
the analytical expression of simple moving average residual gravity anomalies (Gupta, 1983; Abdel-
rahman et al. 2003, 2007, 2015). Appraisal of the depth and shape of a buried structure from the 
observed gravity and gravity data is widely used in exploration operations, in methods based on the 
Fourier transform (Odegard and Berg, 1965; Sharma and Geldart,1968); Mellin transform (Mohan 
et al. 1986); Walsh transforms techniques (Shaw and Agarwal, 1990); ratio techniques (Hammer, 
1977; Abdelrahman et al. ,1989; Cooper, 2012; Eshaghzadeh, 2017).

Dyke is a sheet-like geological structure generated from intrusive igneous rock while cut through the 
strata. Dyke structure has different slopes, thicknesses and lateral dimension extent. Structures that 
have a higher density contrast than that of thier encasing formation as are easily detectable in the 
residual gravity field maps. Because of existence the important minerals in the igneous rock, such as 
chromite, magnetite and so on, these tabular structures are among the very considerable exploratory 
targets in geophysical investigations, especially when based on potential fields methods.

By searching many papers related to our subject it can be found that their focus is on determining the 
parameters of dyke-like gravity sources (Bastani and Pedersen 2001; Abdelrahman and Essa 2007; 
Abdelrahman et al. 2003, Asfahani and Tlas 2007; Tlas and Asfahani 2011a, b; Cooper 2012, 2014, 
2015; Abdelrahman et al. 2015) while it can be stated that dyke non-linear inverse modeling from 
gravity data less has been investigated. Ateya and Takemoto (2002) proposed a gravity inversion 
modeling across a 2-D dike-like structure. A fast simulated annealing global optimization technique 
has been proposed by Biswas (2016) to the interpretation of gravity and gravity anomaly over thin 
sheet-type structure. Biswas et al. (2017) also applied a nonlinear optimization method for the de-
termination of dyke-type source parameters based on the calculation of first order horizontal and 
vertical derivatives of the gravity and gravity anomalies. Peace et al. (2018) employed the full tensor 
graviometry (FTG) data for 3-D subsurface models of the Budgell Harbour Stock and associated 
dykes, Newfoundland, Canada. Abdelfattah et al. (2021) performed an integrated analysis based on 
gravity and seismological data with focusing on the HL seismogenic and volcanic zone in the western 
shield of Saudi Arabia, which has a complex structure comprises dykes, recent volcanic eruptions, 
and fault segments of various orientations.

For first one, in this study, we employ the linear inverse modeling technique based on the damped 
singular value decomposition (DSVD) and using a depth weighting parameter as resolution en-
hancer and a two-norm (also known as the L2 norm or least squares) as stopping criteria in inversion 
algorithms. SVD constitutes a famous and numerically stable method for analyzing the underdeter-
mined problems, i.e. ill-condition matrices, and is a standard technique for small inverse problems. 
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We also develop the Marquardt’s algorithm (1963) for inverting the 2-D observed gravity anomaly 
due to finite dyke-shape model in order to evaluate the depth to top, height (the depth to bottom 
is estimated), width and slope of buried structure. We exemplify the capability of the both methods 
by a theoretical model with and without a random noise. Finally, these inversion techniques are em-
ployed for the interpretation of the real gravity data from Iran.

Computing the kernel matrix

For inverting the gravity data for calculating a 2D density distribution, it is necessary that the sub-
surface be divided in order to calculate the gravity effect of the obtained density distribution at the 
surface. For a 2D model, as shown in Figure 1, the gravity effect of all the rectangular blocks at the 
observation point i, is given by:

		  (1)

where M and N denote the number of blocks and the number of observations, respectively, dj is the 
density of the jth block and Pij is matrix of geometric element or kernel matrix which presenting the 
influence of the jth block on the ith gravity value. In order to calculate the kernel matrix Pij |, the gravity 
response of the 2D prism is based on the equation developed by Last and Kubik (1983):

		  (2)
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Figure 1. A 2-D schematic view of the inversion domain divided into several blocks as the gravity stations are located at 
the center of the blocks at the ground surface.
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Here G is the gravitational constant, d and h are the width and height of each block.

Linear inversion methodology

In most of the inverse modeling cases, we deal with the underdetermined problems, i.e. the number 
of unknowns is much greater than the number of observed data. For a general underdetermined sys-
tem of linear equations, i.e. d=Pf where d is the column vector of the observed gravity field data, f is 
the column vector of the unknown, i.e. density, and P is the kernel rectangular matrix, the minimum 
norm solution is defined as the model that fits the data exactly which is given by (Menke, 1984):

	 f=P T(PP T)-1d	 (3)

we can solve the inversion problem using the standard damped least-squares method, as:

	 f=(P TP+gI )-1P Td	 (4)

where γ is the damping parameter or regularization parameter, I is an identity matrix and the super-
script T denotes the matrix transposition. The solution of equation (4) can be estimated by minimiz-
ing the following Tikhonov cost function:

	 S d Pf f= − +{ }arg min ,    

2 2γ 	 (5)

Analyzing this expression can be realized that the duty of the damping is minimizing the first term 
of equation (5) values to finding the model that gives the best fit to the data to Minimize the last 



Geofísica Internacional (2022) 61-4: 325-350

330

term values to obtain the model with the smallest norm. The choice of γ is usually determined by 
trial-and-error.

In order to stabilize the inversion, the singular value decomposition (SVD) technique is usually em-
ployed. The equation for singular value decomposition of matrix Pn×m is the following:

	 P=USV T,	 (6)

where S is an n × m left eigenvector matrix, U is an n × n diagonal matrix. The elements of Un×n are 
only nonzero on the diagonal, and are called the singular values. V T is also an m × m right eigenvector 
matrix and T stands for transpose. Note that VV T=VTV=Im and UUT=UTU=In. The singular values 
of matrix Pn×m are the positive entries of Un×n which are distributed in decreasing order along its main 
diagonal and are equal to positive square roots of the eigenvalues (si) of the covariance matrices PTP 
& PPT. P-1 and PT are also, respectively:

	 P-1=(USV T)-1=U TS-1V,	 (7)

	 P T=VSU T,	 (8)

Therefore, we can rewrite the equation 3 as:

	 (P-1P)-1P Td=VS- 2V TVSU Td=VS -1U T d,	 (9)

The singular value decomposition of matrix Pn×m can be also written as follows:

	 P u s vi i i
T

i

r

=
=
∑

1
	 (10)

where r is the rank of matrix Pn×m, ui is the i-th eigenvector of covariance matrix PP T ,vi is the i-th 
eigenvector of covariance matrix P TP, si is the i-th singular value of matrix Pn×m as s1≥s2≥...≥sr>0, and  
is an n×m matrix of unitary rank called the i-th eigenimage of matrix Pn×m.

On the basis of equation (10), the damped least-squares solution (equation 4) can be rewritten as 
the damped SVD, we will have:
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Here ki is filter factor defined as

	 k s
si
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Usually, in the first iteration, the regularization parameter is considerated to be a large positive value 
as at each iteration the damping factor is multiplied by a factor less than unity so that the least-
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squares method reaches near a solution (Meju, 1994). According to Arnason and Hersir (1988) the 
damping factor is determined as follows:

	 γ = s dR
R
1

,Δ 	 (13)

Where R is the iteration number for the damping factor at any iteration, s is the eigenvalue param-
eter and the term Δd is given by

	 =
−( )−

−

d d d
dr

r r

r

1

1

,Δ 	 (14)

Where, dr−1 is the gravity misfit value obtained at previous iteration and dr is the misfit computed at 
the current iteration. For si >> γ, ki ≈1, thus it is clear that the components are little influenced by 
the damping factor and for si <<γ, ki ≈ 0.

In inverting gravity data due to a causative mass, the evaluated density distribution related to a 
buried structure tend to concentrate near the surface. For nullifying the natural decay of the kernels 
and maximizing the depth resolution, a depth weighting function is included in the problem. Li and 
Oldenburg (1998) suggested to employ a depth weighting function such as:

	 w
z zz = +( )
1

0
	 (15)

where z is the depth of the layers and z0 depends on the cell size of the model and the observation 
height of the gravity data.

In this paper, we employ the two-norm (L2 norm) as a criterion for stopping the iteration process in 
the inversion algorithms. The L2 norm has the form:

	 L norm e ek
k

2 2
2

1 2

  :
/

� � = ∑ 	 (16)

Where the e is the difference between the observed gravity data and inverted gravity data due to the 
evaluated model from the density distribution at each iteration. The best form of the under surface 
density distribution is obtained when the L2 norm in an iteration achieve the value less than the pre-
defined value which in this case the iteration is terminated. Otherwise, the lowest amount estimated 
by the L2 norm during inversion process is considered as the best inverted under surface density 
distribution.

Synthetic model analysis with damped SVD

Figure 2(a) shows the gravity response due to the assumed model shown in Figure 2(b) where the sub-
surface ground has been partitioned into 15×10 prisms with the respective dimensions of 10 m × 5 m. 
As is shown in Figure 2(b), the 2D model include 6 prisms whose density contrast is 1000 kg/m3. 
The gravity effect corresponding to the resulting inverted causative body (Figure 2c), is displayed in 
Figure 2(a). This inverted model that is exactly similar to the original causative body, was obtained 
at 5th iteration, where the L2 norm as the stopping criterion attain the smallest amount.
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For testing the stability and sensitivity of the inversion method, we divided the subsurface inversion 
domain, Figure 2(b) into 75×25 blocks of dimension 2 m × 2 m (Figure 3). Therefore, the whole 
domain is 150 m × 50 m and the total number of blocks is M=1875.

Figure 4 shows the inferred density distribution from inverse modeling. The effect of error has been 
studied by adding 5% of random noise to the gravity response of the model shown in Figure 3. The 
inversion result is presented in Figure 5. These inverted models, i.e. figures 4 and 5, accrue at 7th and 
10th iterations, respectively. Since, the inverted structures in both cases, with and without noise, are 
close to that of the assumed model, it can be concluded that the damped SVD inversion provides 
satisfactory results.

Figure 2. a) Computed and inverted gravity due to b) first assumed synthetic model and c) inverted model, respectively.
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Figure 3. Second assumed density model in the inversion domain, which is constituted by 75×25 blocks with dimension 
2 m × 2 m.

Figure 4. The obtained density distribution from inverting the gravity response of the second assumed model

Figure 5. The obtained density distribution from inverting the gravity response of the second assumed model as corrupted 
with 5% random noise
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Gravity of dyke model

The gravity effects g(i) of a finite dyke-like structure at a point x(i) along a profile perpendicular to its 
strike direction which runs across the center of the target (Figure 6), is given in Telford and Geldart 
(1976) as

	

g i G w
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Where the G is the gravitational constant, ρ is the density contrast, w is the thickness, θ is the dip 
angle of the dyke considered anticlockwise from horizontal, z is the depth to the top, 2Y is the strike 
length of the dyke and H is the dipping extent of the buried dyke.

Nonlinear inversion methodology

The inversion of gravity anomalies is implicitly a mathematical process, aimed at fitting the com-
puted gravity anomalies to the observed ones in the least-squares approach and then estimating the 
four parameters namely the depth to top (z), width (thickness) (w), dip (slope) θ and dipping extent 
(height) (H). The process of the inversion begins by computing the theoretical gravity anomaly of 
the assumed simple geometry using equation (17). The difference between the observed gravity gobs 
(xi), and calculated gravity anomaly of an initial assumed model gcal (xi), can be estimated by a misfit 
function, J (Chakravarthi and Sundararajan, 2007), as

		  (18)

N is the number of observed gravity data. We have employed the Marquardt’s algorithm (1963) 
given by Chakravarthi and Sundararajan (2006a) for minimizing the misfit function until the nor-
mal equations can be solved for overall modifications of the four unknown structural parameters, as
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Figure 6. Geometry of a 3D dipping tabular target

where dak, k=1, 2, 3 and 4 are applied to the four model parameters of the sheet-like geometry struc-
ture. Partial derivatives required in the above system of equation (19) are calculated by a numerical 
approach using Matlab. Also,

δ =
=

≠

1
0
  
  
for k j
for k j

,
,

and l is the damping factor. The advancements, dak, k=1, 2, 3 and 4 evaluated from equation (19) are 
then added to or subtracted from the available parameters estimated from last iteration and the pro-
cess repeats until the misfit, J, in equation (18) descends below a predetermined allowable error or the 
damping factor obtains a large value which is greater than predefined amount or the repetition con-
tinues until the end of the considered number for iterations (Chakravarthi and Sundararajan, 2008).

Synthetic model analysis with Marquardt inversion

Figure 7(a) show the observed and calculated gravity anomalies due to the initial and assumed mod-
els which are shown in figure 7(b). The considered values for the density contrast is ρ=1000 kg/m3 
and semi-length of the dyke strike is Y=50 m, values that during inversion remain constant. The 
selected values for the parameters which improve during inversion, i.e. depth to top, width, dip and 
height for the initial model are 20 m, 15 m, 60o clockwise from the horizontal toward the right (i.e. 
α in Figure 1 or 120o anticlockwise from the horizontal (θ)) and 60 m, respectively and for the as-
sumed model are 15 m, 12 m, 54o clockwise from the horizontal (i.e. α in Figure 6 or 36o from the 
vertical to the right) and 51 m, respectively.
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The predefined values for misfit function, J, iteration number and maximum damping factor (l) are 
10-4 mGal, 100 and 14, respectively. The initial damping factor is given as 0.5.

The misfit, J, reduces intensely from its initial value of 0.214 mGal at the first iteration to 0.000073 
mGal at the end of the 6th iteration and then incrementally reaches 45×10-7 mGal at the 10th itera-
tion (Figure 8e). Because the misfit, J, obtained at the 10th iteration was smaller than the allowable 
error value, the iteration process is ceases and therefore the optimum estimates for the depth, width, 
dip and height (dipping extend) are corresponding to the evaluated quantity at 9th iteration of the 
inverse modeling.

Figures 8(a), 8(b), 8(c) and 8(d) shows the variations of the model parameters, i.e. z, w, α and H 
versus the iteration number. The conclusive obtained parameters values are z=19.98 m, w=15 m, 
α=60.01 degree and H=59.97 m.

Figure 9(a) exhibits the inverted gravity anomaly from the resulted model parameters which is shown 
in Figure 9(b). The percentage of error in the determination of the depth, width, dip and height 
parameters are 0.1, zero, about 0.017 m and 0.05, respectively. The considered parameters values and 
numerical results for the synthetic gravity data are tabulated in Tables 1.

Figure 7. a) The observed and calculated gravity anomalies along a profile due to b) the initial (z=20 m, w=15 m, α=60 
degree and H= 60 m) and assumed (z=15 m, w=12 m, α=54 degree and H= 51 m) models with a density contrast of 
1000 kg/m3
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Figure 8. The variations of  a) depth b) width c) dip d) height and e) misfit function versus iteration number for synthetic 
gravity data in figure 2.

Figure 9. a) The observed and calculated gravity anomalies along a profile due to b) the initial (z=20 m, w=15 m, α=60 
degree and  H=60 m) and estimated (z=19.98 m, w=12 m, α=60.01 degree and H= 59.97 m) models with a density 
contrast of 1000 kg/m3
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Table 1. Numerical results obtained from the Marquardt inversion of the synthetic gravity data

The effect of error has been evaluated by adding 10% random noise to the gravity response of the 
initial dyke model (Figure 7a) using the following expression:

	 g x g x RAN inois i obs i( ) = ( ) + ( ) −( )×1 0 5 0 1. . 	 (20)

where gnois(x1) is the noise corrupted synthetic data at xi, and RND (i) is a pseudorandom number 
whose range is between 0 to 1. The observed gravity data with added 10% random noise is show in 
Figure 10(a). Furthermore, the initial and assumed models are shown in figure 10(b). The consid-
ered values for the depth to top, width, dip and height parameters of the assumed model are given as 
22 m, 13 m, 63o clockwise from the horizontal toward the right (i.e. α = 63o) and 63 m, respectively.

In noisy data case, the assigned values for misfit function, J, iteration and maximum damping factor 
(l) are set as in the free-noise data case. The initial damping factor also is determined as 0.2.

The misfit, J, reduces quickly from its initial value of 0.0493 mGal at the first iteration to 0.0024 
mGal at the end of the 5th iteration and then incrementally attains 0.0057 mGal after the 16th it-
eration (Figure 11e). The iteration finished at the 16th iteration where the damping factor value 
exceeded from the predefined value and reached a value of 24.62. The final values of the evaluated 
depth to top, width, dip and height at the 15th iteration are z=19.9 m, w=14.7 m, α=62.08 degree 
and H=61.5 m, respectively (Figures 11a to 11d). The percentage of error in the estimation of the 
depth to top, width, dip and height are 0.1, 2, about 3.67 and 2.5, respectively.

Figure 12(a) shows the inverted gravity anomaly calculated from the inverted model parameters 
which is shown in Figure 12(b). The theoretical parameters and inferred values for the noise cor-
rupted synthetic gravity data have been summarized in Table 2.

To investigate the solutions constancy and performance of the Marquardt inversion, two different 
initial and assumed dyke models were assumed to analyze the gravity anomalies related to them with 
and without a random noise of 10% (Table 3 and 4). The estimated structural parameters are almost 
corresponde to the initial ones.

Real gravity analysis

Real gravity data are from the Zereshlu Mining Camp, situated in the west of Mianeh, East Azerbai-
jan Province, Iran. The main mineral in this area is Manganese which exists mostly in the form of 
vein deposit or sheet-like structure with the origin of the hydrothermal.

Parameter Depth (m) Width (m) Dip α (degree) Height (m)

Initial 20 15 60 60

Assumed 15 12 54 51

Estimated 19.98 15 60.01 59.97

Error % 0.1 0 0.017 0.05

Iteration 9

Misfit (mGal) 62×10-7
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Figure 10. a) The observed gravity anomaly with a added random noise of 10% and calculated gravity anomaly along a 
profile due to b) the initial (z=20 m, w=15 m, α=60 degree and  H= 60 m) and assumed (z=22 m, w=13 m, α=63 degree 
and H= 63 m) models with a density contrast of 1000 kg/m3

Figure 11. Variations of a) depth b) width c) dip d) height and e) misfit function versus iteration number for 10% noise 
corrupted synthetic gravity data shown in figure 5.
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Figure 12. a) The observed gravity anomaly with a added random noise of 10% and calculated gravity anomaly along a 
profile due to b) the initial (z=20 m, w=15 m, α=60 degree and H= 60 m) and estimated (z=19.9 m, w=14.7 m, α=62.08 
degree and H= 61.5 m) models with a density contrast of 1000 kg/m3

Table 2. Numerical results obtained from the Marquardt inversion of the noise corrupted syn-
thetic gravity data

Table 3. Inverted parameters from analysis of free-noise gravity anomalies for different models

Parameter Depth (m) Width (m) Dip α (degree) Height (m)
Initial 20 15 60 60

Assumed 22 13 63 63
Estimated 19.9 14.7 62.08 61.5
Error % 0.1 2 3.67 2.5
Iteration 15

Misfit (mGal) 0.0053

Parameter

With 10% random noise

Model 1 Model 2

Depth (m) Dip (deg) Width (m) Height (m) Depth (m) Dip (deg) Width (m) Height (m)

Initial 25 50 12 45 40 110 20 65
Assumed 30 60 16 40 32 100 14 58
Estimated 25.01 49.97 11.99 45.02 39.97 110.1 20.02 65.03
Error % 0.04 0.06 0.083 0.044 0.075 0.091 0.1 0.046

Misfit (nT) 0.00000072 0.0000094
Lambda l 2.4×10-12 5.7×10-23

Iteration 12 18
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Figure 13. The geological map of the region under investigation

Table 4. Inverted parameters from analysis of 10% noise-corrupted gravity anomalies for different models

Figure 13 exhibits the geological map of the region around the Zereshlu mine. The gravity measure-
ment region is indicated by a black circle. The predominant rocks in the region under investigation 
are the conglomerate, sandstone and silt. As well as, in this region there are the layers of the basalt, 
andesite and altered andesite with ferrous oxide. These rocks are considered as the host rocks of the 
manganese dioxide mineral which is thought to have filled the major faults and fractures. The net 
density of manganese dioxide is 4.75 gr/cm3 and the average density of the basalt and andesite are 
about 2.9 gr/cm3 and 2.6 gr/cm3, respectively. When the ferrous oxide and manganese dioxide are 
dispersed in the basalt and andesite, therefore, the density of the host rock and that of the target, 
can consider between 3.2 gr/cm3 to 3.5 gr/cm3. The background density of the study area is about 
2.6 gr/cm3, thus the density contrast between the body causative of gravity anomalies, i.e. the host 
rocks, and background domain range between 0.6 gr/cm3 to 0.9 gr/cm3 (on average 0.75 gr/cm3).

Parameter
With 10% random noise

Model 1 Model 2
Depth (m) Dip (deg) Width (m) Height (m) Depth (m) Dip (deg) Width (m) Height (m)

Initial 25 50 12 45 40 110 20 65
Assumed 30 60 16 40 32 100 14 58
Estimated 25.2 50.3 11.85 45.13 38.84 112.6 19.6 66.8
Error % 0.04 0.06 0.083 0.044 2.9 2.36 2 2.77
Misfit (nT) 0.000086 0.078
Lambda λ 7.1×10-18 32.8
Iteration 19 23
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Figure 14. The Bouguer gravity 
anomaly map of the study district

The gravity survey district in zone 38, stretches the UTM coordinate from 704410 m to 704555 m 
East and from 4130820 m to 4131000 m North. The Bouguer gravity anomaly map of the study 
area is shown in Figure 14. After removing the effect of regional gravity field from the Bouguer grav-
ity anomaly, the residual gravity anomalies map is achieved (Figure 15). The linear gravity anomalies 
whose values are positive indicate the sources that are rich in the Manganese. The gravity sampling 
was performed at 33 points with an interval of 1.03 m along the 34 m profile AA´, which runs across 
the dyke-like structure in the W–E direction (Figure 15). We apply the variations of the residual 
gravity field at the observed points over the profile AA´ for reconstructing the buried structure.

For inverting the real gravity data (Figure 17a) using the damped SVD technique, the under-
ground study domain was divided into 33×17=561 rectangular prisms with respective dimensions 
of 1.5×2.5 m. Figure 16 shows the density distribution that resulted from the linear inversion. The 
blocks whose densities are between 3.2 gr.cm3 to 3.5 gr/cm3 foreshow the manganese deposit body.

Inversion of the observed gravity data (Figure 17a) using the Marquardt inversion technique, we 
assume an initial model whose parameters values are given as z=8 m, w=17 m, α=38 degree and 
H=19 m (Figure 17c). The calculated gravity due to the assumed model is shown in Figure 17(a). 
Moreover, the assigned values for misfit (J), iteration and damping factor (l) are 0.0005 nmGal, 50 
and 15, respectively.

The changes of each parameter and misfit against the iteration number during the inversion process 
are shown in Figures 18(a) to 18(d). The algorithm performed 10 iterations, before it ceased, since 
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Figure 15. The residual gravity anomalies map of the study district. The profile AA′ is specified in 
W-E direction.

Figure 16. The inverted density distribution by inverting the real gravity data using damped SVD.
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Figure 17. A) The observed gravity along the profile AA′ and calculated gravity due to the assumed model, b) Inferred 
gravity from estimated structure, c) The assumed model and estimated model obtained by the Marquardt inversion.

Table 5. The initial parameters values and final parameters values from interpretation of the real gravity data

Parameter Depth (m) Width (m) Dip α (deg) Height (m)

Assumed 8 17 38 19

Estimated 9.4 15.8 38.04 20.3

Final Misfit (mGal) 0.00122

Final Lambda λ 24.68

Iteration 10
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at the end of this iteration number, the damping factor reached a value greater than the predefined 
value (see Table 5).

The misfit function variations versus the iteration number (Figure 18e) show a fast decrease from 
its first value of 0.00015 mGal to its value at the 3th iteration and then increase continually until 
10th iteration whose value is 0.000127 mGal. The depth and height parameters increase steadily 
from its initial value to their final values at the 10th iteration whose values are 9.4 m and 20.3 m, 
respectively (Figures 18a and 18d). The width parameter decreases significantly until 6th iteration 
and then gradually achieved 15.8 m at the 10th iteration (Figure 18b). The dip parameter reduces 
from its initial value to its value at the 3th iteration and then increased rapidly until 10th iteration 
where it was obtained a value of 38.04 degree towards the east (Figure 18c). The resulted tabular 
model is delineated in Figure 17 (c). The gravity response estimated from the inferred parameters 
for the dyke-like structure (Figure 17c) is shown in Figure 17(b). The inverted structural parameters 
are given in Table 5. 

Discussion and conclusions

In this paper, we have introduced two inverse modeling methods, based on the damped singular 
value decomposition (DSVD) as a linear inversion and the Marquardt optimization algorithm as a 
nonlinear inversion. The Marquardt optimization algorithm has been developed for interpreting the 
gravity data due to a dyke-like structure. The validation and performance of the both approaches 

Figure 18. The variations of  a) depth b) width c) dip d) height and e) misfit function versus iteration number for the 
real gravity data.
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were evaluated using the theoretical gravity data, with and without random noise. The inverted mod-
els obtained from the analysis of the synthetic gravity data via the both methods are exactly similar to 
the initial ones. The Marquardt inversion shows an acceptable convergence for the various assumed 
parameters. We employed the both methods for inverting the real gravity data due to a near surface 
sheet-like structure from Iran. In the resulted density distribution by the damped SVD inversion, the 
adjacent blocks with a density bigger than 3.2 gr/cm3, demonstrate the geometry of the Manganese 
ore deposit. Considering to inverted density distribution, the depth to the top and bottom of the 
simulated structure with a direction of NW-SE, are about 7.5 m and 25 m, respectively. Moreover, 
the average amount of width and extension of the interpreted structure are given about 15 m and 
22 m, respectively. As the distribution density resulted from the damped SVD inversion demonstrate 
a subsurface dyke-like structure, therefore, we can apply the Marquardt optimization algorithm for 
analyzing the gravity data. The inferred parameters using the Marquardt inversion of the real gravity 
data demonstrate a dyke-like structure with a width of 15.8 m, a dip of 38.04 degree and a height 
(extension) of 20.3 m where the depth to the top and bottom are 9.4 m and 21.9 m, respectively.

The comparison of the parameters values of the inverted structures from the damped SVD inversion 
and the Marquardt optimization method shows a close affinity between them. Therefore, using from 
the both inversion methods can be a helpful and advantageous strategy in the accurate interpretation 
of the gravity data.
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