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RESUMEN

Se proponen expresiones analiticas que se comprenden mejor conlosvalores experimentaleseva-
luados por Paul Frenzen, en 1963, para la Funcion Lagrangiana de Autocorrelacion R (£ )acerca
de campos turbulentos generales en fluidos de diversas estabilidades gravitacionales. Se demues-
tra que las expresiones analiticas aqui propuestas, representan correspondencias en los datos ex-
perimentales, comparadas con las propuestas por Frenzen. Se incluye una descripcion referente
a la curva de correspondencia para cada grupo de valores experimentales considerados. Se ensa-
yan soluciones generales para la ecuacion de difusion de Taylor, empleando las expresiones ana-
liticas propuestas para la Funcion Lagrangiana de Autocorrelacion.

ABSTRACT

Analytical expressions are proposed and best fitted to the experimental values evaluated by Paul
Frenzen in 1963, for the Lagrangian Autocorrelation Function R (£) of turbulent fields gener-
ated in fluids of several gravitational stabilities. It is demonstrated that the analytical expressions
proposed herein represent better fits to the experimental data when compared with those pro-
posed by Frenzen. A description is given concerning the best fit curve for each of the sets of
experimental values considered. General solutions for Taylors diffusion equation are sought
using the proposed analytical expressions for the Lagrangian Autocorrelation Function,
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INTRODUCTION

Tne basic foundations of the general theory of turbulence that applies
to the concept of “Diffusion by Continuous Movements”, was presented
by G. I. Tayior in 1921. He was able to extead the concept of the de-
scription of Brownian motion known as “‘the Random Walk™ to condi-
tions more representative of fluid motion on the macroscale by provid-
ing for “continuous movements”, 1. e., the magnitude and probability
of occurrence of the particles displacements were allowed to vary contin-
uously in a manner prescribed by the character of the turbulent field.

Taylor’s diffusion equation is given by:

(1)
(X*1=2{0% ;TR ) de dt,
where:
[Xz] = mean square distance in the X-direction
;’Uz] = mean square velocity in the X-direction
R (¢) = autocorrelation function
T = Time
The autocorrelation function R (¢), as defined by:
[Ug Ug + ]
R@E)y="——"——7 (2)

expresses the correlation of the velocity of a particle at an initial time
to the velocity of the same particle at a later time. For short periods of
time, the velocities of individual different particles wili tend to remain
highly correlated, i.e.,

Limit R (¢) = 1
£—>0
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Conversely, as ¢ becomes sufficiently large, R (¢) falls to zero, i. e.,

Limit R (¢£)= 0

E-—»oo

Nevertheless, since we are considering random motions of a limited
number of particles, we expect that a significant fraction of these will
repeat earlier velocities ocassionally. This being the case, our estimates
of R (¢) based on limited samples drawn from a larger population eannot
be expected to maintain a value of exactly zero for all large ¢ but instead
they will be observed to oscillate around zero as a mean.

From the arguments set forth in the past paragraphs one is able to es-
timate a priori that the Lagrangian autocorrelation function will. in ge-
neral, behave in the manner sketched in figure 1, at least during the ini-
tial and terminal periods.

Figure 1. The nature of the Lagrangian -Autocorrelation Function; R (£) =1 for § < £13
R(§)=0for£>§,.
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Frenzen (1963), determined that the behavior of the autocorrelation
function for intermediate periods, i. e., when § < ¢ < &, in figure 1,
cannot be anticipated,sincein this range the rate at which R (¢) decreases
depends upon the specific properties of the particular field of turbulence
for which the function was evaluated. He concluded that one of the fac-
tors which can influence the behavior of R (¢) in this intermediate range
is the gravitational stability of the fluid medium.

In solving Taylor’s diffusion equation for two limiting cases, i. e., as
T tends to zero, and as T tends to infinity, one can demonstrate the con-
trol exerted by the autocorrelation function upon the diffusion process.

Considering the case in which the time T tends to zero, we observe
that X tends to zero, and consequently R (£) tends to unity. Therefore
the inner integral of equation (1) becomes:

FER () de=sl1ds =1t (3)

and the solution of the entire expression reduces to

[X*)=2[U%] Tt dt = [U*] T (4)
Therefore,
JIX1=T V[ (5)
or
JIX =T when T <§ (see fig. 1). (6)

liquation (6) indicates that the dispersing particles will initially occupy
a conical plume, since the envelope extends linearly with time.

If we now consider the second limiting case, namely when T tends to
infinity, we observe that X tends to infinity and consequently the inner
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integral of equation (1) attains a constant value I equal to the areaunder
the R (¢) curve, i. e,

Limit ;'R (¢) dt =1 (7)

t—=> oo

Consequently R (¢) =0 for T > £, . Therefore the solution of the entire
expression will reduce to:

[X*1=2[0") ;Y140 (8)
Therefore,

(X1=2[UIT )

JIX )= v2[UIT (10)
or

ViX*1 = VT, when T > &,. (See figure 1). (11)

Equation (11) indicates that the volume occupied by the dispersing
particles eventually assumes the shape of a paraboloid.

In nature, these two envelopes of diffusion can be seen to succeed
one another under atmospheric conditions in the initial and final average
outlines of smoke plumes issuing from stacks.

FRENZEN’S EXPERIMENTS

In 1963, Paul Frenzen of the University of Chicago, performed a series
of experiments in which the Lagrangian autocorrelation function was
evaluated by observing the motions of particles in turbulent fields gener-
ated in fluids of several gravitational stabilities. The homogeneous tur-
bulent circulation was generated by the passage of a rectangular grid of
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bars placed normal to the walls of a rectangular channel. The turbulence
fields created by the passage of the rectangular grid underwent rapid
decay, since the model contained no continuing source of turbulent
energy. This limitation was overcame by applying Batchelor’s decay
corrections to the observed turbulent-velocity fluctuations.

The results of his experiments led him to conclude, among other
things, that it was feasible to employ decay corrected, homogeneous
fields of turbulence produced in the lee of grids as a medium for the
study of turbulent diffusion, and that for this purpose Batchelor’s decay
correction procedure proved satisfactory. He was also able to observe
that when stability is sufficiently strong the vertical component of the
autocorrelation function assumed analytical expressions of the type,

R () = e=(£/2)° (12)
ALTERNATIVE ANALYTICAL EXPRESSIONS FOR R (§)

The characteristic oscillatory behavior of R (£) as obtained by Frenzen,
suggested that analytical expressions of the type

R(§)=e" % (oq g (13)

and

R(E) =e ™ 2% (oq b, (14)

would better fit the experimental values in question, as compared to
the fit obtained by using Frenzen’s analytical expression for R (¢) as de-
fined in equation (12).

Equation (13) allows for oscillations of continuous decreasing ampli-
tudes at constant frequency, while equation (14) oscillates with contin-
uous decreasing amplitudes at continuous increasing frequencies.

In subsequent pages a description will be given concerning the best
fit curve for each of the sets of experimental data considered.



GEOFISICA INTERNACIONAL 237

General solutions of Taylor’s diffusion equation were sought by sub-
stituting the autocorrelation functions as defined in cquation (13) and
(14), and performing the integrations. At this point it is worthwhile
mentioning that a solution of Taylor’s diffusion equation using equation
(14) as the analytical expression for the autocorrelation function, could
not be determined, due to the fact that the integrals could not be eval-
uated analytically. This being the case, we only consider the subti-
tution of equation (13) in equation (1) and thus obtain:

(X*1=2(U%) T fte ©/A Cose/B dg at (15)
where a=1/A and b=1/B
Evaluating the inner integral in equation (15) vields:

(X2] 7 e—¥A

gy =
2(07] Yo (%)+<BI.) { }"d' (16)

T A’V 1 1 /A, t 1 /ALt
PR — (1 + S
f —————z e 0s —+—e in 0 dt

Cos £/B + = Sin

Lgink
B7 B

O A2+ B

Integrating (16) yields:

X1 _ AR {1_
2[U0’] A+B LA

(o]

T —et/A Cos%) dt +:_;fT e ~YAgip %m}

A2 + B? A? +B? A A2 L n2

2 2 2 _ n2 2
A" B { A" -8B +I}+{ A B’): e-—T/A}
A* +B

{E*A’\ T 2 .. T
SE S

Argr BT AB mﬁ} (17)
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We now proceed to analyze how (X' behaves for the special cases when
21’

T >>1 and T << 1. Considering first the case in which T <<1, we

. N . T_T, T_1-T _T/A_ 1-T°
Sin -~ =~ ~
Sllbtltllte the aprox1matlons a1n B B, (‘ S = B —1—2 , an d € ST

in equation (17), since T is small. Consequently:

‘l———]—‘z A2B2 {A2__B2 +I}+{ ‘AZBZ }{ 1_T2l2
2 [U?] A+l A2+B A A? +B? 2A%

{B’—A’(l—T’)_(zT )}= 1 {B’—A’+A.}{ 1 }2
A*B* 2B AB S Nap\A+B AN E g

{1 AT+ A? Tzs {(A’ —B?) (1- Bsz)—(2AB) (BT)}

TZ(A2+B2)2=P£2
2(AT+BY) 2
(18)

Therefore, when T is much smaller than unity, the value of:

WALSS
(U*]
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In the case where T >> 1, we substitute the aproximation (’,—T/A:O.
in equation (17), since T is large. Consequently:

{lelz{( A’ B? )(A2—132 +_£)}:

2 [U2 A2 + B2 A2 + BZ
A'B’-A’B* | AB’T
(A* +B?)? A? +B? (19)

If we compare the constant term A*B*—A’B* with the large value of

T, we see that it is very small, and that it can be neglected. This being
the case, equation (19) can be reduced to

(X*] _  ABT

2[U?] A +B? (20)

METHODOLOGY FOR FITTING THE ALTERNATIVE ANALYTICAL
EXPRESSIONS OF R (¢§) TO FRENZEN'S EXPERIMENTAL VALUES

The alternative analytical expressions for R (¢) were best fitted to a set
of Frenzen’s observed experimental values of R (¢§) by the least mcan
square error technique. The chosen set of observed experimental values
of R (¢) are those presented in figures two and three of this report, and
correspond to those values obtained by Frenzen (1963), and which he
reported in his doctoral dissertation in figures 24 and 34 of pages 90
and 94 respectively.
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The procedure to fit the alternative analytical expressions was to let
the correlation function be R (¢) with parametersa,b. The error between
the experimental values and R (£) was calculated by setting

- N
Fa,b)= = (R (&)= R’ @21

where F' (a, b) represents a function which delines the mean square error,

and Rj are the experimental values corresponding to &. Subseéquently.

the function ¥ (a, b) was minimized. The minimum value of I, cor-

responds to a and b such that ok = il ol _ 0. linally the partial
da oh

derivatives of I with respect to a and b were solved to determinc the
value of a and b.

The two autocorrelation functions as defined in equation (13) and
(14) were fitted to each set of observed experimental values thus yield-
ing four I type functions. For the set of observed experimental values
plotted in figure 2 of this report we obtain:

N .
F (a.b) = i:Zl{e_ﬂgl Cos bg; — l{(i)}2 (22)

and

N 2
, — —af ook pel?
F (a,b) izl{e 1 Cos §{ R(l)} 23)
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Figure 2. Frenzen’s figure 24 illustrating a correlogram forhisexperiment s 23/z. The alternative
analytical expressions for R (£) were best fitted to this set of observed experimental values of
R (§). (From Frenzen, 1963).
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Figure 3. Frenzen’s figure 32.illustrating a correlogram forhisexperiment s 107, The alternative
analytical expressions for R (£) were best fitted to this set of observed experimental values of

R (¥). (From Frenzen, 1963).
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For the observed experimental values plotted in figure 3 of this report
we obtain:

F (a,b) =, g ]{e_azi Cos bt — R (i)}2 (24)
=
and
Faby= 3 {om Corbg = R0} (25)
1=1

The final best fit expressions for both set of observed experimental
values have been plotted in the form of correlograms and are presented
in figures 4 and 5, respectively.



BEST FIT= R(¢)=e-448 £2 Cos 3905 ¢2

o6k F=0.104

R(E) o4

02+ R(E e!55 Cosi88

0225

1 L
O 02 04 O6 08 10 12

E—>

FIGURE 4

CORPELOGRAM USING FRENZEN'S
EXPERIMENTAL DATA S/25/2

TVNOIDVNYALNI VIISIZI0OTD

3 44



BEST FIT=R(£)=e 1014< Cos 1.836 ¢
F F=0.I176

04 —
RE) |- B
02 —
- ¢
R(€)=e 70 € cos 3603 £2
O F=0603
-
-02H
r._ —
ogql—L L 1 1 1 1 1 L 1 1 1 1 11 lel] !
0 02 04 06 08 1.0 12 14 16 1.8
€—>
FIGURE 5

CORRELOGRA! USING FRENZEN'S
EXPERIMENTAL VALUES S/40/Z

L4 4

TVYNOIDVNIALNI VOISIA0ETD



GEOFISICA INTERNACIONAL 245

2
GRAPHICAL REPRESENTATION OF X1 AS A FUNCTION OF TIME

———

2[U*)

Figures 6, 7, 8 and 9 illustrate the behavior of the ratio of the mean
square displacements to the mean square velocities as a function of small
and large values of time for the set of observed experimental values
shown in figures 2 and 3, respectively.
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RESULTS AND CONCLUSSIONS

Results obtained from this exercise can be briefly summarized.
(1) For the observed experimental values given by Frenzen and shown
in figure two of this report, the best fit curve is obtained by the func-
tional representation

R(¢) = e 448 £ (0:3.905 £2

with a least mean square error ' = 0.104.
The functional expression

R@E)=e" 1958 C0s1.88¢

yields a least mean square error F = 0.225.

(2) For the observed experimental values given by Frenzen and shown
in figure three of this report, the best fit curve is obtained by the
functional expression

R()=e 1O14E o5 1.836¢

with a least mean square error F = 0.176.
The functional expression

R (£) = e~ 5708 (os3.603

yields a least mean square error F = 0.603.

(3) The proposed alternative analytical expressions for R (§) yield
better fits to the experimental data than does that suggested by
Frenzen.

(4) A general solution to Taylor’s diffusion equation cannot be ob-
tained when analytical expressions for R (¢) of the type defined in
equation (14) are introduced, since the integrals cannot be evaluated
analytically.
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