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Significance estimation for the Kullback-Leibler divergence: the Poissonian case 
in seismological studies
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Abstract

The Kullback-Leibler divergence, κ, is a widely used measure of the difference between an observed 
probability distribution and a reference one; κ=0 when the two distributions are equal, but it has no 
upper limit to help interpret the significance of any other κ value. Using as an example the problem 
of distinguishing clustering or gaps in the time occurrence of earthquakes from seismicity uniformly 
distributed in time, a Monte Carlo method for evaluating the significance of a particular κ value is 
presented, a method that takes into account the number of classes in the distributions and the length 
of the sample. Application of this method yields a probability according to which the hypothesis of 
the observed distribution being a realization of the reference one can be discarded or accepted with a 
quantitative degree of confidence. This method, and two possible reference values, are presented using 
the Poisson distribution as an example, but they can be used for other reference distributions.

Resumen

La divergencia Kullback-Leibler, κ, es una medida ampliamente usada de la diferencia entre una distri-
bución de probabilidad observada y otra distribución de referencia; κ=0 cuando ambas distribuciones 
son iguales, pero no tiene un valor tope que permita interpretar la significatividad de cualquier otro valor 
de κ. Usando como ejemplo el problema de distinguir cúmulos o vacancias en la ocurrencia temporal 
de sismos de sismicidad distribuida con probabilidad uniforme en el tiempo, se presenta un método de 
Monte Carlo para evaluar la significatividad de algún valor de κ, método que toma en cuenta el largo 
de la muestra. Este método y dos posibles valores de referencia son presentados usando la distribución 
de Poisson como ejemplo, pero pueden ser utilizados con cualquier otra distribución de referencia.
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Introduction
In many kinds of statistical studies, including seismological 
ones, it is a common task to compare some observed prob-
ability distribution P={pj; j=1,…,M} with some reference 
distribution Π={πj; j=1,…,M}, and the difference between 
them is often measured by using the Kullback-Leibler di-
vergence (K-L) κ:
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(Kullback and Leibler, 1951; Eguchi and Copas, 2006). 
This measure is zero when P=Π, but it does not have a 
fixed upper limit; it can be infinite when one or more πj’s are 
zero and the corresponding pj’s are not (Lin, 1991; Shlens, 
2007), but, for a reasonable reference distribution with no 
unbalanced zeros, how large can it be?  It is necessary to 

have a reference value in order to assess the significance of 
any result other than zero.

In what follows, we will present a method for evaluating the 
confidence that can be had about two distributions being sim-
ilar, based on a K-L measure, using a seismological example.

In assessing seismic hazard for a given region a common 
tool is to look for clustering or gaps in the times of occurrence 
of earthquakes above a given magnitude in the background 
seismicity, because those features may be precursors to a 
large earthquake. If the observed seismicity appears to show 
clusters or gaps, to assess their significance it is necessary 
to test whether they may be due to random concentrations 
in events occurring with uniform probability over time, i.e. 
to test the observations versus the null hypothesis. 

One way to test the null hypothesis is to use the well 
known fact that if events are occurring randomly with uni-
form probability in time at a rate of λ events per unit time, 
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Figure 1. Times of occurrence 160 earthquakes with Gutenberg-Richter distributed magnitudes over a period of 60 years (top), number of 
earthquakes per year for each year (middle), and (bottom) histogram of numbers of earthquakes per year (blue line) and expected frequencies 
of earthquakes per year from the Poisson distribution.

then the number of events n occurring within intervals of 
a given length T are distributed according to the Poisson 
distribution:

 Pr( , )
!

n T e
T
n

T
n

=
( )−λ λ  (2)

(e.g. Mack, 1967; Dekking et al., 2005; Boxma and Yechi-
ali, 2007), so we will compare the distribution of observed 
n’s with the Poisson distribution using the K-L divergence.

Significance of the K-L measure
Suppose that the times of occurrence of Ne=160 earthquakes 
ocurred over a period Ny=60 years have been observed, as 
shown in Figure 1 (top), which gives an occurrence rate 
λ=2.6̅6̅6̅6̅6̅ events/year, and , for the sake of simplicity, let 
us consider yearly intervals so T=1.0 yr in (2).  Figure 1 
(middle) shows the number of events per year, n, for each 
observed year, and (bottom) the corresponding histogram, 
as well as the expected number of events from the Poisson 
distribution.

The two distributions are not equal but, quantitatively, 
how different are they? We will measure their divergence 
using K-L. Observed probabilities are estimated from the 
histogram as 
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Figure 2. Observed distribution of n and corresponding values from 
the Poisson distribution (red diamonds) for λ=2.6̅6̅6̅6̅6̅ events/year 
indicated by the vertical dashed line. The K-L divergence between 
the two distributions is κ=0.1870.
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where Nn is the observed number of incidences of n events/
year and nmax is the maximum observed n. We will compare 
this observed probability distribution with the reference
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as shown in Figure 2.
To evaluate the K-L divergence between these two dis-

tributions, although the Poisson distribution is non-zero for 
an infinite number of terms, the summation in (1) is only 
done from 0 to nmax, because P can be considered equal to 
zero for n>nmax and terms with pn=0 do not contribute to 
the summation.

The K-L evaluation yields κ=0.1870, but, what does this 
number mean (apart from the distributions not being equal)?  
Here, it must be considered that, as is common for seismo-
logical studies, particularly those involving large magnitudes, 
the observed distribution comes from only one very short 
realization consisting of only Ny=60 events.

Let us estimate how probable is the observed κ for sam-
ples of size Ny of a Poisson process. We will do this through 
a Monte Carlo simulation (Yakowitz, 1977; Rubinstein 
and Kroese, 2016) of Nr=100,000 realizations of synthetic 
samples of Ny Poisson distributed numbers n; the divergence 
κ between the resulting distribution P and Π from (3) is 
evaluated for each realization. 

The probability distribution f(κ) resulting from the 
simulation is shown in Figure 3 (top), the distribution has 
mean μκ=0.1066 and standard deviation σκ=0.0499, and it 
is clear that the probability that a 60 samples long random 
realization of a Poissonian process actually results in κ=0 is 
extremely small. Indeed, if the sampled process were indeed 
Poissonian, instead of  κ=0, a value around κ=0.082 would 
be much more probable.

The cumulative F(κ) in Figure 3 (bottom) shows the ob-
served κ=0.1870, and gives Pr(κ≥0.1870)=0.0664, so the 
possibility of the null hypothesis, that the observed seismicity 
occurred with uniform probability in time, can be rejected 
with 0.9336 confidence. This number constitutes a firm basis 
for the decision of whether to reject the null hypothesis or 
not; in this case the observed seismicity is, with high prob-
ability, not distributed uniformly in time, although the null 
hypothesis cannot be rejected at the widely used significance 
level of 0.05. It should be pointed out that this confidence 
estimation takes into account the sample length.
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Other reference measures
We have presented a practical way for assessing the signifi-
cance of a K-L measurement. Now, just for argument’s sake, 
let us consider two other reference measures.

First, consider the uniform distribution, which is a com-
mon reference because it has the highest entropy (Shannon, 
1948), with probabilities 
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shown as circles in Figure 4 (left). The K-L divergence 
between the uniform and Poisson distributions for nmax=9 
is κU=1.22055, much higher than the value for our example 
distribution and has a probability value of nearly zero.

The second reference distribution is the “opposite” dis-
tribution to Poisson: 
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where πmax is the maximum value of the Poisson distribution. 
It is an inverted and normalized Poisson as shown by circles 
in figure 4 (right). The K-L divergence for the opposite dis-
tribution is κO=2.82680, and it is considerably higher than 
the observed κ and the reference κU; its divergence is not 
the highest possible between the Poisson distribution and 
another distribution of the same length, but it is the most 
different distribution in an intuitive way.

Of course, both reference values should be estimated for 
the same n range as that of the observed distribution (they 
increase with the length of the range), and may not be very 
useful because they have very large κ values with vanish-
ingly small probabilities, but still they are  better reference 
values than infinity.

Figure 3. Distribution of κ values from the Monte Carlo simulation (top), ∆κ is the class width, the dashed thick vertical line indicates the 
mean μκ of the Nr=100,000 realizations, and the thin dashed vertical lines indicate plus/minus one standard deviation σκ from the mean. 
Cumulative κ distribution (bottom), the dashed black line is μκ, and the dotted red line indicates the observed κ=0.1870. 
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Figure 4. Poisson distribution for λ=2.6̅6̅6̅6̅6̅ events/year, and nmax=9, indicated by red diamonds, and the uniform (left) and opposite (right) 
reference distributions. 

Discussion
We presented a method of estimating significance levels as-
sociated with measures of the K-L divergence, and proposed 
two possible reference values. The Poisson distribution was 
used as an example, but the method is applicable to any other 
reference distribution.

The Monte Carlo evaluation of the significance of a 
κ value illustrates quite clearly the problem of having to 
work with small samples, which is unfortunately the case 
with many studies in statistical seismology, due to the rel-
ative shortness and heterogeneity of the seismic catalogs, 
particularly for studies dealing with large earthquakes. One 
of the advantages of the proposed method is that it takes 
into account variations caused from samples that are but 
small realizations of a stochastic process. In the example 
presented here we showed that a Ny=60 long sample from 
a true Poissonian process has almost null probability of re-
sulting in κ=0, because for that sample length the κ values 
are distributed with mean μκ=0.1066 and standard deviation 
σκ=0.0499, while samples of Ny=120 have μκ=0.0561 and 
σκ=0.0255, and for Ny=180 μκ=0.0384 and σκ=0.0171 (all 
for equal λ). Hence, κ values cannot be correctly interpreted 
without taking into account the sample length, something 
that our proposed method does implicitly.

The method proposed here can be a useful tool in studies 
of seismic hazard, where it is essential to distinguish, with 
a quantitative bas     is, between an apparently anomalous 
distribution being observed and the null hypothesis. 
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