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RESUMEN 

Sc obticne en la forma de integralcs defi nidas la rcspuesta c lectromagne tica transitoria de 
un cilindro conductor permeable, incrustado en un espacio conductor infinito. La fuenk cs 
un cable infinito aislado que yace fuera del cilindro y que llcva una corrientc de Heaviside. 
las corrientes de dcsplazamien to no han sido tomadas en consideracion. Tambien se pro
porciona una expresi6n de la funci6n de respuesta transitoria bajo la aproximacion quasi
estatica. 

ABSTRACT 

Tran sient electromagn~tic response of a conducting permeabk cylinder embedded in a 
conducting infinite space is obtained in the form of definite integrals. The source is an infi
nite insulated cable which lies ou tside the cy linder and carries a Heaviside current. The dis
placement currents have been neglected. Expression for transient response function under 
quasi-static approximation is also given. 
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INTRODUCTION 

Recently it has been pointed out by several authors (e. g. Ward, 
1971; Singh, 1972) that the effect of finite conductivity of the host 
rock must be considered in electromagnetic (e.m.) exploration of con
ductive massive sulphide ore bodies. This is particularly true for 
time-domain e.m. methods where, theoretically , all the freguencies are 
present. The author (Singh, 1972) has considered the transient res
ponse of a conducting, permeable · sphere embedded in a conducting 
infinite space under an arbitrarily oriented magnetic dipole exitation . 
ln this paper the transient response of a conducting, permeable and 
homogeneous infinite cylinder embedded in a conducting infinite 
space is considered. The source is an infinite insulated cable which 
lies parallel to the axis of the cylinder and carries. a Heaviside current. 
The contributions from displacement-current have been neglected . 
The transient response, under quasi-static approximation is also 
considered. 

We shall obtain the time-domain solution by taking the inverse 
transform of the known frequency-domain solution which is given by 
Wait (1952). 

Frequency-domain solutions have also been given by Kertz ( I 960) 
for a homogeneous cylinder under a uniform field, and by Negi 
(1962) and Negi et al. (1972) for inhomogeneous cylinders under uni
form field and line source, respectively . These results have been spe
cialized to the quasi-static case. Verma ( 1972) has given quasi-static 
time-domain response of a homogeneous cylinder under uniform field 
of step and ramp type excitation. 

An infinitely long current carrying cable in a conductive medium is 
a difficult source to realize in practice but the result of this paper 
may be useful (a) in evaluation of the validity of quasi-static approxi
mation, (b) in construction of solution of a more realistic situation in 
which the source is on top of a conducting half space containing a 
cylindrical ore body, and (c) in marine exploration. 

FORMULATION AND SOLUTION 

Let an isotropic. homogeneous, infinite cylinder of radius a and of 
electrical properties a 2 µ 2 and E 2 be embedded in an inffoite space 
of electrical propertier a 1 µ 1 and E 1 . An infinitely long insulated 
cable, carrying current, lies at point S(r <f> ) parallel to the axis of the o, 0 
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cylinder (Fig. I). The point S may be outside the cylinder (r0 > a) or 
inside the cylinder (r0 < a), Here we shall consider the former case only 
giving the secondary magnetic components in the outer medium The 
latter case can be treated in exactly a similar fashion . The expressions 
for the primary field components are given in Appendix A . 

A. FRECUENCY-OOMAIN 

Assuming a harmonically time-varying current I e iwt in the cable, 
the secondary magnetic field components in the outer medium, in 
MKS system of units, can be written as (see Wait, 1952 for details): 

I eiwt .. 
[ W (w)=--

r 2 1r r 
n=l 

I e iwt 

H:(w)=- ---
.,, 2 1r r 

where , 

n=O 

sin n ( q, - ef)0 ) 

[ h5 (z)) 
(bd )n nr 

cos n (q, -- q, 0 ) 

(bd)n 
[ h~ <1> (z) I 

Nn(Z) 
h 5 (z) = 2n (bdt K (Cdz) ---

nr n Dn (z) 
Kn(Cbz) 

s Nn(Z) 
hn!J> (z) = - <\ (bd)n Cbz K

0 
(Cdz) K~ (Cbz) 

Nn (z) 

Dn (z) - [ 

Dn(Z) 

In (Cz) I~ (z) -- CK I~ (~z) In (z) J 
Kn (Cz) I~ (z) ·- CK K~ (Cz) In (z) 

(l) 

(2) 

(3) 

( 4) 

(5) 
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z2 = x2 a2 = (io µ - € 2) 2 u2 2 2W 2 µ2 W a 

r 
b=

a 

for n = 0 

for n ~ 1 

I (z) and K (z) are modified Bessel functions. n n 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

If the conduction currents are much greater than the displacement 
currents, i.e. €. w ~ a. U = 1, 2), as is very often the case in 
exploration ge6physics, them the expressions for C and z given in 
equations (6) and (7) simplify to: 

(12) 



and, 

where, 
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z2 = iw/32 

/3 2 = a µ a2 
2 2 

11 

(13) 

(14) 

Applying asymptotic expansions of modified Bessel functions, it 
can be easly shown that, under quasi-static approximation 
(ICzi , ICbzl, !Cdzi ~ I), 

where , 

R,(z) ~ [ 

n~l 

z l~ (z) -- nK 10 (z) J 
z l~(z) + nK In (z) 

(15) 

which is the quasi-static response function. Note that there is an 
error in the quasi-static response function given by Wait ( 1952). 

B. TIME-DOMAIN 

Given secondary magnetic field components, under harmonic exci
tation, the transient response can be written as: 

n=l 

sin n(</1 - 1> 0 ) 

(bd)" 
[h~. (t)] (16) 
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with, 
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- I 
H5(t) = ---

(J) 2 ·,rr 
n = 0 

h5 (t) = ---
nr 27Ti 

hs (t) = --
nq, 21T i 

sin n(i/) - <Po) 

(bd)'1 
[hs (t)) 

n<f> 

E+i~ 

f 
E - i~ 

f 

s st d h (s) <P (s) e s 
nr 

h5 (s) <P (s) est ds 
nq, 

f - i 00 

(17) 

(18) 

( 19) 

where s = iw, E is the real positive constant and rp(s) is the Laplac, 
transform of the primary input pulse. In this paper we shall assume a 
Heaviside pulse ( d, (s) = _L ). . s 

We shall neglect the contribution from displacement currents. Thus 
the solution would be valid for t ~ E f; U = 1, 2) . From equation 
(13)wenotethat J

I 

Z = S 112 {3 (20) 

It is easly shown that the integrands of equations ( 18), and ( 19), are 
double-valued functions of complex s. In order to make these 
integrands single-valued functions of s, so that we can evaluate the 
integrals using residue theorem, we introduce a branch cut along nega
tive reals axis as shown in Fig. 2 and require that - 1T < arg s <1r. Now, 
considering the contour of Fig. 2 , we have 
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1 = 21ri[ sum of the residues] (21) 

It is not difficult to show that there are no poles of the integrands in 
or on the contour (see Singh, 1972 for a proof of a similar problem) 
and that the integral over the large circular arcs BC and FA vanish in 
the limit as the radius R ~ oo Thus 

Jim 
R ~ oo 

The integral around ED as 8 ~ 0 gives the static part of the solu· 
tion from the pole at the origin (which is also a branch point). But 
this part of the solution is not of interest in exploration and, the
refore, we shall ignore it. Considering equation (18) in detail und 
substituting 

on DC 
,therefore, z = u ei1r/ 2 

and on FE 
u 2 

-i1r s=-- e 
{32 

,therefore, z = u e-i1r/ 2 

we can write 

lim [ 
R ~ ~ _2_1r_i _ 

c 

st J s e 
h. (s) -- ds 

nr S J 
D 

-f 21Ti 
O N 0 (iu) -u 21 ;a2 

4n (bd) K (iCdu) ---K (iCbu) e ,_. 
O Dn (iu) " 

du (22) 
u 

0 
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Using the following properties of modified Bessel functions 

7f n 

K [z e±i_!!.] == ±1T ie+i -2- [ - J (z) ±i Y (z)] (23) 
n 2 2 n n 

we can write equation (22) in the following form: 

~ 

-- n (bd)" f H(2) (Cdu) Pn(u)_ H(2)(Cbu) e·u2t / il2 ~ 
n Qn(U) n U 

(25) 

0 

where, 

P (u) = J (Cu) J , (u) - CK J, (Cu) J (u) (26) 
n n n n n · 

Q (u) = H<2> (Cu) J , (u) - CK H<2>, (Cu) J (u} (27) 
n n n n n 

Similarily we can show that 

Jim [ 21T i J hs (s) e'
1 ~ J 

nr S 

F 

n (bd)" J (28) 

0 
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where bar on Qn (u) represents complex conjugate of Qn (u). 

Now, h\r (t) , ignoring the static part, can be obtained by 
summing equations (25) and (28) and can be written as: 

h5 (t) = ·- 2n(bd)" Re 
nr 

[ J~ H(2) (Cdu) Pn (u2_ H(2) (Chu) e-u 2 t/132 duu-J (29) 
n Qn(U) n 

0 

Following a similar procedure as given above, we can write: 

h5 (t) = 5 (bd)" Re 
n(/) n 

[J CbH<2 >(Cdu) Pn(u) 
n Qn (u) 

H;'' · (Cbu) e·"' ,1,' du J (30) 

where, Re in equations (29) and (30) means that the real part of the 
expression in the brackets must be taken . 

Equations (29) and (30) give the transient response functions for a 
Heaviside input pulse when displacement-currents are negligible. 
These are a function of following dimensionless parameters: 

t/{32
, K, C, Cb, Cd 

In numerical integration one must remember that the zeros of 
Qn (u) lie very close to the line of integration for small values of C. 
Since most of the contribution to the integrals come from this re
gion, special care must be taken . 
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QUASI-ST A TIC TRANSIENT RESPONSE FUNCTION 

Quasi-static transient response function, R (t), for a Heaviside input 
pulse is given, from equation (15 ), by: n 

E + i~ 

1 
R (t) = ---

n 2 7T i J R (s) e 81 ~ 
n S 

(3 1) 

where Rn (s) is obtained from equation (15) by noting the relation 
given in equation (20). We shall consider non-permeable (K = 1) and 
permeable (K =I= 1) cylinder cases separately: 

Non-Permeable Case ( K = 1 ): 

It is easily shown that Rn ( s) is a single-valued function of s and 
has simple poles at s = 0 (where the residue is zero) and at the zeros 
of 

In-I (z) = 0 (32) 

which are all imaginary. If z = iy 1 . is a zero, then z =-iY. 
1 

. is 
also a zero. By applying residue th~orJm and recurrence relatiorii of 
modified Bessel functions and noting the relation given in equation 
(24) we can show that 

~ 

R (t) = 4n 
n [ 

j= I 

e-Y
2 

n - I ,jt/{32 

2 
Yn - 1,i 

(33) 

where iy
0

_ 1 i is a zero of I
0

_ 1 (z). When n = 1, the result is same as 
given by Verma (1972). 
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Permeable Case ( K =I= 1 ): 

Rn (s) for this case also is a single valued function of complex s 
and has simple poles at s = O (which gives static part of the solution) 
and at the zeros of 

l::.n (z) = z In (z) + n K In (z) = 0 (34) 

which are all imaginary, if z = iy . is a zero, then z = - iy n J. is also 
n' J ' 

a zero. Using residue theorem and the properties of modified Bessel 
function and neglecting the static part of the solution, we can show 
that 

R (t) = 4n 2 K (K - l) 
n 

FI Yn,j 
l 2 2 2 l \ n (1-K ) - y . 

n,J 

(35) 

where, iy . is a zero of l::. (z). 
n,J n 

Computation of R 11 (t) is straight forward. Zeros of 10 (z) can be 
looked in any book on Beseel functions and the zeros of l::.n (z) can 
be easily determined with the help of a computer. 

CONCLUSIONS 

Whereas only one response function, Rn (t), is needed under quasi
static approximation, two response functions, h~ ,(t) and h~cp(t), are 
needed to describe the transient secondary magnetic field components 
when the finite outer conductivity is considered. Rn (t), in general, is 
a function of two dimension-less parameters: t/{3 2 and K; whereas 
hs (t) and hs ,1,, (t) are, if displacement-currents are negligible, a func-

n r n'i' 
tion of five dimension-less parameters: t/{3 2

, K, C, Cb and Cd. Also the 
computation of h5 (t) and hs ,1,, (t) is more difficult than R (t). Clearly, 

nr n'Y n 
the introduction of finite outer conductivity increases mathematical 
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and interpretational difficulties very considerably. However, it may be 
unavoidable in the time-domain and, therefore, the exact case must be 
considered first and compared with the quasi-static aproximation 
before using the former for interpretation. 

Numerical results will be presented in another paper. 

APPENDIX A 

For an infinite line source located at point S (Fig. l) inside a con
ductive medium and carrying a harmonically time-varying current 
Ieiw t the field components are given by (Wait, 1952): 

· iwt 

E,(w)= -
iwµ 1 le 

z 

H<t>,(w)= 

2 rr 

(ia1 µ1 w)~ Ieiw t 

2rr 

if the displacement currents are neglected. 

(A. I) 

(A.2) 

If the line source is excited by a Heaviside pulse, the transient field 
componentes, obtained by taking Laplace transform of (A. I) and 
(A.2) appropriately, are given by: 

G1µ 1r 
'2 

µI e 4t 
E ,(t)= -

z 4rr t 
(A.3) 

a1µ1 r' 2 

I 4t H<t>, (t) = --- e 
21r r' (A.4) 
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Figure I : A permeable conducting infinite cylinder in a conducting 
infinite space. The line source is located at S (r

0 
<{>

0
) outside 

the cylinder. ' 
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Fig 2 

Branch cut c 
F 

GEOFISICA INTERNACIONAL 
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Figure 2: Integration contour in complex S plane. Branch cut is 
along negative real s axis and -7T < arg s ~ 1r . No poles lie 

inside and upon the closed con tour. 
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