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Resumen

En hidrología subterránea, el conjunto de 
filtros Kalman (EnKF) se acopla con modelos 
del flujo y transporte de agua subterránea para 
resolver el problema inverso. Se han propuesto 
varias extensiones del EnKF para mejorar su 
desempeño al tratar con campos aleatorios 
no multi-gaussianos de la conductividad 
hidráulica. Una de esas variantes es el EnKF 
con transformación de datos (tEnKF), el cual 
utiliza la anamorfosis gaussiana dentro de 
una etapa de condicionamiento. Aunque esta 
transformación se ha utilizado en el pasado 
para identificar conductividades hidráulicas, 
estudios previos han ignorado el riesgo de 
introducir un sesgo sistemático en la evolución 
espaciotemporal del campo de la carga 
hidráulica durante las etapas de pronostico 
que las etapas de condicionamiento podrían 
no corregir conforme trascurre el tiempo. 
Este artículo propone que la aplicación del 
tEnKF en medios porosos aleatorios generados 
sintéticamente debe tener en cuenta este 
riesgo incorporando en el conocimiento a priori 
una estructura de correlación multi-gaussiana 
para las conductividades y adoptando un 
campo de referencia con estructura de co-
rrelación asimétrica. Como un ejemplo de 
esta aplicación, en este artículo se identifican 
conductividades hidráulicas utilizando el tEnKF 
resolviendo un problema de flujo monofásico, 
unidimensional, en un medio poroso aleatorio 
continuo. Se utilizan conceptos comunes en 
geoestadística para explicar las hipótesis en las 
que se basan el EnKF y el tEnKF y también para 
establecer un vínculo claro entre el tEnKF y la 
simulación estocástica de campos aleatorios 
condicionales.

Key words: Simulación estocástica, campos 
aleatorios condicionales, anamorfosis gaussia-
na, problema inverso, campos aleatorios no 
multi-gaussianos.
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Abstract

In subsurface hydrology, Ensemble Kalman 
Filtering (EnKF) has been coupled with 
groundwater flow and transport models to 
solve the inverse problem. Several extensions 
of the EnKF have been proposed to improve 
its performance when dealing with non-multi-
Gaussian random field models of the hydraulic 
conductivity. One such variant is the EnKF 
with transformed data (tEnKF), which uses 
Gaussian anamorphosis within a conditioning 
step. Although this transformation has 
been used in the past to identify hydraulic 
conductivities, previous studies have ignored 
the risk of introducing a systematic bias in 
the spatiotemporal evolution of the hydraulic 
head field during the forecast steps that the 
update steps may not correct over time. This 
paper proposes that in order to evaluate 
the performance of tEnKFs, applications 
in synthetically generated random porous 
media should take into account this risk by 
incorporating prior knowledge with a multi-
Gaussian conductivity correlation structure, and 
by adopting a reference field with asymmetric 
correlation structure. As an example of this 
application, hydraulic conductivities using 
the tEnKF were identified by solving a one-
dimensional, single phase flow problem in a 
continuous random porous medium. Common 
concepts in Geostatistics are used to explain 
the hypothesis underlying both EnKF and tEnKF 
and to establish a clear link between the tEnKF 
and the stochastic simulation of conditional 
random fields.

Palabras clave: Stochastic simulation, 
conditional random fields, Gaussian anamor-
phosis, inverse problem, Non multi-Gaussian 
random fields.
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Introduction

Groundwater modeling as a tool for sustainable 
development and utilization of groundwater 
resources in land subsidence studies requires 
knowledge of the hydrogeologic properties 
of the medium. A number of studies have 
shown that parameters such as hydraulic 
conductivity and porosity of porous media 
exhibit spatial variations. Most of the times, 
these variabilities can only be determined 
at few and sparse locations. Thus, there is 
uncertainty in the characterization of the 
spatial variability of those properties. Owing 
to this uncertainty, predictions conducted with 
groundwater flow models are also uncertain. 
To make plausible predictions and reduce the 
associated uncertainty, stochastic inverse 
modeling techniques are frequently applied. 
These techniques allow the identification of 
parameters and the quantification of parameter 
and prediction uncertainty consistent with 
the measured data and the groundwater flow 
model.

In subsurface hydrology, hydraulic 
conductivity fields are often characterized 
assuming that its spatial variability can be 
interpreted as a realization of a random field 
model (Dagan, 1989; Gelhar, 1993). The 
parameterization of the random field is obtained 
through the observations of the realization 
itself assuming the field is ergodic (Deutsch 
and Journel, 1992; Chilés and Delfiner, 1999). 
Then, inferences at unobserved locations 
and the uncertainty of these inferences 
are determined on the basis of the direct 
observations by either estimation or simulation 
techniques (e.g. Journel and Huijbregts, 1978; 
Chilés and Delfiner, 1999). While estimation 
techniques provide one single “best” estimate 
of the hydraulic conductivity field, simulation 
techniques yield multiple realizations of that 
field (Journel and Huijbregts, 1978). In order 
to reduce the uncertainty in the inference 
of the hydraulic conductivity field, indirect 
observations of it, e.g., of hydraulic heads, are 
also taken into account in these tasks by solving 
the typical inverse problem of hydrogeology 
(Chilés and Delfiner, 1999). Other informative 
variables such as flow rates and species 
concentrations may also be incorporated in 
the inference process to further constrain 
the spatial fluctuations of the conductivities. 
Although solutions to the inverse problem 
lead to hydraulic conductivity fields which are 
compatible with the measured hydraulic head 
data, it is recognized that there are an infinite 
number of other conductivity fields which 
may also match the same hydraulic head data 
(RamaRao et al., 1995). The inverse problem 

is therefore ill-posed and a unique, exact 
solution is generally not available. Instead, a 
solution which coincides with the observations 
is commonly sought (Tarantola, 2005).

The inverse problem can be solved under 
steady conditions or under transient conditions 
using estimation or simulation techniques (Gó-
mez-Hernández and Wen, 1994; Chilés and 
Delfiner, 1999). A comprehensive review of the 
evolution of several methods for solving the 
stochastic inverse problem in hydrogeology 
has been presented elsewhere (Zhou et al. 
2014). Among these approaches, simulation-
based inversion techniques are often preferred 
over estimation-based inversion techniques 
because it has been proven that the single 
“best” estimate provided by the latter does not 
capture the range of variability of real fields of 
conductivities. As a result, flow and transport 
predictions conducted in these fields are very 
poor (Gómez-Hernández and Wen, 1994). 
The most widely accepted simulation-based 
inversion techniques in groundwater modeling 
use the Monte Carlo (MC) method. Within the 
MC framework, the available observations of 
the state variables are integrated into a prior 
random field of conductivities through an 
iterative procedure to obtain a posterior random 
field of conductivities expressed as a set of 
conditional simulations. Examples of such kinds 
of approaches are: the self-calibration method 
(Sahuquillo et al., 1992; Gómez-Hernández et 
al., 1997), the pilot-point method (RamaRao 
et al., 1995), the Markov-Chain MC method 
(Oliver et al., 1997), the gradual deformation 
method (Hu, 2000; Capilla and Llopis-Albert, 
2009; Hu et al., 2013) and the random mixing 
method (Bárdossy and Hörning, 2016). One 
common characteristic to all of these MC-based 
inversion methods is that they are formulated 
as optimization problems where the unknown 
parameter field is represented by the nodes of 
a mesh. Thus, the use of dimensional reduction 
techniques is indispensable in large dimensional 
problems. The main difference among the 
approaches is the way the optimization problem 
is solved.

An alternative MC-based inversion 
technique that can be used to integrate 
available observations of the hydraulic head 
into a prior random field model of conductivities 
is the Ensemble Kalman Filter (EnKF). In this 
approach, the observations are integrated 
sequentially in time using the groundwater 
model itself to evolve the hydraulic head field in 
a physically plausible manner (Katzfuss et al., 
2016). The EnKF was developed by Evensen 
(1994) as an extension of the Kalman Filter 
(KF) (Kalman, 1960) to deal with non-linear 
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systems. The main difference between EnKF 
and KF is that the former uses an ensemble 
representation for the state variables from 
which any statistical moment can be calculated 
whenever it is needed. Instead of using the 
MC method, earlier extensions of the KF used 
perturbation theory to handle non-linear 
dynamics. This is the case of the Extended KF 
(EKF) (Evensen, 1992; Leng and Yeh, 2003). 
However, it has been found that the EnKF 
outperformed the EKF, especially in highly non-
linear systems (Miller et al., 1999; Reichle et al., 
2002). The EnKF differs from other MC-based 
filters, such as particle filters, in the process by 
which the observations are integrated into the 
prior random field model.

The EnKF procedure consists of two main 
steps. The first is the forecast step, which uses 
MC sampling to propagate the uncertainty 
in the hydraulic conductivity field through 
the groundwater model to approximate the 
spatiotemporal evolution of the hydraulic head 
field at the time the observations are available. 
The second is the update step that integrates 
the measured hydraulic head data into the 
prior random field model of conductivities 
by conditioning each prior realization to the 
available observations. The conditioning process 
is performed only on the basis of the available 
data at the time of analysis using a linear 
estimation technique. Thus, only the mean, 
auto-covariance and cross-covariance functions 
are used when computing the posterior random 
field of conductivities. This strategy lends the 
scheme computational efficiency and makes it 
suitable for large dimensional problems, yet 
the forecast step may still be highly demanding 
in terms of computation. Since the conditional 
simulations thus obtained are consistent 
with the system dynamics, predictions of 
response variables and an investigation of the 
uncertainty of these predictions can also be 
conducted simultaneously.

The EnKF only converges to an optimal 
solution when the random fields involved 
are multi-Gaussian and when the functional 
relationship between state and parameter 
variables is linear. Due to the non-linearity 
of the groundwater equations, it seems 
reasonable to expect that state fields will be 
non multi-Gaussian even in multi-Gaussian 
parameter fields. Thus, assuming joint multi-
Gaussian distributions between conductivities 
and heads is often not correct in practice. 
Moreover, in multi-Gaussian random fields the 
spatial correlation structure is symmetric; i.e., 
the values at opposite percentiles with respect 
to the mean present exactly the same spatial 
correlation structure (Journel and Deutsch, 

1993; Journel and Zhang, 2006). The highest 
continuity is observed at mean values and the 
extreme high/low values appear as isolated 
clusters. As a result, connected paths of 
extreme values do not occur in multi-Gaussian 
random fields (Gómez-Hernández and Wen, 
1998; Knudby and Carrera, 2005). On the 
contrary, field evidence suggests that the 
patterns of spatial variability in natural soil 
formations differ significantly from such multi-
Gaussian dependence characteristics. Journel 
and Alabert (1989) found stronger spatial 
correlation structures at low values than at high 
values in field measurements of air permeability 
taken on a vertical slab of Berea sandstone; this 
stronger correlation was even stronger than 
that imposed by a multi-Gaussian random 
field model. Asymmetric correlation structures 
have also been found in conductivity fields with 
relatively small heterogeneity (Haslauer et al., 
2012). Thus, natural porous media seem to be 
non multi-Gaussian with respect to their spatial 
distribution of conductivities independently of 
their degree of heterogeneity.

Several extensions of the EnKF have been 
examined in the last decade in order to achieve 
a more versatile tool capable of handling 
non multi-Gaussian random field models in 
parameter identification problems. Sun et al. 
(2009) reformulated the update step of the 
EnKF using Gaussian mixture models and 
clustering techniques. Sarma and Chen (2009) 
developed a generalization of the EnKF based on 
kernel principal component analysis. Emerick 
(2017) presented an investigation of the 
performance of different principal component 
analysis-based approaches. Bertino et al. 
(2003) modified the update step of the EnKF 
by applying Gaussian transformations. The 
advantages of this last extension compared to 
the classical EnKF method were confirmed in 
several studies (Zhou et al. 2011; Li et al. 2012; 
Schöniger et al. 2012; Erdal et al. 2015). One 
common characteristic to all of these EnKF-
based methods is the use of auto-covariance 
and cross-covariance functions as unique 
descriptors of the spatial dependence at each 
update step. Unlike these approaches, Zhou et 
al. (2012) developed the so-called Ensemble 
PATtern matching method (EnPAT) based 
on multiple-point geostatistical simulation 
techniques which use multiple-point covariance 
functions rather than traditional two-point 
covariance functions to determine the spatial 
correlations. Extensions of this approach were 
developed later (Li et al. 2013, 2014, 2015). 
Although the EnPAT method outperforms 
the classical EnKF and eliminates the multi-
Gaussian assumption implicit in the update 
step of the latter (Li et al. 2015), it strongly 
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relies on the concept of training image; i.e. a 
conceptual model of the geological structure 
of the formation under study, the construction 
of which can be problematic, especially in 3D 
applications, and the benefit of which is more 
evident in fluvial deposits than in other type of 
geologic formations.

The EnKF with Gaussian transformations 
(tEnKF) has been particularly well accepted 
in several geophysical areas (Bertino et al. 
2003; Simon and Bertino, 2009, 2012; Béal 
et al. 2010; Zhou et al. 2011; Li et al. 2012; 
Schöniger et al. 2012; Xu et al. 2013; Erdal 
et al. 2015; Zovi et al. 2017). In subsurface 
hydrology, it has been applied to the 
identification of the hydraulic conductivity of 
synthetically generated channelized aquifers 
that display the same asymmetry as the prior 
random field model (Zhou et al. 2011; Li et 
al. 2012; Xu et al. 2013). Thus, the domain 
under study has the same spatial variability 
characteristics as those of the set where the 
spatiotemporal evolution of the hydraulic head 
field is sought. As a result, the performance 
of tEnKF is promising because the deviations 
from the reference field are then corrected, 
up to a certain extent, with the update steps. 
However, these studies do not take into account 
the risk of introducing a systematic bias in the 
spatiotemporal evolution of the hydraulic head 
field during the forecast steps that the update 
steps may not correct over time. While they 
attribute the promising performance of tEnKF 
to Gaussian transformations, they disregard 
the implications of the information incorporated 
in the prior conductivity fields. This information 
should be taken into account to explain the 
performance of the tEnKF because the update 
step remains suboptimal and is performed 
under the multi-Gausian model which is unable 
to capture channelized structures with the 
covariance function as the sole descriptor of 
an evolving spatial dependence. The absence 
of knowledge about higher order moments of 
the parameter field inevitably implies a risk of 
introducing such systematic bias. 

This paper proposes that in order to 
evaluate the performance of tEnKFs, 
applications in synthetically generated random 
porous media should take into account the 
risk of systematic bias by incorporating prior 
knowledge with a multi-Gaussian conductivity 
correlation structure, and by considering the 
spatial distribution of the hydraulic conductivity 
of a reference field as having an asymmetric 
correlation structure. This view of the problem 
follows the idea of Kerrou et al. (2008), yet 
differs significantly from its mathematical fra-
mework and scope. Our experimental setting 

is closer to a common situation found in 
practice where one has access to a rough 
approximation to the mean, variance and auto-
covariance function of the real field, but the 
asymmetry of the spatial correlation structure 
of that field is unknown. As an example of 
this application, this paper identifies hydraulic 
conductivities using the tEnKF by solving a 
one-dimensional, single phase flow problem 
in a continuous random porous medium. To 
explain the hypothesis underlying both EnKF 
and tEnKF and to establish a clear link between 
the tEnKF and the stochastic simulation of 
conditional random fields, common concepts 
in Geostatistics are used. Ultimately, the aim 
of this paper is to motivate further discussions 
about the benefit of incorporating transient 
hydraulic head responses in the identification 
of hydraulic conductivity fields subject to this 
kind of constraint and about further potential 
improvements to the update step of the EnKF 
to overcome the multi-Gaussian assumption.

Groundwater flow equations

In this section, the dynamic model describing 
single-phase fluid flow in a one-dimensional, 
vertical, fully saturated porous medium with 
spatially variable hydraulic conductivity is 
analyzed:

 
∂

∂

∂

∂
=

∂

∂x
K H

x
S H

ts s( )x  (1)

subject to initial and boundary conditions

 Ht=0 = h0, HGD
 = h1 (2)

where H is the hydraulic head [L] in the 
domain W, x is the spatial coordinate (x = x3 
[L], where x3 represents the vertical coordinate 
which is positive upward), KS(x) is the saturated 
hydraulic conductivity [L/T], SS is the specific 
storage [L-1], h0 represents the initial head and 
h1 the prescribed head at Dirichlet boundary GD.

In the present example, specific storage 
as well as initial and boundary conditions are 
treated as deterministic constants. An error-
free dynamic model is also assumed. Hence, 
the model prediction is only affected by the un-
certainty in KS(x). To model this uncertainty, a 
stationary random field model is adopted. In 
such an approach, Y(x) defines the collection 
of n continuous scalar random variables of the 
natural logarithm of the saturated hydraulic 
conductivity, i.e. Y(x) = ln(YS(x)) indexed at the 
spatial locations x in the domain Wx with Wc ∈ 
𝕽1. Since KS(x) is a random field, equation (1) 

[                ]
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becomes a stochastic differential equation and 
the flow response H becomes a spatiotemporal 
random field. KS(c, t) is defined as the collection 
of N continuous scalar random variables of the 
hydraulic head indexed at the spatial locations 
c in the domain Wc with Wc ∈ 𝕽1 and times t∈{0, 
1, 2,...}. Although Y(x) is assumed as stationary, 
H(c, t) will be non-stationary in space and time 
because the domain is bounded (Zhang, 2002). 
In the following formulations, an ensemble 
interpretation of both random fields is applied.

The EnKF method

In this section, an alternative formulation for 
parameter estimation of the EnKF based on 
common concepts in Geostatistics is presented.

Forecast step

The EnKF uses MC sampling to approximate 
H(c, t) assuming that it evolves like a first 
order Markov process (Evensen, 2003), i.e. 
P[H(c, t)]∣, H(c, t−1), H(c, t−2),...] = P[H(c, 
t)]∣, H(c, t−1)]. Hence, only the most recent 
past determines the multivariate conditional 
Cumulative Distribution Function (CDF) of 
H(c, t) given the whole past. This simplified 
evolution of H(c, t) can be written as:

 H (c, t) = ℑ(H (c, t − 1); q (3)

where ℑ(⋅) is a forecast operator representing 
the dynamic model, i.e. the behavior of the 
state process as time evolves, and q is a vector 
of parameters involved in that description. For 
example, to determine H(c, t=1), it is necessary 
to specify initial and boundary conditions, a prior 
ensemble of saturated hydraulic conductivity 
fields, and the specific storage coefficient. 
The information incorporated in the prior 
conductivity fields is thus a key issue in the 
performance of EnKFs. Finally, note that in 
equation (3) there are no assumptions about 
the type of CDF of the parameters or about the 
linearity of the considered dynamic model.

Update step

The update step of the EnKF approximates the 
univariate conditional CDFs of Y(x) given that 
Nhobservations of H(c, t=1) are known, i.e. FYi 

∣H1
,..., HNh

(yi; xi∣D) = P[Y(xi)≤yi∣H(ca, t=1) = ha, 

t = 1, t=1, a=1,... Nh]

by conditioning each realization of Y(x) under 
the hypothesis that the joint multivariate 
distributions of Y(x) and H(c, t = 1), as well 
as the multivariate distributions of H(c, t=1) 

and Y(x), are Gaussian. Thus, the problem is 
reduced to the stochastic simulation of one 
conditional random field assuming a multi-
Gaussian model. This update step is performed 
according to:

 U ut  = U0 + Kt[Zt − H ft ] (4)

where Uu
t =[ŷ(x1),ŷ(x2),...,ŷ(xn)]

T is an n- 
dimensional vector of updated realizations of the 
log-conductivity at t=1, U0=[y(x1),y(x2),...,y(xn)]T is an n-dimensional vector of simulated 
realizations of the log-conductivity (realizations 
a priori), Zt =  [h1,t=1, h2, t=1,..., hNh,t=1]

T is the 
vector of observations with dimension Nh, H

f
t  = 

[h(c1, t=1), h(c2, t=2),..., h(cNh
, t=1)]T is a reduced 

vector of forecasted states (realizations of 
the hydraulic head at the locations of the 
observations) of dimension Nh, and Kt =  
[l1(x1), l1(x2),..., l1(xNh

);...ln(x1), ln(x2),..., 
ln(xNh

)] is a matrix of dimension nxNh called 
“Kalman gain”, with l1(xa) representing the 
relative importance of the observations in 
estimating the value of Y(xi). These weighting 
functions are solutions of the following systems 
of linear equations:

 λ χ τ τα
α

l H YH

N

l

n

C s C s
h

( ) ( , ) ( , )=
==
∑∑

11

 (5)

where CH(s, t) represents the spatiotemporal 
auto-covariance functions between hydraulic 
heads with s=(ca, cj) for j = 1,..., N and 
t=(t=1, t=1), and CYH(s, t) represents the 
spatiotemporal cross-covariance functions 
between log-conductivities and hydraulic heads 
at s=(x, cj) with t=(t=0, t=1). In the EnKF, 
both covariance functions are determined 
statistically over the ensemble of realizations 
of Y(x) and H(c, t=1). These covariance 
functions are therefore empirical, but on 
average over several realizations, they can be 
expected to lead to positive definite matrices 
and may be used directly without modeling. 
On the other hand, given their statistical origin, 
they lead to the “filter inbreeding effect”, i.e. 
the underestimation of variance over time 
after several update steps (Hendricks and 
Kinzelbach, 2008). As a result, the final updated 
realizations may look almost identical to each 
other and are virtually equal to the ensemble 
mean (Zhou et al., 2011). Xu et al. (2013) 
showed, through hydrogeology applications, 
that filter inbreeding can be reduced with 
covariance localization and covariance inflation 
techniques. Alternative strategies for reducing 
this problem were presented earlier by Hendricks 
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and Kinzelbach (2008). The implementation of 
these techniques in the present application is 
beyond the scope of this paper.

In most applications of the EnKF method, the 
observations are affected by random errors which 
are characterized by a normal distribution with 
zero mean and a diagonal covariance function 
which represents that, at different measurement 
locations, these errors are also independent. 
Adding random errors to the observations 
serves the purpose of increasing the ensemble 
variance over time (Burgers et al., 1998). Hence, 
considering noisy observations contributes 
somehow to the reduction of the filter inbreeding 
effect. Some authors also find it useful to add 
random errors to the observations to stabilize 
the inversion of the covariance functions and 
avoid small singular values dominating the 
solution. Other authors address this last problem 
formally by means of the Tikhonov regularization 
functional (e.g. Johns and Mandel, 2008; Elsheikh 
et al. 2013). In the present paper, extensive 
numerical experiments performed by the authors 
showed that the Gaussian transformations 
presented in the following section contribute 
significantly to the stabilization of the inversion 
of the covariance functions. Thus, adding random 
errors to the observations for this purpose is not 
necessary within the Gaussian space. Moreover, 
systematic errors affecting the observations 
could also be considered in the update step 
because instruments may induce biases which 
introduce fictitious correlations between va-
riables. Furthermore, errors might not be 
Gaussian. Therefore, error-free measurements 
were considered in this study. In future 
investigations, it will be important to address the 
evaluation of the effect of both types of errors on 
the spatial distribution of the uncertainty and its 
interpretation, as well as the quantitative impact 
of adding white noise to the observations on the 
filter inbreeding effect.

The EnKF method with transformed data 
(tEnKF)

There are two additional steps and one modified 
update step that have to be implemented in the 
EnKF method with transformed data (tEnKF). 
These three steps are described in this section 
using common concepts in Geostatistics. Then, 
some useful formulas for post-processing the 
results and recommendations for the numerical 
implementation of the tEnKF are presented.

Gaussian transformation step

Under the multi-Gaussian hypothesis implicit 
in the classical EnKF procedure, the univariate 
conditional CDF of Y(x), given that Nh 

observations of H(c1, t=1) are known, will be 
Gaussian with conditional expectation and 
conditional variance given by the simple Kriging 
(cokriging) estimates (Journel and Huijbregts, 
1978). However, for the Kriging variance to 
be an unbiased estimate, both Y(x) and H(c1, t=1) have to be zero-mean Gaussian random 
fields (Shinozuka and Zhang, 1996). Bertino et 
al. (2003) realized this situation and therefore 
proposed to apply Gaussian transformations, 
at least locally, to both random fields. The 
Gaussian transformation maps non-Gaussian 
distributed random variables into Gaussian 
random variables (with zero mean and unity 
variance) according to:

 Ỹ(xi) = F-1(FY(y; xi)) (6)

 Ỹ(xi, t=1) = F-1(FH(h; xi; t=1)) (7)

where F -1(⋅) is the inverse of the univariate 
Gaussian distribution function, and FY(y; xi) 
and FH(h; xi; t=1) are the local distribution 
functions of Y(x) and H(c1, t=1), respectively. 
In the tEnKF the empirical versions of 
these distribution functions are used. The 
empirical distribution function is defined by 
F c n I C cn r jj

nr( ) /= ≤{ }=∑1
1

, where I{⋅} 

stands for an indicator random variable that 
takes a value equal to 1 whenever its argument 
is true, and 0 otherwise with nr equal to the 
number of log-conductivity fields. It should be 
recalled that the empirical distribution function 
will converge to its theoretical counterpart as 
the number of realizations in the ensemble 
tends to infinity (Billingsley, 1995). The 
variables with the tilde in equations 6-7 
symbolize the transformed random variables. 
In addition to the transformations expressed 
by these equations, a standardization of 
the observations at each location have to be 
applied. The function relating y to y or h to h in 
the x-y Cartesian plane, is called the Gaussian 
anamorphosis function and was introduced by 
Rosenblatt (1952) (Figure 1).

Note that since only marginal transformations 
are applied, the joint multivariate distributions 
of Y(x) and H(c1, t=1), as well as the 
multivariate distributions of H(c1, t=1) and 
Y(x), are not modified.

Modified update step

Once the transformations described in the 
previous section have been applied, the update 
step of the tEnKF method can now be written in 
terms of the anamorphosed variables:

H
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     U U K Z Ht
u

t t t
f= + −0  (8)

where the weighting functions li(xa) of matrix 
tK
~

 are obtained from the following system of 
linear equations which is written in terms of the 
auto-covariances and cross-covariances of the 
anamorphosed variables:

 λ χ τ τα
α

l H YH

N

l

n

C s C s
h

( ) ( , ) ( , )
  

=
==
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11

 (9)

Back-transformation step

After applying the modified update step, it is 
necessary to return to the original space for 
interpretative purposes. The mapping of the 
conditioned anamorphosed random variables 
into the original non-Gaussian distributed 
variables is made with:

 
Y D F Y Di Y H ix x( )( ) = ( )( )−

 



1 Φ ( )  (10)

This means that the conditional CDF value 
of the original variable is identified with the 

conditional CDF value at its corresponding 
Gaussian transform value (Goovaerts, 1997) 
(Figure 1). The inverse of the univariate 
conditional CDF, i.e.

 
FY H 

−1 (⋅), is in fact a 
pseudoinverse function of its theoretical 
counterpart, but when the latter is strictly 
increasing, the pseudoinverse equals the usual 
inverse (Nelsen, 1997).

Computation of conditional moments

The conditional mean mY∣H(x) and conditional 
variance s 2

Y∣H(x) of Y(x), given that Nh 
observations of H(c1, t=1) are known, may be 
computed from:

 mY∣H(x)=E{Yc(x)} (11)

 s 2
Y∣H(x)=E{(Yc(x)-E{(Yc(x)})(Yc(x)-E{(Yc(x)})} 

  (12)

where Y(x)∣D)=Yc(x).

Numerical implementation

The mathematical model described in the 
previous sections is coded in FORTRAN 

Figure 1. Transformation step of the EnKF method: a) Gaussian transformation process, b) Back-transformation 
process.

[                  ]
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programming language on the LINUX platform 
and run in the HPC cluster “Tonatiuh” at the 
Institute of Engineering, UNAM. A block diagram 
describing its numerical implementation is 
depicted in Figure 2. Note that the conditioning 
process is repeated at the next time at which 
observations are available, but the new prior 
log-conductivity random field becomes the 
posterior one at time t=1.

Application of the tEnKF to the 
identification of conductivities

Multivariate spatiotemporal random fields 
have been used in a variety of geophysical 
applications. For example, Bodas-Salcedo et 
al. (2003) combined spatiotemporal random 
fields with the Kalman filter method to predict 
solar radiation in the earth-atmosphere 
system; Suciu (2014) used a diffusion model to 
predict solutes transport in groundwater under 
uncertainty about spatiotemporal evolution 
of velocity fields; a similar approach was 
used by Suciu et al. (2016) to model reactive 
transport; Sanchez et al. (2016) developed a 
spatiotemporal dynamic model based on the 

classical EnKF for Bayesian inference of rainfall; 
and Liang et al. (2016) used a stochastic 
groundwater flow model to analyze the effect 
of uncertainty in recharge and transmissivity on 
the spatiotemporal variations of groundwater 
level in an unconfined aquifer. Finally, Moslehi 
and de Barros (2017) investigated the impact 
of uncertainty in spatial variability of soil 
hydraulic conductivity on several environmental 
performance metrics that are relevant for 
environmental risk assessments, such as 
species concentrations and arrival times, using 
a stochastic advection-dispersion model to 
represent the spatiotemporal evolution of the 
concentration field.

In this paper, the tEnKF is applied to infer 
the hydraulic conductivity field in a confi-                
ned porous medium on the basis of the observed 
spatiotemporal variations of the hydraulic head 
field. For the sake of simplicity, groundwater 
flow through a one-dimensional, vertical, fully 
saturated random porous medium is considered 
(equations 1–2). It is assumed that hydraulic 
head at the lower boundary of the porous 
medium diminishes at a constant rate known 
from historical records and that this decrement 
is associated with groundwater withdrawal 
from wells located farther away. This simplified 
setting allows useful preliminary evaluations 
of the tEnKF. However, it is recognized that 
these two hypotheses can be avoided by 3D 
modeling of the system including the wells, 
and by considering that the spatial variability 
of the hydraulic conductivity in porous media is 
in fact 3D. The coupling of this dynamic model 
within the tEnKF is being developed and the 
results will be presented in further publications.

The porous medium is 40m deep and is 
discretized into 80 finite elements each with 
a length of 0.5m. Each finite element ei for 
i=1,…,80 is assigned a log-conductivity value 
yref(xi) according to the following procedure. 
First, a multi-Gaussian field g(x) with exponential 
auto-covariance function and correlation scale 
a=2.5m is simulated using a modified version 
of the SGSIM random field generator (Deutsch 
and Journel, 1992) (Figure 3a). Second, the 
V-transform is applied in the following manner 
(Bárdossy and Li, 2008):

 v(x) = { k(g(x)m) if g(x)≥m 
    k(g(x)m) if g(x)≥m (13)

with arbitrarily chosen parameters m=0 and 
k=1, to the previously generated g(x) field to 
obtain the transformed v(x) field (Figure 3b). 
Third, a Gaussian distribution is imposed to 
the v(x) field as y’=F-1[FV(v)] where FV(v) is 

Figure 2. Block diagram of the EnKF with transformed 
data (tEnKF).
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the empirical CDF of the v(x) field. Finally, this 
y’(x) field is scaled to a normally distributed 
yref(x) field with mean value mY=-1.654 and 
variance s2

Y=0.997 as: yref(x)=mY+y’(x)sY. Each 
one of these values is assumed to be constant 
within its finite element ei. This log-conductivity 
field, which is displayed in Figure 3c, is called 
the reference field and is considered the “true 
state of nature”.

Several interesting properties of the 
V-transformation should be mentioned. First, 
the symmetric distribution function of the 
Gaussian field g(x) is transformed into an 
asymmetrical distribution function through 
parameters m and k. Second, the empirical 
auto-covariance function of g(x) is not 
preserved in v(x) because the V-transformation 
is non-monotonous (Figure 4). Third, the 
spatial correlation of v(x) is stronger for the 
values above the median than for the values 
below the median, i.e. the spatial correlation 
of v(x) is asymmetric. This characteristic of 
the field holds after imposing the Gaussian 
(normal) distribution function onto it because 
the Gaussian transformation is monotonous 
(Deustch and Journel, 1992).

In the present example, since yref(x) is 
normally distributed, ks(x)=exp(yref(x)) is 
lognormally distributed with expected value 
mKs=0.315 m/day and variation coefficient 

CVKs= 1.31. Conductivity fields with lognormal 
univariate distributions and asymmetric 
spatial correlation are considered to be 
more representative of natural porous media 
(Gómez-Hernández and Wen, 1998; Journel 
and Zhang, 2006). Specific storage coefficient 
is assumed to be equal to 0.001m-1 throughout 
the porous medium.

Using the reference field of conductivities, 
groundwater head responses are generated 
by solving a transient flow condition with 
finite elements (Smith and Griffiths, 2004). 
At t=0 days, the initial distribution of heads 
is hydrostatic. At t>0 days, hydraulic head 
decreases with time at a rate of 0.15 m/day 
during 150 days at the lower boundary. For the 
purpose of the present numerical example, the 
distribution of heads at t=90 days is assumed 
to be the initial condition (denoted as t=0 
days in Figure 5 and henceforth). It is further 
assumed that groundwater head responses are 
available at times t=3, t=18 and t=60 days at 
the two locations indicated in Figure 5. Thus, 
two histories with three hydraulic head values 
are generated. These indirect, informative 
variables of the hydraulic conductivity of 
the reference field are considered available 
transient piezometric observations. At each 
one of these three times, the update step of 
the tEnKF scheme is performed.

Figure 3. One dimensional fields: a) Initial Gaussian field, b) Field after applying the V-transform with parameters 
m=0 and k=1 to the initial Gaussian field, c) Final log-conductivity field after imposing a marginal normal 
distribution with expected value mY=-1.654 and variance sY

2=0.997 to the V-transformed field. Statistics of 
sampled values (empty squares) are also reported.
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The reference field is sampled at four 
locations indicated in Figure 3c and the 
values are considered direct log-conductivity 
measurements. The mean and variance of 
the set of sampled values are reported in the 
same figure. Observe that these statistics 
overestimate the mean and variance of the 
reference field. Observe also in Figure 4 that 
an exponential auto-covariance function with 
correlation scale a=2.5m overestimates the 
correlation scale of the reference field as 
well. The sampled mean and variance, as well 
as the auto-covariance function mentioned 
above, are used to simulate two thousand 
unconditional multi-Gaussian log-conductivity 

realizations. Since the realizations are multi-
Gaussian, they do not exhibit the asymmetric 
spatial correlation structure of the reference 
field (Journel and Deutsch, 1993). This set 
of log-conductivity fields attempts to model 
a situation in which the mean value, variance 
and auto-correlation function of the reference 
field are only roughly estimated a priori and 
the asymmetry of this field is ignored. It 
represents, in fact, the prior uncertainty about 
spatial variability of the conductivity in the 
porous medium.

The chosen number of simulated realizations 
ensures the stability of the following two 
error measures, according to preliminary 
computations:

 RMSE
n

y yi
ref

i
i

n

= ( ) − ( )( )
=
∑

1 2

1

* x x  
  (14)

where n is the number of log-conductivities in 
the flow domain, y*(xi) is the estimated mean 
log-conductivity at location xi, and yref(xi) is the 
reference log-conductivity also at location xi.

The SPREAD is computed as:

 SPREAD
n

sen
i

n

i= ( )
=
∑

1 2

1

x  (15)

where s2
en(xi) is the variance of the estimation 

of the log-conductivity at location xi computed 
statistically over the ensemble of realizations.

Figure 5. Profile of hydraulic heads in the reference field at t=0 days. The depths of the tips of two piezometers 
(Pz-1 and Pz-2) are indicated with filled squares.

Figure 4. Standardized auto-covariance functions 
of the initial Gaussian field and reference log-
conductivity field. An exponential function is also 

shown for comparison.
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It is worth mentioning that RMSE is a 
measure of the difference of the means of the 
estimated and reference fields and SPREAD is 
a measure of the dispersion of the estimated 
field around the reference field. Therefore, 
they can be viewed as measures of accuracy 
and precision of the estimations, respectively.

Results and discussion

Effect of the Gaussian transformation

Figure 6 illustrates the Gaussian transfor-mation 
process of the hydraulic head at an arbitrarily 
selected node before the first update step. In 
general, the shape of the local distributions 
depends on the location of the node in the 
flow domain and on the boundary conditions 
of the problem at hand. In all cases, the local 
distribution functions can be transformed 
into Gaussian distributions by building local 
Gaussian anamorphosis functions numerically, 

as explained earlier. As can be seen in Figure 
6(a), although the original values exhibit a 
skewed distribution, the transformed variable 
becomes symmetric around the mean showing 
the well-known bell-shape of the Gaussian 
anamorphosis (Figures 6b and 6c).

Figure 7 represents the relationship between 
log-conductivities and heads at arbitrarily 
selected locations, before (Figure 7a) and after 
(Figure 7b) applying the respective Gaussian 
transformations. Given that the Gaussian 
transformation is monotonous, the bivariate 
characteristics of the dependence, such as the 
correlation structure at different percentiles, 
are not modified (Deutsch and Journel, 1992; 
Chilès and Delfiner, 1999). However, the linear 
correlation coefficient, which depends on the 
kind of marginal distributions of the random 
variables, might be different before and after 
transformations. In the particular case of the 
variables at the locations indicated in Figure 

Figure 7. Relationship between log-
conductivity and hydraulic head at two 
arbitrary selected locations (r is the 
Pearson correlation coefficient): a) 
Before the Gaussian transformation of 
both variables, b) After the Gaussian 

transformation of both variables.

Figure 6. Gaussian transformation of hydraulic heads at node 61: a) Histogram of untransformed hydraulic 
heads, b) Gaussian anamorphosis function (with zero mean and unity variance), c) Histogram of hydraulic heads 

after the Gaussian anamorphosis.
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7 (at the upper right corner of each figure), 
this coefficient presents nearly the same value 
before and after transformations. Therefore, 
the implicit pseudo-linearization effect 
associated to the Gaussian anamorphosis 
reported by Shöniger et al. (2012) should be 
considered application dependent.

Effects of conditioning on log-conductivities 
alone

The impact of conditioning realizations of log-
conductivities to direct measurements only 
is analyzed. Figure 8 displays comparisons 

between the reference field of log-conductivities 
and the mean of the conditional realizations of 
log-conductivities. Contrasting both fields, it is 
observed that at the measurement locations 
the conditional value is the measured value.

Figure 9 reproduces profiles of standard 
deviations (uncertainty) computed with the 
conditional realizations of log-conductivities. 
Observe that the effect of conditioning is to 
reduce, overall, the prior uncertainty and 
to collapse it to zero at the locations of the 
measurements.

Figure 8. Log-conductivity fields conditional to 
log-conductivities alone. The reference field is also 

shown.

Figure 9. Profiles of conditional standard deviations 
of log-conductivities with respect to depth (empty 

squares indicate the locations of known values).

Figure 10. Log-conductivity fields conditional to histories of hydraulic heads with the tEnKF method. The 
reference field is also shown: a) At t=3 days, b) At t=18 days, c) At t=60 days.
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Effects of conditioning on log-conductivities 
and transient heads

In what follows, the additional impact 
of conditioning the realizations of log-
conductivities to transient heads responses 
is examined. Comparisons of the reference 
field of log-conductivities with the mean of the 
conditional realizations of log-conductivities of 
the tEnKF at times t=3, t=18 and t=60 days 
are shown in Figures 10a, b and c, respectively.

Contrasting the RMSE and SPREAD values 
shown at the bottom right corner of Figure 10a 
with the same two error measures shown in 
Figure 8, it can be observed that the estimation 
of the hydraulic head field becomes more 
accurate and precise after assimilating the first 
pair of measured hydraulic heads with the tEnKF. 
Further improvements in the estimation of the 
reference field are observed as more measured 
hydraulic head data are assimilated. For 
instance, the RMSE and SPREAD values for the 
conditional mean log-conductivity field of the 
tEnKF at time t=60 days are 0.964 and 1.080, 
whereas before the filtering process they were 
equal to 1.050 and 1.137, respectively. The 
accuracy of the estimation with the tEnKF 
can be attributed to the fluctuations that 
occur between measurements which follow 
the variability of the reference medium more 
closely. However, it should be recalled that 
the RMSE and SPREAD values measure the 
quality of the local estimation only, i.e. they 

Figure 12. Frequency distributions of log-
conductivities of the reference field, set of prior 
realizations and sets of posterior realizations at t=60 

days.

Figure 11. Profiles of conditional standard deviation 
of log-conductivities with respect to depth at 
different times (empty squares indicate the locations 

of known values).

do not indicate anything about the quality of 
the multivariate estimation. Bivariate empirical 
copulas can be used to perform this evaluation 
(Bárdossy and Li, 2008).

The standard deviation profiles calculated 
with the realizations of log-conductivities 
of the tEnKF are reported in Figure 11. The 
overall uncertainty decreases as longer 
groundwater head records are incorporated 
into the update step, except at the locations of 
direct measurements where uncertainty is zero 
at all times. The Figure shows that uncertainty 
is smaller around depths of 17 m and 26 m 
(where the tips of the two piezometers are 
located) than at other depths.

Figure 12 displays the frequency distributions 
of log-conductivities of the reference field and 
of the prior and posterior ensembles at the 
end of the conditioning process. Recall that 
the mean value of the conductivity of the 
reference field was overestimated by the prior 
random field; hence, the distribution function 
of this field is located to the right of the field’s 
frequency function. Looking at the distributions 
of the posterior fields, it is observed that 
they exhibit some features of the reference 
frequencies (like some of the “peaks” of both 
branches) and that they are slightly displaced 
toward the left of the frequencies of the prior 
random field. This result illustrates the attempt 
of the filter to lead the prior frequencies 
toward the reference frequencies when a small 
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number of instruments and short records of 
measured hydraulic head responses (t=3, t=18 
and t=60 days) are used in the conditioning 
process and when the initial representation 
of the asymmetric correlation structure of the 
true field is ignored by the prior random field 
model. Although there is a benefit, the degree 
of improvement of the initial approximation 
should be further investigated because the 
depth and distance between instruments, as 
well as the times at which observations are 
available, and the length of the histories of 
hydraulic head responses may also have an 
effect on the results.

Conclusions

This paper proposed that in order to evaluate 
the performance of tEnKFs in synthetically 
generated fields of the hydraulic conductivity, 
it is necessary to take into account the 
risk of introducing a systematic bias in the 
spatiotemporal evolution of the hydraulic 
head field by incorporating prior knowledge 
with a multi-Gaussian conductivity correlation 
structure, and by adopting a reference field 
with asymmetric correlation structure. This 
setting aims to offer a truer representation of 
common situations in practice in which the first 
two moments and the auto-covariance function 
of the real field are roughly known, but the 
asymmetry of the spatial correlation structure 
of that field is unknown.

As an example of the proposed approach, 
hydraulic conductivities were identified using the 
tEnKF by solving a one-dimensional, single phase 
flow problem in a continuous random porous 
medium. Three effects on the reproduction of 
the reference field were evaluated: the effect 
of the Gaussian transformation process, the 
effect of incorporating only measured hydraulic 
conductivities and the effect of incorporating 
measured hydraulic conductivities and hydraulic 
heads data. The results of this example indicate 
that when the asymmetry of the spatial 
correlation structure of the reference field was 
unknown a priori, the tEnKF was still capable of 
improving the initial approximation. However, 
no definitive conclusions can be drawn from 
this study in terms of the performance of 
tEnKF under this constraint since the degree 
of improvement of the initial approximation 
may further depend on the configuration of 
the array of instruments, the times at which 
observations are available and the length of 
time series of hydraulic heads.

Further research is needed to fully assess 
the performance of the EnKF with transformed 
data. For example, its effect on the reproduction 

of the multivariate spatial dependence of a non 
multi-Gaussian reference field using a multi-
Gaussian random field model of conductivities 
in the prior approximation should be explored
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