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Modeling Forest Wildfires at Regional Scales

José de Jesús Graciano-Luna1 , Felipa de Jesús Rodríguez-Flores2 , Sacramento Corral Rivas3*  
and José Návar4

Abstract

This paper sets the following objectives: (i) presenting, (ii) testing, and (iii) evaluating a set of math-
ematical techniques to forecast the number of forest wildfires (No), the burned area (A), and the mean 
burned area (MA), on annual basis at regional scales. A comprehensive wildfire data set for coniferous 
forests of the State of Durango, Mexico was used to fit (1970-2011) and to validate (2012-2016) some 
modeling techniques. Most tested probabilistic and stochastic models hardly explain 70% of the wildfire 
variance. However, the teleconnection approach using a combination of large scale and local hydrocli-
mate anomalies better predicted both data sets; explaining nearly 80% of the wildfire variance for fitting 
and for validating models. Results stress the complexity of interactive factors including the stochastic 
and underlying physical process that makes the prediction of wildfires losing precision and they should 
be further considered in future conceptual models. Therefore, proposing a more physical-based and 
conceptual models including Montecarlo models is an integral component of this paper; with the goal 
of increasing prediction capabilities and assisting decision-makers on the prevention activities inherent 
to better control wildfires. This proposed conceptual model stresses the need for using the probabilis-
tic, stochastic and physical techniques to improve sub-model parameterization. Furthermore, the use 
of Monte Carlo simulation techniques would extract the most likely future scenarios for predicting the 
risk of high-severity wildfire regimes in temperate forests elsewhere.

Resumen

Este artículo tiene por objetivos: (i) presentar, (ii) probar y (iii) validar un conjunto de técnicas matemáti-
cas para predecir el número de incendios (No), la superficie incendiada (A), y la superficie promedio 
incendiada (AM), en bases anuales a escalas regionales. Una fuente de datos extensa proveniente de los 
bosques de coníferas de Durango se usó para ajustar (1970-2011) y validar (2012-2016) las técnicas 
de modelaje. La mayoría de los modelos probabilísticos y estocásticos explican menos del 70% de 
la varianza de los incendios. Sin embargo, el método de teleconecciones que emplea variables a es-
cala oceánica y a escala local del hidroclima aumentó el nivel de precisión hasta cerca del 80% de la 
varianza total para ambas bases de datos. Los resultados muestran la complejidad de los factores que 
interactúan, incluyendo los procesos estocásticos y los físicos que hacen que las técnicas de predicción 
sean modificadas substancialmente. Por estas razones, se propone un modelo más físicamente basado 
y también un modelo conceptual más comprensivo. El modelo conceptual requiere del uso de todas las 
técnicas presentadas en este reporte, incluyendo los modelos probabilísticos, estocásticos y físicos en 
la parameterización de los diferentes submodelos. El uso del modelo conceptual además de sus técnicas 
de simulación Monte Carlo extraerían los escenarios futuros mas probables en la predicción del riesgo 
de incendios forestales severos en bosques templados del mundo.
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Introduction
The prediction of forest wildfires has been the objective of 
intensive research for many years. Main components of the 
occurrence of wildfires are forest fuels, ignition sources and 
oxygen supply. The mass of forest fuels and its moisture 
content directly impact wildfire intensity and spread rate 
(Oliver and Larson, 1996; Shlisky et al., 2007). Forest fuels 
are usually classified as ground (organic soil, duff, and moss), 
slash (litter), living trees and miscellaneous (Reinhardt and 
Crookston, 2003). Hydro-climate is the single most import-
ant factor desiccating forest fuels and in particular unusual 
drought episodes associated with dry warm winds originated 
by large scale climate circulation events control the moisture 
content of fuels (Andrade and Sellers, 1988; Swetnam and 
Betancourt, 1989; Návar and Lizárraga, 2014). Sources of 
ignition can be natural (lighting) and anthropogenic (direct 
and indirect ignition) and stable and migrant population 
density in forests correlate well with wildfire features.

Fires regimes in northern forests of Mexico and probably 
elsewhere in the World are featured by infrequent high-se-
verity wildfires with a small probability of occurrence and 
small-severity wildfires with a large probability of occur-
rence (Rodriguez-Trejo, 1996; Drury and Veblen, 2008). 
Limiting factors in the later regimes (fuel loadings, moisture 
content, climatic factors, among others) keep under control 
the area burned; while the former ones have commonly no 
limiting factors for wildfires to spread until nature itself 
controls them. Small-severity wildfires keep fuel loads under 
control mimicking prescribed burns retarding the presence 
of high-severity wildfires (Fule et al., 2004; Shlisky et al., 
2007). Unfortunately, these wildfires are most often quickly 
controlled interfering with the natural build up of forest fuel 
loads. These natural variations and human interventions 
have important fingerprints on wildfire regimes; e.g., the 
number and the area burned by wildfires. Given the lim-
ited data, predictions are difficult to carry out at this time 
because even conventional forecasting techniques convey a 
large unexplained variation (Johnson & Miyanishi, 2001).

Recent research has revealed high-severity wildfires 
occur when a series of local and large scale events develop 
continuously over time scales of months: e.g., unusual in-
tense winter frosts that add large amounts of fresh foliage 
onto the forest soil; infrequent spring drought spells; and late 
spring-early summer heat waves that provide additional fuels 
and the environmental conditions to unleash high-severity 
wildfires (Fernandes et al., 2012; Návar, 2015). However, 
conceptual models that describe more objectively each one of 
these perturbation components are lacking elsewhere. Other 
major random sources of fresh foliage input little studied 
and quantified are: (i) tree dieback by dry spells associated 
with intense heat waves (Allen et al., 2010; Návar, 2015); 
(ii) tree mortality by pests and diseases; (iii) frosting winds; 

(iv) hurricanes; (v) among others. These large-scale pertur-
bations, in part, control the amount of fresh fuel loads and 
the moisture content impacting directly on the spread rate, 
intensity and extent of high-severity wildfires.

Technologies available to predict the risk factor of 
wildfires have been continuously updated, amongst which 
just to mention a few are: a) The Canadian Forest Fire 
Danger Rating System (http://fire.cfs.nrcan.gc.ca); b) The 
Integrated System of Italy (Fiorucci et al., 2004); c) The 
Meterological Institute of Portugal (Bugalho y Pessanha, 
2007), d) The CFS-Conafor for México (CONAFOR, 2012); 
among others. Fulé and Covington (1997; 1999), Aguado 
et al. (2003), Hernández-Leal et al. (2005), Sebastian et al. 
(1999; 2000; 2007) proposed other empirical assessments of 
wildfire regimes for several sites or regional-specific uses. In 
general, all these systems model several major components; 
the meteorological index and the forest wildfire behavior. 
The meteorological index includes the quantification of the 
moisture content with climate variables and more recently 
with the presence of hotspots. Most frequently climatic data 
collected from instrumental devices and satellite techniques 
such as: air temperature, relative humidity, evapotranspira-
tion, wind speed and direction, precipitation, hotspots, among 
others are used individually or in combination to evaluate 
the meteorological or climatic index (http://fire.cfs.nrcan.
gc.ca). A few investigations have considered hydrologic 
balances of e.g., the moisture content of soils that are closely 
related with the fuel moisture content as a major variable 
to predict one of the major controls of wildfires (Lawson et 
al., 1997; Návar, 2011; 2015). The forest wildfire behavior 
accounts for all fuels, climatic and topographic factors (Ro-
dríguez-Trejo, 1996). However, most of these models and 
techniques hardly include more physically-based techniques 
to predict most wildfire components. 

Given this brief literature review, this report aimed to 
predict three wildfire variables using conventional: a) sto-
chastic and b) probabilistic; and propose non-conventional: c) 
physical and d) conceptual models as an aid for preparedness 
for the worst case scenarios. Wildfire data in number and 
area burned for the State of Durango, México was used to 
test set models with the hypothesis they would significantly 
account for part of the wildfire variance.

Materials And Methods
Study Area. Wildfire data was collected for temperate for-
ests of the State of Durango, Mexico. The State is located 
in the north-central portion of Mexico and has an area of 
approximately 12.3 M ha (Figure 1). It spans 22º35’ NL and 
104º50’ WL; 24º44’ NL and 22º58’ WL; 26º83’ NL and 
104º27’ WL, and 23º52’ NL and 107º21’ WL; neighboring 
the States of Chihuahua and Coahuila to the north and east; 
Coahuila and Zacatecas to the east, Zacatecas and Nayarit 

http://fire.cfs.nrcan.gc.ca
http://fire.cfs.nrcan.gc.ca
http://fire.cfs.nrcan.gc.ca
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to the south and Sinaloa and Nayarit to the west. Four main 
physiographic regions characterize the State; a) the Western 
Plains of the Pacific Ocean, b) the Sierra Madre Occidental 
Mountain Range, SMW, c) the Central Valleys of Durango 
and Chihuahua, and d) the Chihuahuan Desert.

The SMW Mountain Range is the continental divide and 
rises West of the Chihuahuan Desert and East of the Plains 
of the Pacific Ocean up to 3000 m above sea level, masl, 
crossing the State from North to South in its Central-Western 
portion. Temperate forests with mixtures of pines, oaks, and 
other conifers cover this Mountain Range; with common 
species Pinus cooperi, P. durangensis, P. engelmannii, P. 
teocote, P. herrerae, P. leiophylla and P. ayacahuite. The 
most frequent oak species found are Quercus sideroxyla, Q. 
durifolia, Q. rugosa and Q. candicans. Juniperus , Cupressus 
Pseudotsuga and Abies are other temperate conifer species 
that make up the forest community. Other broad leaf species 
growing within these forests are Arbutus spp. and Alnus The 
lower strata are conspicuous and dominated by manzanita 
(Arctostaphylos pungens) and encinilla (Quercus striatula).

The SMW features several microclimates, according to the 
Köppen climatic classification scheme and modified for Mex-
ico (García, 1987): a) in the highlands, the temperate-cold, 
humid climate, with summer rains and mean annual tempera-
ture and precipitation of 14°C and 1000 mm, respectively. 
The interior lower ridges are characterized by semi-arid, dry 
temperate forests with mean annual temperature and precip-
itation of 16°C and 800 mm. The Pacific Ocean ranges are 
characterized by subtropical warmer dry climates.

Forest wildfire data. Annual data covering the number 
of wildfires, the total burned area and a derived variable 

the mean burned area (e.g., total burned area / number of 
wildfires) was available for the State of Durango Mexico 
from 1970 to 2011 (Figure 2).

 
Conventional mathematical techniques used to fore-
cast wildfires
Testing the time series for stationarity. Conventional linear 
regression analysis usually tests the hypothesis for changes 
in the first momentum of the time series wildfire data; e.g., 
Y = a + bX; where Y = the wildfire variable; X is just a 
consecutive year number (1970 to 2011 for annual data); a, 
b are statistical parameters to be estimated using statistical 
programs such as SAS v 8.1. If Ho (B = 0) is correct then 
no statistical significant temporal tendencies are depicted 
by the wildfire data. Autoregressive integrated moving 
average, ARIMA, models have also fitted the annual time 
series data to statistically test for stationarity by fitting linear 
and quadratic trends as well. Monthly and annual wildfire 

Figure 1. Location of the State of Durango in México.

Figure 2. Forest wildfire data (number of forest fires, area burned 
annually, and mean annual burned area) recorded for the State of 
Durango, Mexico (Source: CONAFOR, 2018).
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data variables are sometimes smoothed; then the ARIMA 
models fitted to the data set. The conducted statistical tests 
show whether the wildfire data is stationary and indepen-
dent using the probability of the F-Fisher and/or t-Student 
statistics. Wildfire data was stationary in the first momentum 
(P ≥ 0.05). 

Stochastic Methods. Stochastic methods include a series 
methods and techniques that are available for the prediction 
of wildfire variables. These include at least all regression 
equations that convey physical or none physical meaning 
at all. 

Teleconnections. The term tele-connection refers to a 
recurring and persistent, large-scaleclimate pattern (pressure-
and circulation anomalies) thatspans vast geographical areas 
(CPC: www.cpc.ncep.noaa.gov) that could be associated with 
local e.g., wildfire events. Synoptic scale climate variables 
depicted by sea surface temperature anomalies, SST, such 
as El Niño/Southern Oscillation, ENSO (Cavazos and Has-
tenrath, 1990), and its different indices such as the Southern 
Oscillation Index, SOI, or the Ocean El Niño Index, ONI, 
has been previously correlated with wildfires in Durango 
(Návar, 2011). The SST in the regions 1, 1+2, 3+4 and 4 
are also indices of ENSO. In addition, the Pacific Decadal 
Oscillation, PDO, (Mantua et al., 2002) and the Atlantic 
Multidecadal Oscillation, AMO, (NOAA, 2020) could be 
correlated to local wildfire variables since they modify the 
regional climate of several places of Earth.

Large and local spatial scales. Forests and soils have the 
capacity to regulate several variables of the hydro-climate 
as they store and release sometimes slow water fluxes out of 
the forest ecosystem buffering the effect of hotspots or acute 
short dry episodes on for example the moisture content of 
fuels. Hence the joint association between large scale (ENSO, 
PDO, AMO) and local (θ) variables would provide better 
predictions of wildfire variables.

Autoregressive integrated moving average, ARIMA, 
models. ARIMA models capture the dependence between 
observations at t previous times by removing a persistent 
mean value. ARIMA models may include all three, two, or 
one component: (i) the autoregressive, (ii) integrated, or (iii) 
the moving average components. When one autoregressive 
component is sufficient the model is said to be ARIMA 
(1,0,0), and so on. The autoregressive component is usu-
ally the regression equation of the wildfire variable a t t= 
ti versus the wildfire variable at t=t-1. Most often a first or 
second order autoregressive ARIMA model would predict 
the wildfire variable of interest. The problem with ARIMA 
models is that they require a quite comprehensive data set 
in order to extract a robust model.

Simple regression equations. Regression analysis use 
single or multiple independent exogenous variables that may 
or may not be physically related to the wildfire data. Classic 

regression equations include the association of instrumented 
data such as precipitation, temperature, evaporation with the 
wildfire variables. 

Probabilistic Models. Probability density functions. 
Probabilistic models project random values of the variable of 
interest, in this case the wildfire data, by fitting probabilistic 
density functions, pdf (Haan, 2003). Several pdf models 
had been fitted to wildfire data amongst which the Frechet, 
Truncated Pareto, Weibull are the most commonly cited 
(Alvarado et al., 1998). The selection of the pdf that best fit 
the random data commonly uses the classic goodness of fit 
tests the xi2 and the Kolmogorov-Smirnoff tests. 

Markov chain matrices and models. A second stochastic 
approach to forecast wildfire data or events divides process 
into states. For example, the burned area time series can be 
considered a process with a mean value of 17,753 ha and 
minimum and maximum values of 435 and 68,960 ha indi-
cating that any size of burned area within these boundaries 
is possible. The division of this process into for example 2 
or 3 different states would be to classify values into states 1 
and 2 or 1, 2 and 3. Of interest would be to classify as many 
states as possible with the major interest of understanding and 
predicting the risk of high- severity wildfires. Unfortunately 
the data matrix is sometimes not long enough to divide it 
into many states.

First order Markov model. Markov models or processes 
is a stochastic model describing the sequence of possible 
events in which the probability of each event depends on the 
state reached in the previous events. A first order Markov 
model uses only the understanding of the state attained the 
previous time step.

Results
Predicting Wildfires

As an example, forest wildfires in number, area and mean area 
were predicted using stochastic, probabilistic, and physical 
models as well as a conceptual more comprehensive model 
was proposed.
A. Stochastic Models.

1. Tele-connections between large-scale synoptic 
events and wildfires. In this research, No, A, and AM were 
regressed against ENSO indices (SST, SSTA, SOI) for the 
four regions of the Southern Pacific Ocean (1, 1+2, 3+4, 
4) and PDO and AMO anomalies using multiple regression 
analysis. Table 1 reports the degree of association of the 
individual synoptic climate variables with No, A, and AM 

for the State of Durango, Mexico.
The amount of variability significantly (P ≤ 0.05) ex-

plained by the SST anomaly variables is from low to mod-
erate since the coefficient of determination hardly exceeds 
55% of the total wildfire variance, stressing other local 
variables have also a marked influence on wildfire regimes 
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as well. Of importance is the AM predicted by the SST3MAY 
index of region 3+4 that individually accounts for by 53% 
of the total AM variability.

Large spatial scale and local hydro-climate variables. 
Monthly and seasonal combined SST anomalies in addition 
to local precipitation, P, and soil moisture content, θ, also 
predicted moderately well with statistical significance the 
wildfire data set (Table 2). 

These kinds of teleconnection regression equations 
improve the power prediction by explaining an important 

part of the wildfire variance (P ≤ 0.05) although they still 
convey an important portion of unexplained variation. Of 
importance is how the synoptic climate components in 
conjunction with the local variables (θ) describe better the 
wildfire variability. In particular, the equation of the L(A) 
model accounts for by 73% of the total area burned variance 
and include a combination of local hydro-climatic (θ) and 
the SST (AMO and SOI) anomalies. These combination of 
exogenous variables partially test the independence of local 
and long spatial scale variables. That is, the local regulation 
by the forest and soil can play an important role in wildfires. 
The power prediction of these tele- connections regression 
equations reported in Table 2 in logarithmic fashion are 
depicted in Figure 3. 

Wildfire 
Variable Variable R2 N

No SST1JUNE 0.19 21

No PDOJUNE-1 0.15 41

A SST3MAY 0.23 21

A SST1FEBRUARY 0.27 21

A AMOJUNE-1 0.09 41

AM SST3MAY 0.53 21

AM SST2MAY 0.22 21

AM PDODIC-1 0.14 41

Table 1. The degree of linear associations of several synoptic scale 
climate variables with forest wildfires in the State of Durango, Mexico.

The amount of variability significantly (P ≤ 0.05) explained by the SST 
anomaly

Wildfire 
Variable Variable R2 N

No SST1OCT-1-MAR, SST3OCT-1-MAR 0.50 21

A SST3OCT-1-MAR, SST1OCT-1-MAR 0.31 21

L(AM) PDONOV-1, PDOAG-1, AMONOV-1, AMOSEP-1, 0.44 41

AM PDODEC-1, PDOOCT-1, PDOAG-1, PDOJUL-1, AMO JUL- 1, AMO AG-1 0.53 41

L(No) L(PDOJAN-MAR), AMOFEB, SOIJUL 0.51 41

L(A) L(PDOJAN-MAR), L(θJAN-MAY), AMOJUN, SOIFEB 0.73 41

L(AM) L(PDOJAN-MAR), L(θJAN-MAY), SOIFEB 0.48 41

Where: OCT=October, MAR=March, NOV=November, AG=August, SEP=September, DEC=December, JUL=July, FEB=February, JAN=-
January, SST=Sea surface temperature anomaly, PDO=Pacific decadal oscillation, AMO=Atlantic multidecadal oscillation, SOI=Southern 
oscillation index, Prec=precipitation, θ=Soil moisture content, L = natural logarithm, 1=Region 1, 3=Region 3+4; -1= the previous year.

Table 2. The degree of association of several synoptic scale climate variables with wildfires in Durango, Mexico.

Figure 3. Modeling wildfire data using teleconnection regression 
equations coupled with local climate and soil data.
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Other single independent teleconnection equations 
were reported previously by Návar (2011), as follows: A= 
31600-12224ENSONOV_DIC-1, with an r2 of 0.37. 

2. Autoregressive integrated moving average, ARIMA, 
models. All ARIMA models of the type ARIMA (1,0,0) in a 
log transformation data explained 48%, 45%, and 32% of the 
wildfire data set (No, A, AM, respectively). Examples of ARI-
MA models fitted to this data set are displayed in Figure 4.

The advantage or disadvantage in rapid changing world 
climate extreme variability events, when using these stochas-
tic models is that they can predict the future wildfire data 
with the same statistical properties as the original data set. 
Other ARIMA models using heterogeneous variance (ARCH 
and GARCH) had been recently developed that improve the 
predictability power for the time series with heteroscedastic-
ity properties. However, the wildfire time series for Durango 
was tested for stationarity and independence and it is not 
long enough to show the likely heterogeneous variance that 
must have the high-severity in contrast to the small-severity 
wildfires and to fit the new ARIMA models. Other composed 
ARIMA models in conjunction with explanatory variables 
that may lead to the development of parametric models are 
under development and they will become better prediction 
techniques once they are tested and become available in the 
near future. 

3. Regression equations. Annual, seasonal or weighted 
rainfall, evaporation, mean seasonal soil moisture content 
or the number of dry days during the dry season have been 
associated with some degree of confidence with forest wild-
fires. Using the single most representative climatic station 
of El Salto, Dgo., Mexico (2570 masl), regression equations 
associated with wildfires are reported in Table 3.

These local variables have a low to medium predictive 
power as the r2 hardly exceeds 50% of the wildfire variance. 

Figure 4. Autoregressive integrated moving average models pro-
jecting the number, the total area and the mean area burned by wild-
fires in Durango, Mexico.

Variable Coefficient of Determination (r2)
X = θ No A AM

Number of Days with soil moisture content below θx

0.29 0.15 0.23 0.18
0.31 0.14 0.23 0.18
0.33 0.11 0.19 0.17
0.35 0.13 0.22 0.18
0.37 0.13 0.21 0.18
0.39 0.12 0.21 0.17
0.41 0.11 0.19 0.16

θ (Jan-Jun) 1-6 0.22 0.44 0.33
θ (Jan-May) 1-5 0.24 0.32 0.21
θ (Jan-April) 1-4 0.26 0.33 0.20
θ (Jan-March) 1-3 0.30 0.60 0.21
θ (Jan-Feb) 1-2 0.29 0.33 0.17
Annual Precipitation P 0.00 0.00 0.04
Annual Evaporation EV 0.03 0.10 0.07
Annual Evapotranspiration ET 0.01 0.01 0.04
Dry Season (Jan-May) P 0.36 0.47 0.27
Dry Season (Jan-May) EV 0.07 0.14 0.08
Dry Season (Jan-May) ET 0.12 0.16 0.09
Note: These related variables are derived from a single climatic station while the number and area burned by wildfires is for all the State of Du-
rango, Mexico. The number of days with soil moisture content below θx value, the mean soil moisture content, θ, Evapotranspiration and Real 
Evapotranspiration were modeled using a water balance budget approach. Data estimated for a single climatic station at El Salto, Durango, Mexico.

Table 3. Degree of association between wildfire variables and several micro-climatic variables for the State of Durango, Mexico.
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Of importance is the variable spring θ that is associated to the 
moisture content of fuels as well as the weighted Et compo-
nent that is associated with both the heat and water available 
in the forest ecosystem. In case of using combined exogenous 
variables, the solution to the problem of heteroscedasticity 
relays on developing single, independent equations that pre-
dicts e.g., the A= (3170Exp(0.089/(θJAN- MAR-0.2451)); r2=0.60 
that would yield more reliable predictions (Návar, 2015).

Using monthly temperature and precipitation data from 
other climatic stations located across the SMW mountain 
range, we developed multiple linear regression equations 
reported in Table 4. 

The use of instrumental climate data from other climatic 
stations increase prediction power of wildfires by accounting 
for nearly 50% of the total wildfire variance and having more 
stable statistical coefficients stressing the localized nature 
of wildfire at several times in the past and hence the aggre-
gated nature of wildfires, as proposed earlier (Perez-Verdin 
et al., 2014). A potential geographical escalation could be 
also part of the prediction of wildfire regimes as drought 
develops seasonally quite frequently in latitude, longitude 
and altitude (Vega-Nieva et al., 2019).

B. Probabilistic Models.
1. Probability density functions. Examples of three 

pdf’s fitted in addition to the goodness of fit to each of the 
three wildfire variables are displayed in Figure 5.

The Kolmogorov-Smirnoff, KS, goodness of fit statistic 
is also embedded into each of the figures. The Truncated 
Pareto is an excellent model for high-severity wildfire data 
but fails to describe well the small-severity ones. The Weibull 
pdf function consistently models better all three sources of 
wildfire information. When using the Chi2 fitness statistic, 
the Weibull pdf tests the null hypothesis (P > Chi2 = 0.22; 
0.12; and 0.16) of significantly describing well No, A, and 
AM, respectively. 

The simulation of time series using random numbers 
retains the statistical properties of the original pdf and eventu-

Wildfire 
Variable Variable R2 N

A Exp(2.68+0.037ATxJAN-0.1424STnFE-

0.4217ATnMAR+0.215APMAR) 0.59 29

No
Exp(2.43+0.189ATxJAN- 

0.0038SPMAR+0.043TTnJAN+0.053T-
TxFE)

0.49 38

Where: A=Altares, b S=El Salto, T=Tarahumar, Tx=Maximum 
Temperature (°C), 18 Tn=minimum temperature (°C), P=monthly 
precipitation (mm), JAN=January, FE=February; MAR=March.

Table 4. Multiple linear regression equations developed to predict 
wildfire data using climatic data from several stations placed across 
the Sierra Madre Occidental Mountain Range of Durango, Mexico.

Figure 5. Three probability density functions fitted to the number of 
wildfires, the total area burned and the mean area burned in the State 
of Durango, Mexico.

ally produces similar values. The probability of high-severity 
burned areas (e.g., A > 20,000 ha) remains the same year 
after year. For this example, P(A>20,000 ha) = 31.67% for 
the original as well as for the simulated series. These results 
are important for the long term planning of the management 
of wildfires in the area of interest. However, they have little 
year to year predictive power unless the pdf is used within 
certain boundaries and coupling with other Bayesian tech-
niques. For example, for these time series wildfire variables 
are related to each other (No = 1.9494Area0.4924; R2=0.66; 
AM = 0.513Area0.5076; R2=0.67) aiding in the prediction of 
the total area burned larger than 20,000 ha that could be of 
interest in forest fire management. Using the power regres-
sion equations reported above; this burned area is produced 
by about 255 wildfires with a mean burned area of 78 ha 
per wildfire. Using the Weibull pdf, there is a 31.67% of 
probability of any given year to have a burned area larger 
than 20,000 ha and it has therefore a probability of 68.33% 
of having a burned area smaller than 20,000 ha. Conditional 
probability would also eventually enhance prediction capa-
bilities with the use of probabilistic models. The dependence 
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of the probability on the explanatory X variables has been 
proposed in several statistical packages and they will even-
tually become techniques of wide acceptance and usage as 
the predictive power increase.

Assuming the Weibull pdf is a good model for the burned 
area; the generation of random values using this pdf function 
would provide predictions of past, present and future wildfire 
data. In this exercise using a simple Monte Carlo analysis 
generated 100 sets of 51 values (1970-2020) with the aim 
to use the series that correlates better with the measured 
wildfire data for the State of Durango, Mexico. Results are 
displayed in Figure 6. 

The simulated burned area time series retains the statistics 
(e.g., for the mean burned area; mean = 20189 ha; standard 
deviation = 18373 ha; skew coefficient = 1.27) in contrast 
to the original measured time series (mean = 17753 ha; 
standard deviation = 15925 ha; skew coefficient = 1.18). 
The predictive power of these probabilistic models decrease 
in contrast with the ARIMA models (r2 ≤ 0.45) using a sin-
gle realization of random numbers. Stronger Monte Carlo 
simulations may or may not improve the predictive power 
but they will probably extract better the true probabilities as 
well as any tendencies if any that would yield most robust 
likely future scenarios.

2. Markov chain matrices and models. For 2 states 1 
was the burned areas of less than 20,000 ha and 2 burned 
areas larger than 20,000 ha. For 3 states; 1, 2 and 3 states 
could be for burned areas of less than 15,000; 15,001 ≤ 
29,999; and ≥ 30,000, respectively.

The transition probabilities and their convergence ma-
trices for two and three states for the total burned area are 
displayed next. 

	 │0.6786	 0.3214│	 │0.7053	 0.2947│
	 │0.7692	 0.2308│	 │0.7053	 0.2947│

and 

│0.6250	 0.2083	 0.1667│	 │0.6103	 0.1735	 0.2162│ 
│0.5714	 0.1429	 0.2857│	 │0.6103	 0.1735	 0.2162│ 
│0.6000	 0.1000	 0.3000│	 │0.6103	 0.1735	 0.2162│ 

Both types of matrices for 2 and 3 states coalesce rapidly at 
steady state showing the stationary and the independence 
of the burned area time series. That is, for a Markov chain 
process with two states, the probability of shifting from a 
small-severity burned area (< 30,000) to a high-severity 
one (e.g., >30,000 ha) is exactly the same as if the process 
shifted from a high-severity burned area (>30,000 ha) to a 
small-severity one (<30,000 ha). For the 3 states Markov 
chain process, the steady state probabilities are also exact-
ly the same for shifting back and forth from <15,000 ha; 
15,0001 ha ≤ x ≥ 29,999 ha; and to ≤ 30,000 ha, respectively.

Future predictions of the area burned can be conduct-
ed using the three states matrix if for one moment it is 
assumed wildfires are not independent year after year by 
observing the area burned e.g., in 2012 (51626 ha; State = 
3), the probability that A≤ 30000 ha in 2013 is then 99%; 
the probability that A ≤ 15000 ha in 2013 is then 72%; and 
the probability that 15000 ≤ A ≤ 30000 ha in 2013 is then 
28%. The probability of the occurrence of wildfires with A 
≥ 30000 ha in 2014 is 22%.

3. First order Markov Model. Measurements and pre-
dictions of wildfire data using a first order Markov model 
is depicted next in Figure 7.

The first order Markov model provides moderate (0.44 
≤ r2 ≤ 0.47) predictions comparing the goodness of fit 

Figure 6. Measured and simulated random wildfire area data using 
Weibull probability density functions for northern temperate forests 
of Durango, Mexico.

Figure 7. Wildfire data measurements and predictions using a first 
order Markov model.
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statistics of the ARIMA models. A second advantage of 
Markov models is that they retain the same wildfire statistics 
(average, standard deviation, skew coefficient) as those of 
the original, measured data sets.

Short term wildfire predictions
Four single examples of measured and simulated wildfire 
data using five years of wildfire data set aside for validation 
of mathematical techniques is displayed in Table 5. The final 
row shows the coefficient of determination of the measured 
versus the predicted wildfire variables for each of four dif-
ferent prediction techniques.

The teleconnection technique using large scale as well 
as local hydroclimate exogenous variables provide more 
consistent results when validating the proposed equations 
(Table 5). However, large errors are expected when con-
trasting predictions with independent measured values left 
aside for validating models (Table 5). Most likely, using the 
properties of the Central Limit Theorem an average statistic 
using all available model predictions presented in this re-
port would most likely improve assessment of the number 
or the area burned by wildfires in contrast to any single 
prediction equation by any mathematical approach tested in 
this report. This procedure would improve only average but 
not the extreme values that are important for the prediction 
of high-severity wildfires. As we are often interested in 
wildfire events such as those measured in 1998 during the 
strongest El Niño event of the last Century, other kinds of 
models must be developed to capture the variance of these 
high-severity wildfires.

Proposed New Models.
C. Physically-based models. More physically-based 

models should count for by the deterministic prediction of 
the three main components of forest wildfires; fuels and their 
moisture content, sources of ignition, and oxygen.

Fuels. Reinhardt and Crookston (2003) classified forest 
fuels as ground (organic soil, duff, and moss), slash (litter), 
living trees and miscellaneous (grass). These forest fuels can 
be further classified into: (i) litter, (ii) necromass, (iii) tips & 
stumps, (iv) branches, (v) foliage, (vi) living aboveground 

Table 5. Validation of four mathematical techniques to predict wildfire data for the State of Durango, Mexico.

biomass. Litter has its origins in litter fall while foliage in 
the mass of leaves left on-site during harvesting operations. 

Modeling litter and necromass stocks. Evaluations of 
forest fuel loadings on the forest floor conventionally measure 
altogether organic soil, duff, moss, litter and necromass.

Litter stocks. A physical model that predicts litter stocks 
and accumulation rates as a function of total aboveground 
biomass, the rate of losses weighted by site productivity was 
proposed for northern non-industrial reforested stands of 
Mexico (Návar, 2019). The physically-based model predicts 
cumulative litter stocks, LS, in growing forests. The model 
is parameterized using a mass balance budget approach as 
described below;
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The final model is described in Eq. [4] and Eq. [5], as 
follows:
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Where: LR = litter fall rate (Mg ha-1 y-1); LO = rate of 
litter losses (Mg ha-1 y-1); LS = litter stocks (Mg ha-1 y-1); 
AGB = aboveground biomass (Mg ha-1); P, ET = mean 
annual precipitation and Thornthwaite evapotranspiration, 
respectively (L).

The litter stock and accumulation model was previously 
validated with measured litter stock data for local Mexico’s 
forests (Renteria et al., 2005; Acosta-Mireles, 2003; Rodrí-
guez-Laguna et al., 2009; Mendoza-Ponce & Galicia, 2010; 
Aryal et al., 2018; Caballero-Cruz et al., 2018), as well as 
for average data reported for Mexico (CONAFOR, 2012), 

Measured Data ARIMA Models Weibull pdf Markov Model Tele-connections
Year No A AM No A AM No A AM No A AM No A AM

2012 270 22802 84 308 43705 149 373 37352 11 446 10376 4 200 42005 210
2013 231 12359 54 251 6893 3 10 26273 16 273 4891 109 450 53000 118
2014 199 5463 27 74 39541 118 224 2268 121 190 13323 1 300 25000 83
2015 68 517 8 347 1933 6 97 35417 66 396 17567 13 160 13323 83
2016 254 7277 29 635 53403 84 43 22219 30 197 9800 0 340 45000 132
R2 0.03 0.13 0.24 0.07 0.13 - 0.40 0.05 -0.33 0.05 0.25 0.43 0.78
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North American (Kohl et al., 2015) and World (Kohl et al., 
2015) temperate forests (Figure 8).

 
Necromass: tree mortality by competition. Tree mor-

tality is the main source of necromass accumulating atop 
the forest soil. Tree mortality occurs by competition and by 
stochastic processes. Tree competition can be predicted using 
the conventional technique of mortality by demography, as 
competition for space and resources is the main driver of tree 
mortality in overstocked forests and plantations. Overstocking 
develops in forests as trees grow in size. The Reineke equa-
tion predicts quite well tree density as a function of mean 
diameter, with a typical log-log relationship and the universal 
exponent of -3/2 ensures the reduction of the number of trees 
as they grow in diameter. Using this principle, an equation 
evaluating stand density, Den (No ha-1), is developed. In this 
example, using available data for North American forests, 
the Den Eq. was developed, as follows; 

Where: Den = stand density (No ha-1); D = diameter at 
breast height (L).

Den=87021·D-1.62	 [6]

Fortunately Eq. [6] reproduces similar Den data as the 
equation reported by Aguirre-Bravo (1987) for Pinus cooperi 
stands of Durango, Mexico. Then, the number of trees dying 
by competition was evaluated using Eq. [7],

Den Den D Di i i i− = ⋅ − ⋅+
−

+
−

1
1 62

1
1 6287021 87021. . 	 [7]

The total number of trees killed by competition at t=t is 
evaluated using Eq. [8],
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t t
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t
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Using the diameter growth Eq. (D = f(T)) described by 
the sigmoid Chapmna- Richards function for local forests 
(Corral-Rivas and Návar-Cháidez, 2005); the Den = f(D) by 
Eq. [6], as well as the AGB =f(D) equation for individual trees 
reported earlier (Návar, 2009), we derived the cumulative 
AGB of killed trees by competition that are eventually aggre-
gated to the forest floor as the main necromass input. Figure 
7 presents the AGB density of killed trees by competition.

The annual tree mortality rate by intrinsic competition 
has an average of 2.0 Mg ha-1 y-1. As expected it is more 
acute in the most productive forests. In temperate forests of 
Durango, Mexico, high-severity wildfires present an average 
frequency of approximately 30 years (Rodriguez-Trejo and 
Fule, 2003; Drury and Veblen, 2008) and using this informa-
tion, under no management practices of on-site killed trees 
by competition, this forest would accumulate an average 
of 60 Mg ha-1. However, because necromass has a half life 
time in the environment of 20 years as it decays over time; 
the final necromass density would be in the range of 20 to 
30 Mg ha-1 during any average time interval between two 
consecutive high-severity wildfires.

Tree mortality by random processes. The forestry 
institutions over the world report forest inventories with 
the number and volume of dead on-site trees. For Mexico, 
the CONAFOR (2012) reports the total annual volume 
of harvested dead on-site trees, with a mean of 50,000 
(±10,000) Mg. However, the total volume of dead on-site 
trees is approximated in the forest inventory and this volume 

Figure 8. Modeling litter stocks & accumulation rates using a mass 
balance litter budget approach for northern temperate forests of 
Mexico coupled with a whole stand growth and yield model with 
three stand density scenarios (Source: Navar, 2019).

Figure 9. Quantifying the aboveground biomass density input of 
trees killed by competition in northern native forests of Durango, 
Mexico.

[	 ] [	 ]
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can be sometimes twice as large as the total official harvested 
timber volume. For example, Návar (2015) reported two 
important episodes (1998-2001 and 2012-2012) that killed 
on-site large number of trees by a combination of infrequent 
drought-related disturbances with heat waves, frosts, wild-
fires and bark beetle outbreaks. Official reports recorded an 
area affected of nearly 200,000 ha by these disturbances in 
each of these two dry spells that may have accounted for a 
standing biomass of approximately 1 M Mg.

The rate of tree mortality in the presence of other sto-
chastic processes such as frosting winds, strong cold-dry 
winds, pests & diseases, drought spells associated with heat 
waves, among others require further attention since these 
stochastic events add large amounts of fuels in the form of 
litter and necromass to the forest floor. This explains why in 
some regression analysis, the minimum extreme temperature 
explains a significant portion of the large wildfire variability 
as it was the case for the data set of in Durango, Mexico. 
Unfortunately the data base comprising these random events 
is non-existent or at least a couple of data points in time are 
available making developed models to have a limited predic-
tive power. More efforts are required to enriching the data 
base using paleo climate & historic wildfire data techniques.

Other forest management practices producing for-
est fuels Forest fuels as residues of conventional forest 
management operations. Timber harvesting also add con-
siderable mass of litter, branches, stumps, and tree tops on 
the forest floor that can be predicted in advance quite well. 
Most of the stem component is harvested, with the excep-
tion of stumps, branches and tree tips. With the use of taper 
functions, the stem can be partitioned into merchantable 
or harvestable and non- merchantable or non-harvestable 
components. Most branches and all foliage components are 
usually left on site. With the use of aboveground biomass 
allometry, the mass of branches, foliage and timber stump 
& top components can also be predicted in advance.

Timber stumps & tips left on-site. Timber stumps are 
the basal portions of the main bole left standing on site. 
Timber tips are the distal portions of logs that do not meet 
the size requirements for its transformation into merchantable 
components. They are sometimes collected for the transfor-
mation of secondary forest products and sometimes they are 
left on-site as well. Mathematical functions that predict the 
stem profile had been developed over the years for many 
forests. An example for northern temperate tree species of 
Mexico reported by Návar et al., (2013) is presented next. 
The equation of Newnham (1990) depicted by Eq. [9] with 
recorded parameters for local pines and oaks (Table 6) pre-
dicted total, merchantable, stump and tip volumes.
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Where: H = top height (m); hi = relative height (m); D = 
diameter at breast height (cm); d = relative diameter (cm)

Table 6. Coefficients of the Newnham (1990) taper model and their 
standard errors for tree species of northern Mexico.

Source: Návar et al., (2013).
The difference between total, Vt, and merchantable, 

Vc, timber volume evaluated the timber tip volume, Vtt, as 
explained mathematically by Eq. [10], as follows: 
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Equation [10] cannot be analytically integrated, hence 
numerical analysis is conducted, e.g., using δhi=1 cm. 
Merchantable timber was evaluated from the base to the 
length of stem where diameter is > 20 cm. Logs with D ≤ 
20 cm are classified as tips. Tip biomass was estimated by 
multiplying the tip volume times its wood specific gravity. 
Timber stumps are calculated using conventional empirical 
equations.

Branch biomass. Branch biomass of harvested timber 
can be quantified using allometric equations that have also 
been developed for many tree species for many forests. Návar 
(2009) reported for northwestern forests branch biomass 
equations for pine, Bbp, and oak, Bbq, tree species. These 
equations are: 

	 Bbp=0.0565D2.2729

	 Bbp=0.0202D2.6480	 [11]

Where: dry biomass is in kg; D = diameter at breast 
height (cm).

Using this approach, the mass of fuels that remain in the 
forest floor is approximately 3 Mg ha-1 y-1. An example of 
the calculations using the Newnham (1990) equation at the 
stand scale is reported in Table 7.

Parameters
Species Statistic b1 b2

Quercus spp Mean 0.010400 0.916300
SE 0.000036 0.011100

Pinus spp Mean 0.010300 0.595400
SE 0.000017 0.003200

⌈	 ⌉
⌊	 ⌋

⏜ ⏜
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Evaluations of biomass components of Table 7 assume 
all trees are harvested in these forest stands. This is of 
course not possible as clear cutting practices are forbidden 
by the Mexican Forestry Law. Then, ratios can be used to 
predict the biomass components left on the forest floor as a 
function of the allowable harvest. These ratios must also be 
weighted by the half life in the environment of each forest 
fuel component.

Live trees. Live trees become also important sources 
of forest fuels especially when they reach very los internal 

moisture contents (< 7%). The aboveground biomass con-
tained in standing live trees can be evaluated using already 
developed allometric regression equations. A wide range of 
allometric equations at the species and temperate species 
were developed and reported by Navar (2009) that were ap-
plied to the Mexican Forest Inventory for Durango, Mexico. 
An example of this approach is presented in Figure 8 where 
close to 1700 forest inventory sites are displayed.

The climatic component. The moisture content of forest 
fuels is the single most important hydro-climatic compo-
nent controlling wildfires because depending on the fuel 
water content the wildfire can simulate a prescribed burn, a 
small-severity or a high-severity wildfire. Due to the difficulty 
of continuously measuring and evaluating the moisture con-
tent of fuels, numerous climatic indices have been proposed 
with little predicting power; e.g., see statistics of Table 3.

The moisture content of forest fuels. The moisture 
content of forest fuels (ground, litter, grass, trees) can be 
deterministically evaluated using several approaches. Návar 
(2015) assumed the soil moisture content is in equilibrium 
with the forest fuel moisture content as they are in close 
contact and developed a physical water balance budget model 
to evaluate changes in soil moisture content, δθ, over time, 
δt, that is depicted by the next set of equations.

Total Tree Tips Stump
Biomass Components (Mg ha-1)

Branch Foliage Necro-
mass Sawnwood Plywood

Mean 171.8 23.0 6.9 34.3 20.6 24.2 76.1 41.6
Standard Deviation 71.7 11.6 2.9 14.3 8.6 14.5 40.5 39.3
Confidence Interval 17.8 2.8 0.7 3.5 2.1 3.6 10.0 9.7

Table 7. Statistics for classifying biomass components of 62 overstocked stands of northern temperate, mixed, uneven-aged forests of Cen-
tral Durango & Southern Chihuahua, Mexico.

Figure 10. The aboveground biomass density for nearly 1700 forest 
inventoried sites of Durango, Mexico.

Figure 11. Predicting wildfire data with predicted soil moisture content for temperate forests of Durango, Mexico.
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Where: In = water inputs (L); Ou = water outputs (L); 
θ = soil moisture content (L L-1); P= precipitation (L); IC,LS 
= Interception loss of forest canopy and litter, respectively 
(L); EV= Pan evaporation (L); TR= transpiration (L); QS= 
Surface runoff (L); QSF,AR = Subsurface runoff and aquifer 
recharge (L).

Making several further assumptions, the θ is evaluated 
with very good preliminary expectations as it correlates well 
with wildfires (0.34 ≤ r2≤ 0.95); tree growth and productivity 
(0.40 ≤ r2 ≤ 0.50); pulses of tree dieback (0.34 ≤ r2 ≤ 0.50) 
(Návar, 2015). In fact, the best prediction equations of Tables 
2 and 3 include θ as the most significant explanatory variable. 
However, Návar (2015) has found the predictive power of θ 
weakens as the wildfire time series data lengthens.

D. The proposed conceptual model. Wildfires are as-
sociated and significantly synchronized but complex manner 
with SST oscillations (ENSO, PDO, and AMO) because 
other local variables such as the availability of fresh foli-
age and its moisture content also contribute to set the right 
environmental conditions to unleash these perturbations. 
Extreme Ocean temperatures beyond average values, dT, 
are well associated with high-severity 1wildfires and this 
effect magnifies when all three major SST (ENSO, PDO, 
AMO) 1anomalies converge over time. As the Oceans warm, 
the heat waves would eventually 1reach the continents and 
forest ecosystems, which are from Holartic origin, suffer 
the consequences through a series of perturbations where 
the increasing frequency of high-severity wildfires is just 
one of them.

The ENSO disrupts world climate and it has a profound 
influence on the precipitation and temperature in many places 
on Earth, as it is the case for Mexico (Cavazos y Hasten-
rath, 1990; Méndez-González et al., 2008). In the presence 
of ENSO, Northern Mexico shifts climate in winter and 
spring to wetter and colder that correlate very well with the 
southern displacement of the Lower Aleutian convergence 
zone in the Northern Pacific Ocean in combination with a 
stronger Inter-tropical Convergence Zone jet stream of the 
Central Pacific Ocean (Andrade y Sellers, 1988). Swet-
nam y Betancourt (1989) in California & Arizona; Drury 
and Veblen (2007) and Návar (2011) in Durango, México 

noted the weak but significant synchrony of wildfires with 
ENSO t+1 events. Due to these conditions, at ENSO t=t, 
soil moisture content also becomes wetter reducing the risk 
of high-severity wildfires to nearly 0 and increasing forest 
productivity (González- Elizondo et al., 2005; Arreola-Ortiz 
and Návar-Cháidez, 2010; Návar, 2011; 2015). 

The joint effect of ENSO, PDO, and AMO on wildfires 
combines to produce more complex environmental settings 
(Fig 10). A further explanation of the conceptual framework 
is given next. These SST oscillations appear to unleash a 
chain of large-scale bio-climate anomalies in northern forests 
of Mexico as follows: (i) warming of the Eastern South-Cen-
tral Pacific Ocean (ENSO, t=t) strengthens Arctic Westerlies 
(PDO is a good signal) bringing unseasonal winter and spring 
below average temperatures and above- average precipitation; 
(ii) as the warm ENSO (t=t+1) Eastern Pacific Ocean current 
displaces north and arrives in Mexico temperature shifts to 
above normal and precipitation to below normal that last until 
the warm Ocean Current migrates or vanishes over time or La 
Niña takes over the Equatorial Pacific Ocean temperatures; 
(iii) next seasonal winter and spring climate feature unusual 
flashy northwestern Ocean waves of frosting air masses or 
dry flashy intermittent strong arctic cold front systems en-
tering the country controlled partially by the PDO anomaly 
and probably given by the difference in Ocean temperatures 
where the two Pacific Ocean currents (ENSO and PDO) meet 
promoting leaf senescence of frosted foliage of several forest 
species and adding important amounts of fresh foliage to the 
forest floor; and (iv) in the presence of a warm-phase AMO, 
warm Eastern Atlantic air masses (easterlies) arrive in late 
winter and early spring with air temperatures that depend 
on the AMO signal and the Gulf Current temperature. Com-
bined warm Equatorial Pacific and Atlantic Ocean currents 
would bring higher than normal temperatures to the country. 
Hotspots are good indicators of the convergence of AMO 
and the Gulf Currents. In addition to high temperatures, 
the Bermuda-Azores anticyclone strengthens creating the 
ideal conditions that inhibit precipitation magnifying further 
the dry spell in most of northern Mexico. Figure 12. The 
conceptual model for predicting high-severity wildfires in 
northern forests of Mexico.

Intense flashy frosts usually make several tree species 
shed an important part of the foliage in the course of weeks; 
adding important amounts of biomass composed of fresh 
foliage and branches to the forest floor (Rocha-Loredo and 
Ramírez-Marcial, 2009; Návar- Cháidez and Jurado-Ybarra, 
2009). Warm easterlies temperatures further desiccate fuel 
loads; set erratic hot-temperature waves of air masses (pro-
moting hotspots in forests) further weakening live forests 
and frequently promoting tree die off increasing further on- 
site fuel loads (Allen et al., 2010; Raffa et al., 2010; Návar, 
2015). The dry spell intensifies and magnifies in spatial 
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extent drying further any additional fuel load including live 
trees, shrubs, forbs and grasses. This scenario has repeated 
several times in the past and set free the presence of import-
ant high-severity wildfires in Northern forests of Mexico. 
Note that when the AMO is in a cold phase (1970-1995), the 
burned area by wildfires hardly exceeds; A ≤ 40,000 ha; in 
contrast to when it is in a warm phase; A>40,000 ha. Same 
thing happens to the intensity or failure of each or both the 
ENSO and PDO anomalies that control part of the wildfire 
variability. This is the partial reason why any of these SST 
anomalies alone would account for only a small portion of 
the wildfire variance.

Wildfires are then a complex function of several bio-cli-
matic processes that can be modeled using most of the 
mathematical techniques described above. The cycle may 

start from: (i) modeling the future ENSO anomaly using 
the conventional ARIMA techniques, large-scale climate 
models, or NOAA reports; (ii) model the fuel load using 
the physical model proposed above as well as using the 
probabilistic or stochastic techniques, yet to be developed, 
to evaluate the effect of unusual intense frosts (associated 
with PDO) and hot temperature waves of air masses (asso-
ciated with AMO) on fresh fuel loads; (iii) use the physical 
hydrologic mass balance budget model whenever possible 
to predict the moisture content of the fuel load itself (yet to 
be developed) or of the forest soil to predict dryness of fuel 
loads (see Návar, 2015), including the moisture content of 
live forests; and (iv) prepare for the worst-case scenario by 
using all the information available.

Figure 12. The conceptual model for predicting high-severity wildfires in northern forests of Mexico.
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Discussion
The right hydro-climate conditions that promote high-se-
verity wildfires recorded in the historic data set prevailed 
in Durango during the most intense ENSO event of the 
last century (1997-1998) (dT ≥ +2.45°C); combined with 
AMO (dT ≥ +0.50C) and PDO (dT ≥ +2.0°C) anomalies 
that caused the record statistic of burned area in Durango 
(A ≥ 80,000 ha), as elsewhere in the world. These envi-
ronmental conditions persisted across most forests of the 
country (CONAFOR, 2012; FAO, 2012). The long-term 
cycle for the AMO to repeat is from 60 to 80 years (Einfeld 
et al., 2001); 24 years for the PDO (Mantua, 1999) and 3 
to 7 years for the ENSO anomaly (Cavazos and Hastenrath, 
1990). The AMO is currently in the warm phase that started 
in 1997 (https://www.esrl.noaa.gov/psd/data/correlation/
amon.sm.long.data). The warm phase will likely continue 
its normal cycle for the next 10 to 15 years dumping warm 
and probably hot air masses from the Equatorial Atlantic 
Ocean and strengthening the anticyclone Bermuda-Azores 
sharpening dry spells with associated hot air masses. Using 
data from NOAA-US (https://ggweather.com/enso/oni.
htm), the ENSO is not relaxing; it is in fact fortifying over 
time as the maximum Eastern South-Central Pacific Ocean 
temperature deviances, expressed as the Ocean El Niño 
Index, ONI, are significantly increasing over 31 time: 1957-
1958 (dT=+1.7°C); 1965-1966 (dT=+2.0°C); 1972-1973 
(dT=+2.05°C); 1982- 32 1983 (dT=+2.25°C); 1997-1998 
(dT=+2.40°C); and 2015-2016 (dT=+2.60°C). However, 
the ENSO long-term cycle is yet to be assessed and the most 
likely future scenario would be to assume it will continue 
its rising trend in the years to come. If so, rising seasonal 
extreme temperatures and precipitation events are expected 
in the short run as it reinforces the temperature gradient 
between the arctic and the equatorial Western Pacific Ocean 
as well as supporting increased temperatures of the ENSO 
current moving northward across the shoreline of the western 
coasts of tropical America. The PDO is developing more 
erratically in modern times (https://www.ncdc.noaa.gov/
teleconnections/pdo/) from 2005 to 2014 was in a cold phase 
then it entered into a short warm (2015-2017) to return to a 
cold phase again (2017-2019). Short-term predictions would 
be to assume this erratic trend will likely continue.

Under this short run future scenario, northern forests of 
Mexico would probably experience the most severe wild-
fires yet to be recorded in modern times in the next 3 ENSO 
events (20 years) because of the joint presence of extreme 
positive ENSO and AMO anomalies. However, intensifi-
cation of high severity wildfire could be limited by only 
the erratic PDO anomaly should it be in a cold phase when 
the warmest ENSO and AMO climate signals meet in the 
near future. However, as the AMO would enter into a cold 
phase in the next 15-20 years, should the anomaly follow 

its normal track (returning to below average temperatures), 
after 30-40 years of a warm phase (Einfeld et al., 2001) 
wildfire severity would most likely relax returning to a kind 
of normal severity, A<40,000 ha (See Fig 10 of the wildfire 
data during the cold phase of AMO). The cold-phase PDO 
keeps normal or below-average temperatures over Western 
North America dumping seasonal erratic infrequent cold 
air masses over Northwestern Mexico in winter and early 
spring. The partial PDO effect on wildfire can be exemplified 
next. In spite of this rising trend in temperature deviance, 
the wildfire severity peaked during the 1997-1998 ENSO 
event (A≥80,000 ha) even though the 2015-2016 (A=40,000 
ha) ENSO event exceeded the temperature deviance of that 
of 1997-1998. This contrasting finding is explained by the 
sudden weakening of the PDO entering shortly into a cold 
phase in 2017-2018. Other factors that may have contributed 
to keep wildfires in check could be a lack of fresh foliage 
caused by the absence of extreme cold temperatures; forest 
fuels were not dry enough; among others. This is a matter of 
further research in order to forecast the severity of wildfires 
of the following ENSO events.

Conclusions
This report presents, tests and validates a series of math-
ematical techniques to predict in advance wildfire data at 
regional scales. Stochastic and probabilistic models provide 
from medium to moderately well prediction capabilities. 
Proposed physical and conceptual model are underway and 
would probably become the next generation of models that 
will eventually forecast with higher precision the likelihood 
of high-severity wildfires. These technologies, as exemplified 
in this report, predict better fuel loadings and the moisture 
content than conventional approaches and these techniques 
would eventually be coupled with the prediction of large 
scale SST anomalies that have a marked influence on a 
chain of bio-climatic events unleashing high-severity wild-
fires in many regions of Earth. These events are proposed 
to be predicted in advance and coupled into the conceptual 
framework. These issues are a matter of further research.
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