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THE OPERATION OF SECOND ORDER WAVE lvJODES ON A 
UNIFORMLY SLOPING BEACH 

E. 0. OKEKE ''-· 

RESl 1MEN 

Este articulo analiza la teoria referente a Jos efectos de las ondas de segundo orden, asociadas 
con las ondas lfquidas, a medida que .:.stas se propagan sobre una playa uniformemente en dt'di
ve. Se emplea un modelo de playa con contornos profundos, paralelos a la linea de rosta. lnri
dentalmente esto asegura que las soluciones especificas identificadas con las ondas, quedan limi
tadas. 

Con estas consideraciones se demuestra , que los modelos de oscilacion de segundo orden son 
excitados y mantenidos por la energia derivada de las interacciones no linear .. .s entre cl perfil de 
la onda oscilatoria y la velocidad de los componentes de la onda primaria. 

Los calculos numericos sugieren que las amplitudes de los armonicos de ~gundo orden pare.
cen crecer constantemente a medida que se propagan hacia la linea de costa, y adt-mas aumen
tan paralelamente al gradiente de playa. 

Dentro del ambito de las frecuencias tidales, la teoria parece predecir una e~timacion de I ) 
la anchura de! bajio continental sobre el cual los modos, es probable que reproduzcan efoctos 
de fondo; 2) el crecimiento y declinacion de los modos tidales como funciones di, la distancia 
de la zona de ruptura. 
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A HST RA CT 

This paper addresses the theory concerning second order wave effects associated with water 
waves as the letter propagate through a uniformly sloping beach. A model beach with bottom 
contours parallel to the shoreline is used. It is also assumed that there exists a breaker zone in 
the neighborhood of the shoreline. lncidently, this ensures that the eigensolutions associated 
with primary wave motions are bounded. 

Given the above considerations, it is shown that the second order modes of oscillations are 
excited and maintained by the energy derived from the non-linear interactions among the 
oscillatory wave profiles and the velocity of the primary wave components. Furthermore, 
numerical calculations suggest that the amplitudes of the second or,lP.r harmonics seem to 
steadily increase as they propagate towards the shoreline as well as increase with increasing beach 
gradient. In the range of tidal frequencies, the theory appears to have realistically predicted an 
estimate of (1) the width of the continental shelf over which propagating modes are likely to 
experience bottom effects, and ( 2) the rise and fall of the tidal modes as functions of the distance 
from the breaker zone. 

INTRODUCTION 

The phenomena of higher order wave effects associated with water 
waves have long been identified. Some aspects of these phenomena, 
characteristic of deep water waves, are well presented in Kinsman 
( 1965 ). Briefly, it was established that if the analysis of these waves 
were extended to the third order, there exists a possible tertiary inter
action among the component wave modes. However, in connection 
with shallow water waves, the interaction among the first order waves 
transfers energy to the second order waves. Thus, in subsequent devel
opments, the latter may obtain significant size which is comparable to 
the former. 

According to Kortweg and De Vries (1895 ), the development of a 
realistic non-linear analysis related to shallow water waves should i
clude the effects of the vertical velocity components. It is establishel 
that these effects are significant as soon as the analysis is carried be
yond the limitations of linearization. As is of the case, we shall, how
ever, attempt to make the problem tractable by utilizing some already 
established approximations. 
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These approximations are found in the basic system of non-linear 
differential equations numbered (1.08) in Stoker (1948). According to 
Stoker ( 1948), these equations have been thoroughly tested and were 
found accurate enough to describe the changes in the shape of water 
waves propagating in shallow water, up to breaker zone. Thus, they 
have been widely employed in the study of bores, breakers, tides in 
canals and in open sea areas (Lamb, 1948). 

In the course of this paper, we intend to utilize a simple model of a 
shallow water zone which is uniformly sloping. A previous study (Dar
byshire and Okeke, 1969) suggests that such a beach is associated with 
a considerable quantity of trapped wave energy and therefore, growth 
in wave amplitude. Incidentally, the second and higher order wave effects 
form recognizable factors on such ocean beaches. The developments of 
wave breaking, formation of bores (Stoker, 1957; Tuck, 1957), higher 
tidal harmonics (with frequencies which are multiple that of the primary 
disturbance) are all possible related events. 

A REVIEW OF THE SHALLOW WATER WA VE E<.> l: AT l < ll\ 

Given time t (t >O) and distance x measured in a direction normal to the 
shoreline, the water surface profile, 11 (x, t), and the related x-component 
of the horizontal velocity, U (x, t), satisfy the following simplified system 
of non-linear differential equations (Clement, et al., 1975; Lamb, 1945; 
Stoker, 1948): 

au + u au 
at ax 

t + { ( 1/ + h) :~ 

+g..L11=0 
ax 

+ u aax ( 11 + h) } = o 

(2.1) 

(2.2) 

where h (x) is the depth of the water layer measured from its undisturbed 
surf ace, and g is the acceleration due to gravity. If the non-linear terms 
are ignored as first approximation, equations (2.1) and (2.2) may be 
written: 
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au+ ~ 11 = 0 at g ax 
(2.3) 

!!}_ + __i._ (hU)= 0 
at ax (2.4) 

Superimposed on these equations are 11 1 , and U 1 which are the second 
order corrections satisfying the following equations: 

a U1 + a 111 = _ u au 
at g ax ax (2.5) 

0111 +~ (hUi)=-~(U11) 
at ax ax (2.6) 

From equations (2.3) and (2.4) it follows that: 

a2 a2 
g a x2 ( h U) - a t2 U = o (2.7) 

~ 11 - g _Q_( h _2_ 11) = 0 at ax ax (2.8) 

Given equations (2.5) and (2.6) 17 1 , satisfies the equation: 

(2.9) 

The zeros to the right of equation (2.8) are replaced in equation (2.9) 
by forcing the function built up by interactions among the components 
of the wave profile and the velocity of the primary waves. 

BEACH WITH A UNIFORM SLOPE 

The model beach considered in this study is characterized by a straight 
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shoreline defined by x = 0. It is reasonable to assume that Tl can he ex
pressed as follows: 

T/ (x, t) = Tio (x) cos at CU) 

where o is the characteristic frequency of the oscillation. From equation 
(2.8), TJo satisfies the equation: 

d2 d 770 0
2 

x -- 17o + -- + -- 11 0 = 0 
d x2 d x a:g (3.2) 

where a is the constant beach gradient. In general, equation (3.2) may 
be solved as below: 

11 0 ( x) = Bo Jo ( f3 v' x) + Co Yo ( f3 v' x ) 

where /3 = 2 a Iv' a:g 

(3.3a) 

(3.3h) 

J0 and YO are Bessel function of zero order, but of first kind and second 
kind respectively. For the present, we define B0 and C0 to be arbritrary 
constants. Additionally, if we define 

U (x,t) = U (x) sin ot (3.3c) 

then U (x) satisfies the equation: 

x d2 u + 2 du + ...!C_ u = 0 
dx2 dx a:g (3.4) 

Equation (3.4) is solved by letting z = a ( j ) 1h and U = zy. Sunstituting, 

U(x) = x·1h [Ao J1 ((Jv'x) + C1 Y1 ((Jv'x)J (3.5) 

In equation (3.5), J 1 and Y 1 are Bessel functions of first order, hut as 
before, of first kind and second kind respectively. Ao and C 1 are assumed 
to be arbritrary constants. 
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The presence of the terms YO and Y 1 in equations (3.3a) and (3.5) 
implies that the amplitudes of the eigensolutions do attain infinite 
magnitude along the shoreline (defined as x = 0). However, in the sub
sequent study, we will assume the existence of a breaker zone in the 
neighborhood of the shoreline. Thus, the heights of the component 
waves are hounded, hence C

0 
= C1 = 0. B

0 
may be defined as the con

stant wave amplitude before breaking takes place. 

(3.6) 

Equation (3.6) is the approximation generally associated with long 
waves; ho is defined as the constant depth of the water layer above 
which the rise in its surface is B0 • 

SECOND ORDER SOLUTION 

From equation (2.9), (3.3) and (3.5): 

_a_ hU~u _£(u 77 )= 
ax ax atax 

= - cos 2 at [a Ao 2 __'!__ { x112 J 1 ({h/x) ~ ( x·
1
h. (4.1) 

dx dx 

. 11 (f3v'x) }+ a
2 B/ ddx { x·lh 11 ({3v'x) Jo ({3v'x)}] 

We shall utilize the following properties of the Bessel function: 

and, 

d 11 ({jx) = - - Jo ({jx) 
dx 

d 11 ({jx) + f3v'x dx 11 ({jx) = f3v'x J0 

(4.2) 

(4.3) 
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In addition, let 

~ = (3 v'x (4.4) 

Transforming to the -~ co-ordinate and using equations (4.2) and 
(4.4), 

a a a2 

-(hU-U)-- (U11)= ax ax a tax 
= (34 Bo2{ a2 ~ J_!_ ~ Jo2 (0}- ~. 

d~ l ~ d~ 2 h0 

• ..i_[J <n~{JdO}]lcos2at 
d~ l d~ ~ ( (4.5) 

[ 
2 ] lh . [ 1r] Jo ( n = ~ sm ~ - 4) (4.6) 

and, 

[ 2 ]1h [ - 1T] 1 i< n = -;~ cos ~ - 4 (4.7) 

From equation (4.6) and (4.7), we may rewrite equation (2.9) as: 

d2 1 d 4 Lo 
2 

{ 1 [ 2 • 1r - 71 1 + - - 711 + 16 711 = -- -- 4 a sm 2 ( ~ - - ) -
d~ 2 ~ d~ 1T ~ 2 4 

-
2
~g cos 2 ( ~ - ~ )]- : 2 [ 8 a

2 
sin

2 
( ~ - ~) + 

+ ~ sin 2( ~ - _!!___)]-~ cos2 ( ~ - _!!__)} = 
h0 4 h0 ~ 4 

4L 
2 

{ [ 50'.P' 4a
2 J . [ 2a"" = --0 cos 2 ~ ~ - -- - sm 2 ~ ....=...::.:J2. + 

1T ho~2 ~2 ho~2 

+~ +~J +[~ -~l 
~3 2ho~4 2ho ~4 ~3 Jf (4.8) 
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and, 

(4.9) 

The power series method of solving the class of equations of which (4.8) 
is a member, is the asymptotic expansion of the form 

(4.10) 

Where 
~ ~ ~ 

Y1 ( ~) = siri 2 ~ L Ar ~-r + cos 2 ~ 2: Br ~-r + 2: Cr ~-r 
r=O r=O r=O (4.11) 

Cf equation (4.11) is introduced into equation (4.8), the coefficients are 
letermined, yielding: 

y H)=[2a2 + ~ -~ +-1-( 4a2 + 
i ~ 4ho ~2 6 ~3 108~4 

+ s;:: ) + .. · ] sin 2 t - 12 •'-

- _!__ (.!!:._ _ 7ag) + 5a
2 
__ 1.- 0 2 _ ~)+ ... ] 

~ 3 2 h0 6 ~2 36 ~3 ho 
6a2 a 2 9ag 

cos 2 ~ + ·- - - + · (4.12) 
~ 8 e 32ho ~4 

From equations (4.1) and (4.4) 

T/1 (x, t) = 11 1 (x) cos 2 at (4.13) 
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DISCUSSION 

In the following calculations, we take C0 = 1. If a swell with a period 
between 12 and 18 seconds is being considered, we take L0 = 0.3, cor
responding to Bn = 13 cm, a = 0 .05 and g = 980 cm sec·

2
• Likewise, 

within the tidal range of frequencies, we take L0 = 0.036. for which 
B0 = 3.2 m. 

Furthermore, 11 1 consists of two parts, viz: (1) the complementary 
term represented by the Bessel function with an argument twice that of 
the primary disturbances , and (2) the particular solution consisting of 
the positive and negative powers of ~ with the corresponding amplitude 
which is the square of the primary wave. Numerical calculations per
formed on the two terms suggest that (1) the solution is finite almost 
everywhere in the open interval O < ~ < 00 ; (2) the amplitude of the rise 
and fall of the water tends to increase with increasing beach gradient 
though within physically realistic limits; and (3) in the dosed zor~ 
0.05 ~ ~ ~ 8.0 which corresponds to 0.7-.;; x <;; 46.2 km as measured 
from the shoreline, the particular integral makes a significant contribu
tion to the solution. However, when x = 46.2 km, the sum of the posi
tive and negative terms tends cancel out, hence the contribution of this 
term is negligible. Similarly, the complementary solution is small out
side this zone. This suggests that 46.2 km may he regarded as the width 
of the model beach considered in this study. 

It is noted that the preceding approximations utilized in the model 
do not give rise to any significant breakdown in the solution. Instead, we 
have a gradual increase in the heigh of the water levels towards the shore. 
This phenomenon apparently agrees with the observation made about 
the advancing water waves over sloping beaches. The change in the form 
of 1)1 as a function of x is ilustrated in figure 1. 
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Figura ] . The Profile of fl (x) u a function of distance measured from the Breaker Zone. 
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