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Resumen

El método de co-simulación estocástica espacial, basado en cópulas, es un método general que permite 
simular variables con cualquier tipo de dependencia y funciones de distribución de probabilidad. Esta 
flexibilidad proviene del uso de un modelo de cópula para la representación de la función de distribución 
de probabilidad conjunta. El método se ha implementado principalmente a través de un enfoque no pa-
ramétrico utilizando cópulas de Bernstein y se ha aplicado con éxito para la simulación de propiedades 
petrofísicas usando atributos sísmicos elásticos como variables secundarias. En el presente trabajo este 
método se implementa mediante otros dos enfoques: paramétrico y semi-paramétrico. Específicamente, 
para el enfoque paramétrico se usa la familia de cópulas Arquimedianas. Primero, el enfoque paramétrico 
se valida con un caso publicado y luego se realiza una comparación de los tres enfoques en términos de 
precisión y rendimiento. Los resultados mostraron que el enfoque paramétrico es el que peor reproduce 
las estadísticas de los datos y presenta mayor incertidumbre con un menor costo computacional, mien-
tras que el enfoque no-paramétrico resultó el que mejor reproduce la dependencia de los datos a un alto 
costo computacional. El enfoque semi-paramétrico reduce un 10% el costo computacional respecto al 
no-paramétrico, pero se degrada significativamente su precisión.

Abstract

The spatial stochastic co-simulation method based on copulas is a general method that allows simulat-
ing variables with any type of dependency and probability distribution functions. This flexibility comes 
from the use of a copula model for the representation of the joint probability distribution function. The 
method has been mainly implemented through a non-parametric approach using Bernstein copulas 
and has been successfully applied for the simulation of petrophysical properties using elastic seismic 
attributes as secondary variables. In the present work this method is implemented through two other 
approaches: parametric and semi-parametric. Specifically, for the parametric approach the family of 
Archimedean copulas is used. First, the parametric approach is validated against a published case, and 
then a comparison of the three approaches in terms of accuracy and performance is made. The results 
showed that the parametric approach is the one that reproduces the data statistics worse and presents 
greater uncertainty with a lower computational cost, while the non-parametric approach was the one that 
best reproduces the dependence of the data at a high computational cost. The semi-parametric approach 
reduces the computational cost by 10% compared to the non-parametric approach, but its accuracy is 
significantly degraded.
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1. Introduction 
One of the most common problems of reservoir geologi-
cal-petrophysical modeling workflow (Cosentino, 2001) 
consists in predicting petrophysical properties considering 
the dependency relationships with the seismic attributes. For 
this purpose, different methods and approaches have been 
used, ranging from empirical relationships (Diaz-Viera et 
al., 2006), regression methods, neural networks (Parra et al., 
2014), (Iturraran-Viveros & Parra, 2014) to spatial stochastic 
models. The latter being more flexible since they better re-
produce the statistical and spatial behavior of petrophysical 
properties(Pyrcz & Deutsch, 2014).

In the last decade, various spatial stochastic simulation 
methods, also known as geostatistical simulation methods, 
have been developed. Among the most used are: Monte 
Carlo simulation (Bosch et al., 2007), (Oh & Kwon, 2001) 
and (Grana, 2014), sequential indicator simulation (Caers 
et al., 2000), direct simulation (Azevedo & Soares, 2017) 
or sequential Gaussian simulation whose methods are 
widely developed in the works of (Chilès & Delfiner, 1999), 
(Dubrule et al., 2003), (Bortoli et al., 1993) and (Pyrcz & 
Deutsch, 2014). 

The disadvantage of most of these methods is that they 
assume that the data follow Gaussian distributions and 
that the dependency relationships between them are linear, 
which makes their application to real problems very limited. 
In the best case, it is forced to be applied by data transfor-
mation, which produces biased results when they are back 
transformed.

The copula-based spatial stochastic co-simulation method 
was proposed by (Diaz-Viera et al., 2017) as an alternative 
to the aforementioned simulation methods. This method can 
be basically divided into two steps. Firstly, a dependence 
model between the primary and secondary variables is es-
tablished by estimating and modeling the joint cumulative 
probability distribution function (CPDF) using a copula. 
The CPDF model is used in conjunction with a variogram 
(spatial correlation) model to simulate the primary variable 
using the second one as a conditioning variable. This last 
step can be done in a global optimization framework using 
one method, such as simulated annealing, but other methods, 
such as genetic algorithms, can also be applied.

Recently, the copula-based simulation method was 
successfully applied for the prediction of petrophysical 
properties using seismic attributes as a secondary variable 
in (Le, 2021), (Le et al., 2020), (M. Díaz-Viera et al., 2018), 
(Vázquez, 2018).  But in these works, the method was im-
plemented using a non-parametric approach with Bernstein 
copulas. The non-parametric approach has the disadvantage 
that it requires a high computational cost, especially when 
calculating the joint probability distribution function esti-
mated with the Bernstein copula.

In this work it is proposed to use a parametric copula 
model, through the implementation of Archimedean copula 
family. This approach is expected to reduce the computa-
tional cost. The paper aim is to compare the parametric, 
semi-parametric and non-parametric approaches in terms of 
precision and performance. The comparative study is carried 
out through the application to two case studies in a marine 
reservoir in the Gulf of Mexico, where the total porosity and 
the density are simulated by means of the acoustic impedance 
and the P-wave velocity as secondary variables, respectively.

The paper has the following structure. First, the copu-
la-based spatial stochastic co-simulation method is briefly 
described, distinguishing between non-parametric, semi-para-
metric and parametric approaches. In particular, the members 
of Archimedean copula family are defined. An outline of the 
method application workflow is provided. Subsequently, the 
validation of the method is carried out by applying it to a 
previously published case study and the three approaches are 
compared. Finally, the parametric approach is applied to a 
new case study and the conclusions are given. In appendices, 
the definition of copula and its basic properties, as well as the 
Bernstein copula simulation method description are shown.

2. Copula-based spatial stochastic co-simulation 
method
Copula-based spatial stochastic co-simulation had its origins 
in the works of (Diaz-Viera & Casar-González, 2005), (Erde-
ly et al., 2012) and (Hernandez-Maldonado et al., 2014). The 
method has the advantages of not requiring linear dependence 
or a specific type of distribution and has been successfully 
applied to simulate petrophysical properties using seismic 
attributes as a secondary variable. The method has been 
implemented mainly by a non-parametric approach using 
Bernstein copulas, where the copula is estimated using the 
empirical copula and the variables are interpolated using 
Bernstein polynomial function (Appendix 10.2). 

However, there are two more approaches that have not 
been sufficiently explored and used in the dependency model 
estimation: semi-parametric and parametric approaches. The 
semi-parametric approach estimates margins non-parametri-
cally using empirical distribution functions and parametric 
copula is estimated (Jaworski et al., 2010) or the margins 
are estimated using parametric functions and the copula is 
estimated non-parametrically. The parametric approach uses 
different parametric distribution functions that are selected 
and best fit the petrophysical property or seismic attribute 
and then couple them within the parametric copula. 

The difference between the non-parametric, parametric 
and semi-parametric approaches lies in the estimation pro-
cedure. In the non-parametric approach, the behavior of the 
joint sampling distribution function is adapted by means of a 
polynomial approximation, reducing the estimation variance. 
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In the parametric approach, the data samples are fitted to 
copula models and parametric probability distribution func-
tions. While the semi-parametric approach is a combination 
of the two previous approaches, and therefore, there are two 
options: parametric copulas with non-parametric marginals, 
or non-parametric copulas with parametric marginals. There-
fore, if the joint distribution function that allows relating 
two or more petrophysical properties and seismic attributes 
in terms of their dependence is generated, it is possible to 
obtain more consistent simulations with their data sample 
statistics without having to assume a specific distribution 
or dependency. In the following subsections the parametric 
joint distribution functions are analyzed, especially the Ar-
chimedean copula family.

2.1 Parametric copula approach
The parametric copulas are a classification of copula whose 
advantage is to use the parameters of the joint function to 
control the dependence. There are three great parametric 
copula families: elliptical, Archimedean and extreme values 
(Joe, 2014). 

The elliptical copulas are recommended when the depen-
dence model is derivated from elliptical distributions and 
the symmetry should be elliptical respect to the diagonal 
(Shemyakin & Kniazev, 2017). Gaussian and t-copula are 
examples of elliptical copulas.

The extreme value copulas are based on random vectors 
distributed according to multivariate extreme value distri-
butions. Galambos, Hüstle-Reis and Tawn are examples of 
extreme values copulas (Hofert et al., 2019).

Archimedean copulas are the most used copulas because 
they are easier for implementation, they just need one pa-
rameter θ to control the dependence and the differentiation 
and integration to obtain the generator and inverse is simple 
(Shemyakin & Kniazev, 2017). Frank, Gumbel and Clayton 
are examples of Archimedean copulas. 

2.1.1 Archimedean copulas
After describing the basic properties of copulas (Appendix 
10.1), it is necessary to study a class of copulas that will be 
useful for the development of Copula-based spatial stochas-
tic co-simulation: Archimedean copulas. These copulas are 
very useful alternatives because they are easy to build and 
there is a wide variety of families of copulas with interesting 
properties (Nelsen, 2006). 

	 C(u,v)=φ[-1](φ(u)+φ(v))	 (Eq. 1)

The (Eq. 1) is the Archimedean copula. The φ function 
is called copula generator. Consider that if φ(0)=∞ then φ 
is strictly generator, in that case φ[-1] =φ-1 and C(u,v)=φ[-1]  
(φ(u)+φ(v)) and is said to be strictly an Archimedean cop-

ula. Another important property is the Archimedean density 
copula (Eq. 2), this can be expressed through the generator 
and its derivatives as (Shemyakin & Kniazev, 2017):
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2.1.1.1 Clayton copula
This family of copulas has been used when the dependence of 
the tails is strong on the left and weak on the right. Generally, 
Clayton copula does not accept negative dependencies, the 
copula parameter θ is restricted into the region (0,∞), if the 
value of θ is zero, then the marginals become independent 
(Trivedi & Zimmer, 2007). Some members of Clayton copula 
can be implemented in models with negative dependencies; 
however, its use is not suggested under those conditions 
because the copula is not strict and it can violate the region 
restriction; reflecting the shape of the countermonotocity 
copula as the value of θ approaches -1, which itself is not an 
Archimedean copula. It cannot properly capture the negative 
dependency nor estimate the value of the parameter θ special 
conditions are needed to guarantee that the copula is strict 
(Cooray, 2018). The Clayton copula that can be evaluated 
in negative dependencies is defined as:

C u vθ
θ θ θ θ,( ) −( ) ∈ −[ ]∪− − −1 0 1 0 0

1

    ,,∞( )

⏟

⏟
(Eq. 3)

Whose generator is:

	 θ
θt t t( ) = −( )−1 1φ

	 (Eq. 4)

2.1.1.2 Frank copula
This family of copulas is well known because it can be used 
in models with positive and negative dependencies between 
their marginals, it is a symmetric copula on both tails and 
includes both Frechet limits throughout the region (–∞,∞). 
The disadvantage of Frank's copula is that the dependency 
tends to be weak in the tails and strong in the central part of 
the marginals; therefore, it is recommended to use this type 
of copula if the dependency model exhibits tails with low 
dependency (Trivedi & Zimmer, 2007). The Frank copula 
is defined as:
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Whose generator is:
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φ 	 (Eq. 6)

2.1.1.3 Gumbel-Hougaard copula
This family of copulas, like Clayton's copula, does not allow 
negative dependencies. The parameter θ is restricted to the 
interval [1,∞), if the value is 1 the copula is considered 
independent, if the value of θ is ∞ it is a countermonotoc-
ity copula or upper Frechet limit. Gumbel copula exhibits 
strong dependence on the tails located on the right and weak 
on left tails, therefore, it is recommended when the highest 
values of the sample have strong dependence, while the low 
values have less dependency (Trivedi & Zimmer, 2007). The 
Gumbel-Hougaard copula is defined as:

C u v u vθ
θ θ θ( , ) exp ln ln= − − ( )( ) + − ( )( )( )

1

       θ ≥1	 (Eq. 7)

Whose generator is:

	
θt t( ) = − ( )( )lnφ 	 (Eq. 8)

2.1.1.4 Joe copula
This copula family is based on Sibuya distribution LT (Joe, 
2014). It only works with positive dependence and the 
goodness of fit is reasonably well when it is applied to small 
samples with moderate dependence (Hofert et al., 2019). 
The Joe copula is:

C u v u v u vθ
θ θ θ θ θ,( ) = − −( ) + −( ) − −( ) −( )( ) ∈ −∞1 1 1 1 1 1

1

   [[ ]

(Eq. 9)

And the generator is:

	 	 (Eq. 10)

3. Method application workflow
The workflow follows the next steps:

1.	 Exploratory data analysis: this step studies the 
variable using statistical properties, histograms and 
scatter plot.

2.	 Variographic analysis: this step consists in estimating 
and modeling a spatial correlation function, as the 
variogram, from a random function sample (M. A. 
Díaz-Viera, 2002).

3.	 Marginal estimation and model fitting: for this step 
the variable is fitting using parametric probability 
functions, the best option is selected considering the 

result of log-likelihood, Akaike information criteria 
(AIC) and Bayesian information criteria (BIC). In 
case of (AIC) and (BIC) criteria, the parametric 
function with the lowest value will be the best fit, 
while the log-likelihood with the highest criterion 
value is the best fit. However, it is advisable to use 
graphical tools to assess whether the fit is adequate, 
therefore, the fit criteria must be confirmed using 
the histogram, the cumulative histogram and the 
cumulative distribution function.

4.	 Parametric copula estimation and model fitting: 
This step uses the results obtained in step 3 and the 
bivariate samples to estimate and select the best 
Archimedean copula model. The estimation is de-
veloped using maximum likelihood (MLE), Kendall 
inversion τ (ITau) and Spearman inversion ρ (IRho) 
(Hofert et al., 2019).

5.	 Well-log simulation uses the joint probability distri-
bution function using simulated annealing.

6.	 	Compare the statistics and the spatial distribution 
between the variables (step 1) and the simulated 
variables obtained in step 5.

This algorithm is implemented using the RGEOSTAD 
tools (M. A. Díaz-Viera et al., 2021) and GSLIB (Deutsch 
& Journel, 1998).

4. Method validation
To implement the stochastic simulation using parametric, 
semi-parametric and non-parametric copulas, the Lakach-1 
geophysical well logs are taken. This well crosses the Miocene 
turbiditic system. This system is important due to unasso-
ciated fields discovered in this unit; the unit is divided into 
three sections: Lower Miocene, Middle Miocene and Upper 
Miocene. The age of interest of this implementation is the 
Lower Miocene, in this zone the flow goes from southwest to 
northeast with some dominant channel systems. The rocks are 
medium-grained sandstones; evidence of volcanic material, 
feldspars, quartz and some metamorphic fragments were also 
found. The rock is poorly consolidated and mineralogically 
immature; the porosity ranges from 12 to 28% (Arreguin-Lo-
pez et al., 2011). The interval to be evaluated is from 3035 to 
3404.5 meters with a sampling interval of 0.1 meters.

4.1 Exploratory data analysis
Analyzing the geophysical well logs, the best option is the 
bivariate case (Ip, ϕt). The Figure 1 shows the well log plots.

The statistics are in Table 1, both well-logs have 3696 
samples. The total porosity well-log (ϕt) has difference 
between the mean and the median is -0.0075, which is very 
low. Regarding the box plot (Figure 2, green histogram), 
most of the outliers are to the left of the graph.  Meanwhile 
the impedance acoustic well log (Ip), the difference between 

( 
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the mean and the median is 158.7265, it indicates that it has 
positive skewness, which is possibly caused by the large 
number of outliers located to the right of the graph (Figure 
2, blue histogram).

Table 1. Basic statistics of total porosity (ϕt) and acoustic imped-
ance (Ip).

Statistics ϕt Ip
Samples 3696 3696
Minimum 0.0620 5086.0072
1st quartile 0.2147 6157.0051
Median 0.2295 6809.5573
Mean 0.2219 6968.2838
3rd quartile 0.2414 7321.6169
Maximum 0.2939 11661.4642
Range 0.2319 6575.4569
Interquartile range 0.0267 1164.6118
Variance 0.0011 1310302.94
Standard deviation 0.0337 1144.6846
Skewness -1.8109 1.5616
Kurtosis 6.9969 5.7657

The dependency measures and the scatter plot of (Ip, ϕt) 
is in Figure 2, this shows good dependence. The Spearman 
measure is -0.7107, Kendall -0.5335 and Pearson -0.8563

4.2 Variographic analysis
In this step the variogram of ϕt is estimated using three mod-
els: exponential, Gaussian, and spherical. The best model 
selected is spherical with sill 0.0011, range 16 meters and 
nugget 0 (Figure 3). This model will be used to obtain the 
simulations using the simulated annealing method.

Figure 1. ϕt (left) and Ip (right) geophysical well logs.

Figure 2. (Ip, ϕt) scatter plot and dependence measures.

Figure 3. ϕt variogram model
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4.3 Parametric modeling of the marginal CDF
The (lp, ϕt) samples are fitted in parametric probability 
distribution function that allows to represent it. The Akaike 
information criteria (AIC), Bayesian information criteria 
(BIC) and log-likelihood are used to select the best option.  

4.3.1 Total porosity CDF modeling
For this variable, the gamma, beta, normal, logistic, lognor-
mal and Weibull functions were tested. The goodness of fit 
results for ϕt is in Table 2 which shows the best option is 
Weibull function, followed by the normal function. As can 
see in the Figure 4, the functions cannot cover the entire his-
togram, only a large part of the central area, the lower values 

located to the left of the histogram are omitted Figure 4(A). 
This is confirmed in the cumulative histogram Figure 4(B), so 
it is possible that the results obtained in the simulation give 
greater importance to the largest values and not so much to 
the minimum values reported during the univariate analysis.

4.3.2 Acoustic impedance CDF modeling
This estimation uses the following functions: gamma, normal, 
logistic, lognormal and Weibull, the goodness of fit results 
for Ip is in Table 3, the best function for Ip is lognormal, 
gamma function is very close to lognormal and maybe that 
function could be a good option, however, the lognormal 
function is taken.

Table 2. Goodness of fit results for ϕt

Function Parameter Error Parameter Error Likelihood AIC BIC
Weibull α = 5.164 0.129 λ = 0.220 0.0010 1791.958 -3579.91 -3569.90
Normal μ = 0.205 0.001 σ = 0.040 0.0010 1747.720 -3491.45 -3481.43
Logistics μ = 0.210 0.001 β = 0.028 0.0002 1735.720 -3467.45 -3457.44
Beta α = 11.662 0.489 β = 45.080 1.9240 1685.870 -3367.75 -3357.74
Gamma k = 13.994 0.588 β = 67.980 2.9130 1660.400 -3316.80 -3306.79
Lognormal Logμ=-1.610 0.008 Logσ=0.280 0.0060 1598.540 -3193.09 -3183.08

Table 3. Goodness of fit results for Ip

Function Parameter Error Parameter Error Likelihood AIC BIC
Lognormal Logμ=8.905 0.005 Logσ=0.190 0.004 -9562.235 19128.47 19138.48
Gamma k=26.558 0.411 β=0.003 5.03e-5 -9586.137 19176.27 19186.28
Normal μ=7513.696 45.850 σ=1521.670 32.406 -9647.394 19298.79 19308.80
Logistics μ=7317.655 45.170 β=858.563 21.770 -9653.742 19311.48 19321.50
Weibull α=4.963 0.108 λ=8153.500 52.592 -9710.083 19424.17 19434.18

Figure 4. Histogram (A) and empirical CDF (B) with the best-fit probability functions for the total porosity ϕt
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Table 4. Fitted values for parameter θ 

Copula Method Parameter θ Error

Clayton ITau -0.86 0.006

Clayton IRho -0.92 0.006

Frank ITau -15.22 0.030

Frank MLE -15.04 0.443

Frank IRho -14.03 0.664

Figure 5. Histogram (A) and the empirical CDF (B) with the best-fit probability functions for the acoustic impedance Ip

As ϕt variable, all functions fail to cover the entire 
histogram Figure 5(A). Notice that the highest values are 
not covered. If the cumulative histogram in Figure 5(B) is 
examined, the interval 6000 to 7000 has good approximation 
to empirical function.

4.4 Copula parametric modeling
After selecting the best-fit marginal probability functions, 
the best-fit parametric copula is sought. Considering the 
dependence model has negative dependencies, it is necessary 
to omit the Gumbel-Hougaard copula because it is not valid 
on negative dependencies, Clayton copula can be calculated 
in negative dependencies only if the parameter estimation 
method is semi-parametric, for this reason the Kendall in-
version τ (ITau) and Spearman inversion ρ (IRho) is used. 
To select the best joint distribution function, the error or 
standard deviation and the graphs in the Figure 6 are used. 
Examining the information in Table 4, the best option is 
Clayton copula (Figure 6(A)). However, using this function 
could omit the values that are outside its coverage area, 
therefore the Frank's copula with the parameter estimated by 
maximum likelihood method (MLE) is used (Figure 6(B)).

Figure 6. (A) Clayton copula, (B) Frank copula obtained with 
semi-parametric and parametric estimation.
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4.5 Conditional joint simulation of total porosity with 
acoustic impedance.
After selecting the best parameters for the joint probability 
distribution function, a considerable number of pairs (Ip,ϕt) 
are simulated, it is proposed to simulate 40,000 observa-
tions based on the best estimate selected. The simulation 
samples under the parametric approach are very fast, less 
than a second. Considering the information in comparative 
Table 5, the case of ϕt simulated and ϕt variable has differ-
ence in the minimum values of 0.01 and maximum 0.007; 
in the case of mean and median, their differences are even 
lower. Therefore, it can be considered that the probability 
distribution function is representative. With the case of Ip, 

the difference in the minimum and maximum values have 
considerable differences, however, the mean and median 
values are very close to each other. 

In comparison, the dependency measures obtained from 
the simulated samples appear to be quasi linear, however this 
may be due to the large number of samples. Regarding the 
comparison in the scatter plots (Figure 7), it is noted that 
the joint probability distribution function fails to adequately 
sample the area located in the interval Ip (10000,12000) ϕt 
(0.05,0.15). Sampling is abundant in the central part of the 
data sample (red dots), which is to be expected given the 
properties of Frank's copula (black dots).

4.6 Total porosity spatial simulation
The total porosity ϕt is simulated using simulated annealing 
method, the GSLIB package (Deutsch & Journel, 1998) was 
used for the implementation. The variogram estimated for 
ϕt (Figure 3) is used as objective function and considered 
100 realizations. The results are shown in the comparative 
Table 6. The minimum, maximum, mean and median values 
have low differences, not greater than 0.01.

Superimposing all realizations (Figure 8 (A)) dispersion 
in the interval 3200 to 3330 meters is noted.

5. Comparison between parametric, non-parametric 
and semi-parametric based copula simulations.

5.1 Non-parametric copula simulation.
The comparison with the non-parametric approach is made 
using a Bernstein copula for the estimation of the joint 
probability distribution function. The same data set (Ip, ϕt) 
is used for its implementation. As in the parametric case, 

Table 5. Comparative between (Ip, ϕt) data sample and simulated using parametric copula approach.

Statistics ϕt ϕt simulated Ip Ip simulated
Samples 3696 40000 3696 40000
Minimum 0.0620 0.0316 5086.0072 3018.2752
1st quartile 0.2147 0.1767 6157.0051 6492.1272
Median 0.2295 0.2089 6809.5573 7376.3306
Mean 0.2219 0.2065 6968.2838 7511.1841
3rd quartile 0.2414 0.2388 7321.6169 8377.4856
Maximum 0.2939 0.3548 11661.4642 15836.6388
Range 0.2319 0.3233 6575.4569 12818.3636
Interquartile range 0.0267 0.0620 1164.6118 1885.3584
Variance 0.0011 0.0020 1310302.9400 2099141.1700
STD 0.0337 0.0455 1144.6846 1448.8413
Skewness -1.8109 -0.2597 1.5616 0.6097
Kurtosis 6.9969 2.9036 5.7657 3.7259

Figure 7. (Ip, ϕt) samples (red dots), (Ip, ϕt) simulated using para-
metric copula approach (black dots).
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Table 6. Statistics obtained from ϕt data sample, 100 realizations, best realization and their differences using parametric approach.

Statistics ϕt data sample ϕt 100 realizations Difference 100 
realizations ϕt best realization Difference best 

realization
Samples 3696 369600 3696
Minimum 0.0620 0.0541 0.0079 0.0707 -0.0087
1st quartile 0.2147 0.2071 0.0076 0.2071 0.0075
Median 0.2295 0.2284 0.0011 0.2284 0.0010
Mean 0.2220 0.2244 -0.0020 0.2244 -0.0024
3rd quartile 0.2414 0.2489 -0.0070 0.2487 -0.0072
Maximum 0.2939 0.3338 -0.0400 0.3102 -0.0162
Range 0.2319 0.2798 -0.0480 0.2394 -0.0075
Interquartile range 0.0267 0.0418 -0.0150 0.0416 -0.0148
Variance 0.0011 0.0014 -0.0003 0.0014 -0.0002
STD 0.0338 0.0375 -0.0040 0.0375 -0.0037
Skewness -1.8110 -0.8640 -0.9470 -0.8750 -0.9364
Kurtosis 6.9970 4.2437 2.7533 4.2437 2.7532

Figure 8. Well-log plots of A) 100 realizations of ϕt (green lines) with the well-log data values (black line), B) the ϕt best realization (green 
line) and C) the difference of the ϕt best realization with respect to the well-log data.
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40,000 samples using the Bernstein joint distribution function 
are simulated (Figure 11). 

Each step takes around 10 hours, which compared to the 
time of parametric copula estimate, is too much. However, 
the statistics obtained from this estimate are very close to 
data samples (Table 7), this is confirmed in the Figure 11, 
the samples simulated using Bernstein copula (green dots) 
are close to data sample.

100 simulations using the samples obtained from Bern-
stein copula are made. As shown, the spatial distributions 
(Figure 9) obtained using the Bernstein copula are even closer 

to the data sample distribution. However, the computational 
cost is high, the simulation of 40,000 samples can take hours.

5.2 Semi-parametric copula simulation.
This is formed using Bernstein copula and parametric mar-
ginals, the marginals are Lognormal (Ip) and Weibull (ϕt). 
The statistics obtained are close for Ip; ϕt has differences, 
especially in minimum and maximum (Table 9). Compar-
ing the scatter plot (Figure 11) the samples obtained with 
semi-parametric joint distribution function are between 
Frank copula and Bernstein copula. The computational cost 

Statistics ϕt ϕt simulated Ip Ip simulated
Samples 3696 40000 3696 40000
Minimum 0.0620 0.0620 5086.0072 5086.0072
1st quartile 0.2147 0.2147 6157.0051 6157.0052
Median 0.2295 0.2295 6809.5573 6809.5574
Mean 0.2219 0.2220 6968.2838 6968.2839
3rd quartile 0.2414 0.2415 7321.6169 7321.6170
Maximum 0.2939 0.2938 11661.4642 11661.4642
Range 0.2319 0.2318 6575.4569 6575.4570
Interquartile range 0.0267 0.0268 1164.6118 1164.6118
Variance 0.0011 0.0011 1310302.9400 1309980.6378
Standard deviation 0.0337 0.0338 1144.6846 1144.5439
Skewness -1.8109 -1.8212 1.5616 1.5617
Kurtosis 6.9969 7.0257 5.7657 5.7657

Table 7. Comparative between (Ip, ϕt) data samples and data simulated using non-parametric approach.

Statistics ϕt data sample ϕt 100 realizations Difference 100 
realizations

ϕt best realization Difference best 
realization

Samples 3696 369600 3696
Minimum 0.0620 0.0620 0 0.0622 -0.0002
1st quartile 0.2147 0.2154 -0.0006 0.2154 -0.0006
Median 0.2295 0.2295 0 0.2294 0.0001
Mean 0.2220 0.2220 0 0.2220 0
3rd quartile 0.2414 0.2413 0.0001 0.2412 0.0002
Maximum 0.2939 0.2938 0.0001 0.2868 0.0071
Range 0.2319 0.2318 0.0001 0.2246 0.0072
Interquartile range 0.0267 0.0259 0.0008 0.0258 0.0009
Variance 0.0011 0.0011 0 0.0011 0
STD 0.0338 0.0330 0.0008 0.033 0.0008
Skewness -1.8111 -1.9460 0.1349 -1.97 0.1590
Kurtosis 6.9970 7.4361 -0.4391 7.5698 -0.5728

Table 8. Statistics obtained from ϕt data sample, 100 realizations, best realization and their differences using non-parametric approach.
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Figure 9. Realizations (green) superimposing over ϕt (black), B) Best realization obtained and C) difference between well-log ϕt and best 
simulated ϕt.

Statistics ϕt ϕt simulated Ip Ip simulated

Samples 3696 40000 3696 40000

Minimum 0.0620 0.0298 5086.0072 5086.0072

1st quartile 0.2147 0.1967 6157.0051 6157.0052

Median 0.2295 0.2217 6809.5573 6809.5574

Mean 0.2219 0.2183 6968.2838 6968.2839

3rd quartile 0.2414 0.2459 7321.6169 7321.6170

Maximum 0.2939 0.3340 11661.4642 11661.4642

Range 0.2319 0.3042 6575.4569 6575.4570

Interquartile range 0.0267 0.0492 1164.6118 1164.6118

Variance 0.0011 0.0017 1310302.9400 1309983.8600

STD 0.0337 0.0411 1144.6846 1144.5453

Skewness -1.8109 -0.6140 1.5616 1.5617

Kurtosis 6.9969 3.8246 5.7657 5.7657

Table 9. Comparative between (Ip, ϕt) data sample and data simulated using semi-parametric approach.
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is 10% less than the Bernstein copula, but the statistics are 
not the same.

Comparing the 100 ϕt  simulations (Figure 10), the real-
izations are centered, this does not happen with the realiza-

tions obtained using Frank copula samples, but have more 
dispersion than the realizations obtained using the Bernstein 
copula samples, the statistics between data sample and data 
simulation are very close (Table 10). 

Figure 10. Realizations (green) superimposing over ϕt (black), B) Best realization obtained and C) difference between well-log ϕt and best 
simulated ϕt.

Statistics ϕt data sample ϕt 100 realizations Difference 100 
realizations

ϕt best realization Difference best 
realization

Samples 3696 369600 3696 3696
Minimum 0.0620 0.0608 0.0012 0.0637 -0.0017
1st quartile 0.2147 0.1979 0.0168 0.1978 0.0169
Median 0.2295 0.2216 0.0079 0.2215 0.0080
Mean 0.222 0.2182 0.0038 0.2181 0.0039
3rd quartile 0.2414 0.2453 -0.0039 0.2456 -0.0042
Maximum 0.2939 0.3226 -0.0287 0.3054 -0.0115
Range 0.2319 0.2617 -0.0298 0.2418 -0.0099
Interquartile range 0.0267 0.0474 -0.0207 0.0479 -0.0212
Variance 0.0011 0.0015 -0.0004 0.0015 -0.0004
STD 0.0338 0.0383 -0.0045 0.0382 -0.0044
Skewness -1.8110 -0.7330 -1.0780 -0.751 -1.0600
Kurtosis 6.9970 3.7493 3.2477 3.7789 3.2181

Table 10. Statistics obtained from ϕt data sample, 100 realizations, best realization and their differences using semi-parametric approach.
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As shown in Table 11, the non-parametric approach 
almost perfectly reproduces the existing dependency re-
lationship in the data sample, while the parametric and 
semi-parametric approaches either overestimate or under-
estimate it, respectively.

6. Application to case study: density vs. P- wave 
velocity
This example uses (Vp,ρ) well logs. The statistics (Table 
15) and the histograms of Vp (Figure 12, blue histogram) 

Figure 11. (Ip, ϕt) data samples (red dots), (Ip, ϕt) simulated using parametric copula (black dots), (Ip, ϕt) simulated using Semiparametric 
copula (blue dots) and (Ip, ϕt) simulated using non-parametric copula (green dots).

Pearson Spearman Kendall
Data sample -0.8563 -0.7107 -0.5335
Parametric 
approach -0.8886 -0.9306 -0.7649

Semiparametric 
approach -0.6780 -0.5074 -0.3671

Non-parametric 
approach -0.8481 -0.7073 -0.5303

Table 11. Comparison of (Ip, ϕt) dependency measures among the 
parametric, semi-parametric and non-parametric approaches with 
respect to the data samples.

Figure 12. (Vp,ρ) Scatter plot, Vp histogram (blue) and ρ histogram 
(green).
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and ρ (Figure 12, green histogram) show high asymmetry 
although the difference between median and median is low 
in both variables. This case has positive dependence (Figure 
12), but the dependence is less compared with the (Ip,ϕt) 
case. So, the use of Frank, Gumbel, Clayton and Joe copula 
is allowed.

 The variogram model estimated for ρ (Figure 13) is 
spherical with sill 0.0083, range 15 meters and nugget 
effect 0. 

The parametric estimation for ρ (Table 12) suggests the 
lognormal function as best option, but the cumulative distri-
bution functions in Figure 14 (B) shows all functions, except 
Weibull function has good fit. Gamma and normal functions 
have likelihood, AIC and BIC very close to lognormal.  

Now, the Vp variable goodness of fit results in Table 13 
shows gamma function as best option, Logistic and lognor-
mal are close to gamma function results, and the graphs in 

Figure 15 demonstrate that gamma and lognormal func-
tions have similar fitted.

Figure 13. ρ variogram model

Table 12. Goodness of fit results for ρ 

Function Parameter Error Parameter Error Likelihood AIC BIC

Lognormal Logμ =0.8130 0.009 Logσ =0.04 0.006 1845.260 -3686.52 -3675.11

Gamma k = 455.2500 13.650 β=201.60 6.050 1838.346 -3672.69 -3661.28

Normal μ = 2.2581 0.002 σ = 0.10 0.001 1822.310 -3640.63 -3629.22

Logistics μ = 2.2524 0.002 β = 0.06 0.001 1804.600 -3605.21 -3593.80

Weibull α= 20.278 0.303 λ = 2.31 0.002 1568.410 -3132.83 -3121.42

Figure 14. Histogram and theoretical densities (A) and empirical and theoretical CDF’s (B) of Goodness of fit results for ρ
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The fit copula results show Joe copula model as best 
option (Table 14). Gumbel copula could be a good option, 
but Joe copula can cover the pseudo-observations, especially 
the samples in the extremes (Figure 16). 

Simulating 40,000 samples from Joe copula, superim-
posing the results (Figure 17) the drop form of Joe copula 
samples is evident. The measures of dependences show 
Pearson values have difference of 0.02, but Spearman and 
Kendall measures are high. Other characteristic is the scatter 
of Joe copula samples, simulated samples are near to data 
samples. Comparing the variance and standard deviation in 

Table 13. Goodness of fit results for Vp 
Function Parameter Error Parameter Error Likelihood AIC BIC

Gamma k = 58.244 1.440 β = 0.018 0.0004 -16500.00 33004.01 33015.42

Logistic μ =3069.300 8.140 β = 224.63 4.0810 -16523.25 33050.51 33061.92

Lognormal Logμ = 8.039 0.002 Logσ =0.12 4.0800 -16523.44 32902.89 32914.30

Normal μ =3128.730 9.117 σ = 429.69 6.4470 -16617.57 33239.13 33250.54

Weibull α= 6.628 0.096 λ = 3325.87 11.3400 -16903.62 33811.24 33822.65

Figure 15. Histogram and theoretical densities (A) and empirical and theoretical CDF’s (B) of Goodness of fit results for Vp

Table 14. Fitted values for parameter θ 

 Copula Method Parame-
ter θ Error Loglikeli-

hood
Joe MLE 2.038 0.044 550.6
Gumbel MLE 1.643 0.028 522.6
Frank MLE 3.671 0.141 342.4
Clayton MLE 0.570 0.035 170.2

Figure 16. Joe copula estimated for (Vp,ρ)
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Table 15, the values are very close, this is not the same with 
the validation case, this could be an advantage of positive 
dependence.

The spatial distributions obtained to 100 simulations 
(Figure 18) show good covering except in the interval 3350-
3400, the variance in that range is high.

7. Conclusions
In the comparison between parametric, semi-parametric 
and non-parametric approaches of the spatial stochastic 
simulation method based on copulas, it is concluded that 
the parametric approach has a very low computational 
cost, since its execution lasts only a few seconds; while the 

semi-parametric and non-parametric approach can take up to 
hours. Given that the first approach involves analytic func-
tions in the calculation, while the second approach requires 
the calculation of the joint probability distribution function 
through the numerical approximation of the copula and its 
marginals with Bernstein polynomials. 

When comparing the numerical results, it can be veri-
fied that the parametric approach does not reproduce data 
statistics such as minimum, maximum, skewness and kur-
tosis with the same precision as the semi-parametric and 
non-parametric approach. The parametric approach presents 
a greater dispersion expressed by its variance, which means 
more uncertainty. This fact is due to it is practically im-

Figure 17. (Vp, ρ) samples (red dots), (Vp, ρ) simulated using Joe copula (black dots)

Statistics Vp Vp simulated ρ ρ simulated
Samples 3696 40000 3696 40000
Minimum 2448.0983 1619.7990 2.0085 1.8630
1st quartile 2785.1214 2843.1401 2.1835 2.1873
Median 3011.4426 3112.6668 2.2395 2.2568
Mean 3088.0889 3129.2969 2.2494 2.2590
3rd quartile 3273.1712 3398.5189 2.3062 2.3276
Maximum 4608.5457 5038.7143 2.6031 2.7328
Range 2160.4473 3418.9152 0.5946 0.8697
Interquartile range 488.0498 555.3788 0.1227 0.1402
Variance 165004.4920 168551.6370 0.0087 0.0110
Standard deviation 406.2074 410.5504 0.0934 0.1050
Skewness 1.2392 0.2460 0.6631 0.1302
Kurtosis 4.5799 3.0456 3.5973 3.0462

Table 15. Comparative between (Vp, ρ) data samples and simulated using Joe copula.
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possible to be able to represent the underlying dependence 
complexity between data with a parametric model, since the 
data is forced to fitting an analytical model depending of a 
single parameter, whereas the objective is to represent the 
real dependence complexity existing in the data, the latter 
only could be done by the non-parametric approach.

This indicates that it is advisable to use the parametric 
approach in cases with large data samples and limited com-
puting capabilities. This problem would be expected to occur 
when the method is applied in three spatial dimensions and 
when more than two variables are included in the multivar-
iate joint estimation as well. However, the non-parametric 
approach could be applied if the appropriate computational 
capabilities are available and predictions with less uncer-
tainty are required.
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Figure 18. Realizations (green) superimposing over ρ (black), B) Best realization obtained and C) difference between well-log ρ and best 
simulated ρ.
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only authorized to the National Hydrocarbons Commission.

9. Supplementary material
A pdf version of Jupyter notebook in R language is available 
in https://github.com/esmg-mx/Copula-Base-modelling 

10. Appendix

10.1 Appendix A: Copula definition and basic properties
As defined by Nelsen (2006), a copula is “a function that 
joins or couples multivariate distribution functions to their 
one-dimensional marginal distribution functions”. If want 
to use copulas in the field of statistics, use Sklar's theorem. 
Sklar's theorem is defined as: Let H be a joint distribution 
function with margins F and G. Then there exists a copula 
C such that for all (x, y) in R.
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	 H(x,y)=C(F(x),G(y))	 (Eq. A1)

If u=F(x) and v=G(y) are marginal distribution functions 
and C(u,v)=C(F(x),G(y)) is a valid distribution function, then 
for any copula C(u,v) its partial derivatives are 

∂
∂
C
u  and 

∂
∂
C
v  

exist for almost all (u,v) in [0;1]. Then ∂
∂ ∂

2C
u v

 and ∂
∂ ∂

2C
v u

 exist 
and are continuous on I 2. If this is true, the density function 
of the copula is

	 C u v C
u v

( , ) = ∂
∂ ∂

2

	 (Eq. A2)

And the joint probability density function of x and y is:

	 f x y C
u v

dF
dx

dG
dy

( , ) ( )
=
∂
∂ ∂

⋅ ⋅
2

	 (Eq. A3)

10.2 Appendix B: Bernstein copula simulation method
The Bernstein copula provides an estimate to the copula 
using the empirical copula and the Bernstein polynomials. 
If F(x) and G(y) are continuous, by elementary proba-
bility it is known that U=F(X) and V=G(Y) are continu-
ous Uniform(0,1) random variables, and the underlying 
copula C for the random vector (U,V) is the same copula 
corresponding to (X,Y), and by Sklar’s Theorem the joint 
probability distribution function for (U,V) is equal to FUV 
(u,v)=C(F(u),G(v))=C(u,v). Therefore, in case F(x)  and G(y) 
are known and FXY is unknown, if {(x1, y1 ),… ,(xn, yn)}  is 
an observed random sample from (X,Y), the set {(uk,vk )=(FX 
(xk ),FY (yk )) : k=1,…,n} would be an observed random sam-
ple from (U,V) with the same underlying copula C as (X,Y), 
and since C=FUV may use the (uk,vk) values (called copula 
observations) to estimate C as a joint empirical distribution:

	 ˆ ( , ) ,C u v
n u u v v

k

n

k k
= ≤ ≤{ }

=
∑1 1
1

	 (Eq. B1)

Strictly speaking, the estimation Ĉ is not a copula since 
it is discontinuous and copulas are always continuous.  If FX, 
FY, and FXY are all unknown (the usual case), then FX and FY 
are estimated by univariate empirical distribution functions:

	 ˆ ( ) ˆ ( )F x
n

F y
nx x x

k

n
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=
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       ∑∑ 	 (Eq. B2)

Now the set of pairs ( , ) ˆ ( ), ˆ ( ) : ,...,u v F x F y k nk k X k Y k= ( ) ={ }1   
is referred to as copula pseudo-observations. It is straight-
forward to verify that ˆ ( ) ( )F x

n
rank xX k k=
1  and ˆ ( ) ( )F y

n
rank yY k k=
1  

. In this case the concept of empirical copula, see (Nelsen, 
2006), is defined as the following function C In n: [ , ]2 0 1→ , 
where I i

n
i nn = =: ,...,0

⏟

⏟

, given by: 

	 C i
n

j
n nn rank x i rank y j

k

n

k k
, ,= ( )≤ ( ) ≤{ }

=

1 1
1

   ∑∑( ( 	 (Eq. B3)

Again, Cn is not a copula but it is an estimation of the 
underlying copula C on the grid	that may be extended to a 
copula on [0,1]2 by means of, for example, Bernstein poly-
nomials, as proposed and studied in Sancetta & Satchell 
(2004), which leads to what is known as a Bernstein copula 
non-parametric estimation Ĉ:[0,1]2 →[0,1] given by:
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(Eq. B4)

As summarized in Erdely & Diaz-Viera (2010) in order 
to simulate replications from the random vector (X,Y) with 
the dependence structure inferred from the observed data 
{(x1,y1 ),… ,(xn,yn )}  it has the following:

Algorithm 1
1.	 Generate two independent and continuous Uni-

form(0,1) random variates u and t.

2.	 Set v c tu= −1( )  where c v C u v
uu ( )
( , )

=
∂
∂

.

3.	 The desired pair is ( , ) ( ( ), ( ))x y Q u R vn n= where Qn

and Rn  are empirical quantile functions for X and 
Y, respectively.

For a value x in the range of the random variable X and a 
given 0<α<1 let y=φα (x) denote the solution to the equation 
P(Y ≤ y∣X = x)=α. Then the graph of y=φα (x) is the α-quantile 
regression curve of Y conditional on X=x. In Nelsen (2006) 
is proven that:

	 y C vu u F x v F yX Y
( ) ( ) ( ), ( )

≤
= =

P Y =X x= 	 (Eq. B5)

This result leads to the following algorithm to obtain the 
α-quantile regression curve of Y conditional on X=x:

Algorithm 2
1.	 	Set cu(v)=α.
2.	 	Solve for v the regression curve, say v=gα (u).
3.	 	Replace u by Q xn

−1( )  and v by R yn
−1( ) .

4.	 	Solve for y the regression curve, say y=φα (x).
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