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Abstract

This study aims to determine the lineaments in the Palaeozoic - Cenozoic rocks outcropping around 
Gülşehir (Nevşehir) using Landsat-8 satellite images, shaded relief and slope maps and to compare them 
with field studies. Faulted structures in the region are formed by E-W trending thrusts, NE-SW trending 
reverse faults and NW-SE trending normal faults. A Digital Elevation Model (DEM) was used to produce 
the lineament maps. Google Earth and Landsat 8 images were also used. The shaded relief map (SRM) 
and slope map were derived from the DEM. The analysis of the produced linearity maps showed that 
the slope map and the integrated (SRM) map were more consistent with the field data. The lineament 
maps derived from the slope maps are largely consistent with the faults and fractures identified in the 
field. According to the strike maps, N15-300E and N75-900W orientated structures dominate the region. 
Lineaments show a tendency in all directions due to polyphase deformation.

Resumen

El objetivo de este estudio es determinar los lineamientos de las rocas paleozoicas y cenozoicas que 
afloran en los alrededores de Gülşehir (Nevşehir) utilizando imágenes de satélite Landsat-8, mapas de 
relieve sombreado y de pendientes, y compararlos con estudios de campo. Las estructuras falladas de 
la región están formadas por empujes con tendencia E-O, fallas inversas con tendencia NE-SW y fallas 
normales con tendencia NW-SE. Para elaborar los mapas de lineamientos se utilizó un modelo digital 
de elevación (MDE). También se utilizaron imágenes de Google Earth y Landsat 8. El mapa de relieve 
sombreado (SRM) y el mapa de pendientes se obtuvieron a partir del MDE. El análisis de los mapas de 
linealidad producidos mostró que el mapa de pendientes y el mapa integrado (SRM) eran más coherentes 
con los datos de campo. Los mapas de lineación obtenidos a partir de los mapas de pendiente coinciden 
en gran medida con las fallas y fracturas identificadas en el campo. Según los mapas de rumbo, las es-
tructuras orientadas N15-300E y N75-900W dominan la región. Los lineamentos muestran una tendencia 
en todas las direcciones debido a la deformación polifásica.
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1. Introduction

The study area is located around the north of Gülsehir 
(Nevşehir-Central Anatolia-Turkey) (Figure 1). There are many 
geological studies in this area (Seymen, 1981a, Demircioğlu, 
2014, Atabey 1988, Dirik, Göncüoğlu, 1996, Koçyiğit 1984, 
Eren 2003, Koçyiğit 2003, Doğan et al., 2010, Koçyiğit and 
Doğan 2016).

In this study, the tectonic lineaments of the linear structures 
in the area, such as faults and fractures, which were determined 
by field studies, were obtained using satellite and Google Earth 
images. The lineaments obtained from the field surveys and the 
images were compared. Although the origin and characteristics 
of the lineaments are different, the lineaments obtained by re-
mote sensing methods are compared and evaluated with both 
the orientation data and the fieldwork data.

There is no previous remote sensing study in the study area. 
The detection of lineaments will be important for mineral explora-
tion, and water and geothermal studies to be carried out in the area.

Gold prospecting has intensified in the study area in recent 
years. In particular, faults and fractures play an important role 
in these searches. This study is also important in this regard.

Recently, especially after the development of satellite 
technology in the 1960s and 1970s, satellite images and aerial 
photographs have been used extensively. The extraction of lin-
ear structures in the field makes important contributions to the 
study of water resources, oil and gas fields, and mineral deposits. 
Recently, developments in satellite, drone, and lidar technology 
have been used quite frequently to reveal the lineaments in an 
area, some of which are; Kresic (1995), Koike et al. (1995), Lee 
T.H., Moon W.M. (2002), Hung et al. (2005), Raharimahefa 
and Kusky, (2009), Begg and Mouslopoulou, (2010), Bruning 
et al. (2011), With and Carter, (2016). Tessema et al. (2012), 
Bhuiyan (2015), Raj et al. (2017), Altafi et al. (2017), Listyani 
vd. (2018), Takorabt et al. (2018), Keppel et al. (2020), Wannous 
et al., (2021), El-Magd and Embaby (2021), Abdelouhed et al. 
(2022), Goswami et al. (2022), Vijhani et al. (2022), Şeyh et al. 
(2022), Abebrese et al. (2022) studies.

Figure 1. Spatial map of the study area and its surroundings (modified from Kuşçu, 2001).
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Lineaments seen in aerial and satellite imagery or digital 
elevation modelling (B. E. Hobbs, Means, and Williams, 1976; 
W. H. Hobbs, 1904, Tagnon et al., 2020, Hajaj et al., 2022, Ah-
madi et al., 2023) can be natural or artificial (man-made). In this 
sense, lineaments can be of natural origins, such as a fault trace, 
a valley margin trace, a trace of a major fold or fault structure, a 
stream trace, and a ridge trace. There are important studies on 
this subject (Isiorho 1985; Drury and Walker, 1987; Cracknell 
and Heyes 1993; Jordan, G. and Schott, B., 2005). It may also 
be artificial, such as a motorway, dam crest, field boundary, 
or (man-made) watercourse. The determination of geological 
lineaments using Geographic Information System (GIS) or sat-
ellite imagery as well as field studies is economical (planning 
and construction of engineering structures such as oil, water, 
underground water and mineral exploration and dams, bridges, 
canals and tunnels) and important for determining some parts of 
natural disasters. With the development of GIS methods and sat-
ellite imagery (Jacques, Machado, and Nummer, 2012; Madani, 
2001; Masoud and Koike, 2006; Sedrette and Rebaï, 2016; Su-
zen and Toprak, 1998), these methods are increasingly used for 
lineament determination (Cracknell and Heyes 1993, Abdullah 
et al., 2010; Abdullah et al., 2013; Ganguly and Mitran, 2016). 
In this study, shaded relief maps (hillshade, shaded relief maps), 
profile curvature and slope gradient maps derived from satellite 
imagery such as Landsat 8 (The natural colour composition was 
obtained using a combination of red (band 4), green (band 3) 
and blue (band 2)), Google Earth, and digital elevation model 
(DEM) maps of the study area were used. Automatic lineament 
maps of the Nevşehir, Gülşehir (Central Anatolia-Turkey) area 
using slope gradient maps, creation of these lineament maps 
using Arc-GIS (Esri, USA, 2020), Geomatica (PCI Geomatics, 
Canada, 2018), Rockwork (RockWare Inc., Golden, USA, 2019) 
) software, and faults and joints determined by field observations 
were compared.

2. Materials and Methods

In this study, Landsat ETM-8 satellite images (Landsat- 
8-OLI (Operational Land Imager)  uses a band combination of 
natural colour composition, red (4), green (3) and blue (2)), and 
Google Earth images (from Digital Globe and CNES/Airbus) 
were used as satellite images for the production of automatic 
lineament maps. In addition, a Digital Elevation Model (DEM) 
was created using a Geographic Information System (GIS) for 
the production of automatic lineament maps.  For the Digital 
Elevation Model, digitised topographic maps of the study area 
were used. In this study, lineaments were obtained from satellite 
images, Google Earth images and images obtained from the Arc-
GIS program and compared with lineaments obtained from field 

studies. Compared to previous studies, different combination 
studies were carried out.

Satellite imagery captures objects' responses in different parts 
of the electromagnetic spectrum. Meanwhile, digital elevation 
models and their derivatives represent the terrain digitally, show-
ing a range of features such as slopes, gradients, and fault scarps.

From the DEM map, shaded relief maps were prepared with 
different illumination directions (the height is related to the 
variation of the angle of the light source) and integrated shaded 
relief maps were prepared and processed from these maps. The 
slope gradient map and profile curvature map obtained from the 
DEM map were also used to create an automatic linement map. 
An edge sharpening filter was applied using the Line module to 
produce a lineament map from these images and maps. Although 
many different threshold values were given in the literature during 
the application, the threshold values suggested by Sedrette and 
Rebaï (2016) and given below were used in this study (Table 1).

Strike and strike length rose maps were created from the 
generated lineament maps.

Envi, Geomatica, and ArcGIS 10.0  were used to automat-
ically generate lineament maps, and Rockworks software was 
used for the rose diagrams. The process of obtaining lineament 
from satellite and Google Earth images is given in Figure 2 as 
a flowchart.

3. Geological background

The research region's oldest units are the Palaeozoic-Meso-
zoic Kırşehir Massif, as well as the Kaman Group's Tamadag 
and Bozçaldag metamorphics. The Late Cretaceous Akçataş 
syenitoid and Kötüdag andesite intrude on these formations. 
These basement units cover the Late Paleocene-Middle Eocene 
Ayhan Group strata in an unconformable manner (Figure 3). The 
Saytepe, Esefin, Kubaca, Ilicek, Alıçlı, Lalelik, and Altıpınar 
formations are all part of the Ayhan Group. Conglomerate, 
sandstone, and mudstone strata make up the Saytepe Formation. 
These formations are transitional both laterally and vertically. 

Filter Type: Edge Sharpening Filter

Threshold values:

RADI (Radius of filter in pixels )=10

GTHR (Threshold for edge gradient)=100

LTHR (Threshold curve length)=30

FTHR (Threshold for line fitting error)=3

ATHR (Threshold for angular difference)=30

DTHR (Threshold for linking distance) =20

Table 1. Threshold values used for Arc-Gis analyses.



Lineament
Rose diagram

Fieldwork
Rose diagram

1178 | Geofísica Internacional (2024) 63-4

They were found in a variety of settings, from terrestrial to 
offshore shallow sea.

According to the algal and Ataxophragmidae units, Göncüo-
glu et al. (1993) judged it to be coeval with the top sections of 
the Eskiburç Formation in the southeast of the research region. 
Sandstone, siltstone, claystone, and limestone make up the Es-
efin Formation. They developed in a shallow sea environment. 
Sandstone, siltstone, shale, and limestone make up the Kubaca 
Formation. Based on the Late Palaeocene Saytepe Formation 
below and the Middle Eocene Lalelik Formation above, the 
stratigraphic connections are simply an early-middle Eocene date. 
The lithological properties and fossil richness of the units above 
and below, on the other hand, indicate that they are products of 
a marine environment.

Shale, sandstone, and siltstone make up the Ilicek Formation. 
There were no fossils detected in the thin sections of samples 
obtained from the unit's rocks. It is of Early-Middle Eocene age, 
as determined by the Early-Middle Eocene and Lutesian units 
below and above. The properties of the rock indicate that it was 
most likely created in a shallow marine-terrestrial environment. 
Sandstones, siltstones, mudstones, and limestones make up the 
Alıçlı Formation. Globigerina sp. fossils have been discovered 
amid the clay layers. This suggests that the unit was deposited 
in the open sea. Sandstone, siltstone, claystone, marl, and mud-
stone make up the Lalelik Formation. According to the method 
of nannofossil identification acquired from the marls, the age of 
the unit is Lower-Middle Eocene.

All of the preceding units are unconformably overlain by the 
Yaylacık group's Tuzköy and Yüksekli formations, which are 
products of the lacustrine environment. The Yaylacık Group is 
unconformably overlain by the Late Miocene-Pliocene Urgup 
Formation. The Avanos Group's Pliocene-Pleistocene Kızılrmak 
Formation, Güvercinlik Pebbles, and Gülşehir Basalt unconform-
ably overlie the Urgüp Formation. The region's youngest units 
include Quaternary (Holocene) age Balkaya travertine, recent 
slope debris, and recent alluvium composed of stones, gravel, 
sand, silt, and clay (Figure 2).(Seymen, 1981, Atabey et al., 
1988, Göncüoğlu et al., 1993, Demircioğlu, 2014).

3.1 Structural Geology

The rocks outcropping in the study area have been affected by 
tectonic movements in paleo-tectonic and neo-tectonic periods 
and have undergone polyphase deformation. Depending on the 
deformations, the rocks in the area have acquired poly-phase 
folding and faulted and fractured structures in different directions. 
A structural map of the study area was also prepared (Demir-
cioğlu, 2014). In addition, the faults and fold axes observed in 
the area are shown on the structural geological map (Figure 4).
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Figure 2. Flowchart for obtaining lineament and rose diagrams.
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Figure 3. Geological map of the study area.

Figure 4. Geological map of the study area and faults (Demircioğlu et al., 2018).

The Alpine events in the Cretaceous deformed the pre-Late 
Miocene rock assemblages in the study area due to the closure 
of the Neo-Tethys ocean, underwent polyphase folding and ac-
quired thrust fault structures (Demircioğlu, 2014). In addition 
to these palaeo-tectonic events, the rocks in the study area have 
also been affected by the block faulting that developed during 

the Neo-Tethys. In the basins created by block faulting, rocks 
including terrestrial, lacustrine and volcanic rocks were deposited 
during the Late Miocene-Pliocene. Alluvial fans and alluvial 
deposits were widespread in the Plio-Quaternary basins. The 
normal faults that form the Miocene-Quaternary basins strike 
NNE-SSW and WNW-ESE.
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4. Results

4.1 Automated lineament maps from Google Earth images

Initially, Google Earth Pro (https://www.google.com/intl/
tr/earth) images were used to generate the automated lineament 
map of the study area (Figure 5).

The Google Earth image The Google Earth image representing 
the study area (1237 m. altitude and 1980x1020 pixel resolution) 
was downloaded from the internet and the linearity map of the 
image was created using the necessary filters and thresholds 
(Figure 5a, 5b). representing the study area was downloaded from 
the internet and the lineament map of the image was generated 
using the necessary filters and thresholds (Figure 5a, 5b).

Figure 5. a) Google Earth image of the study area. b) Automatically generated lineament map.
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In the generated lineament map, the images were reviewed 
and lineaments related to artificial structures such as roads, 
etc. were eliminated. Automated lineaments are predominantly 
trending N15-300E and N75-900W. A certain proportion of the 
automated lineaments coincided with faults identified in the 
field (Figure 5b). Another image used to generate automated 
lineaments is the Landsat 8 satellite image (Figures 6a and 6b).

4.2 Automated lineament maps from satellite image

The Landsat 8 satellite image (Positional resolution between 
10-100 metres and spectral resolution ranges from 0.45 to 0.52 
µm.) was downloaded from the relevant website (Explorer, 
2018) and the image of the area was selected and adjusted using 
GIS methods. The picture was processed using the filters and 

a

b

Figure 6.  a) Landsat-ETM 8 satellite image of the study area and its surroundings. b) Automatically generated lineament map.
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thresholds above to generate an automated lineament map. Again, 
an attempt was made to eliminate the artificial lineaments by 
comparing the image and the lineament map.

When the generated lineament map was examined, it was 
found that the lineaments were generally compatible with the 
main N-S and NW-SE trending faults identified in the field. 
However, some of the faults in the study area do not coincide 
with the lineament map (Figures 6 a, b).

Digital Elevation Model (DEM) imagery is another image 
used in the automatic generation of the lineament map of the 
study area. Topographic maps at a 1:25,000 scale were used to 
generate the DEM images (Figures 7a, b).

The map was digitised at 10m contour intervals. A DEM 
image with a resolution of 10 × 10 meters was generated from 

the digitized elevation values using a suitable GIS program 
(Figure 7b).

A Shaded Relief Map (SRM) was generated from the DEM 
image using different illumination directions and a 45° illumi-
nation gradient (Figure 8).

Hillshade/shaded relief maps belonging to 8 different viewing 
directions such as 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315° 
were generated (Figure 9).

Integrated shaded relief maps were produced from these 
maps using appropriate GIS merging techniques. Integrated 
shaded relief maps covering east (0°, 45°, 90°, 135°) and west 
(180°, 225°, 270°, and 315°) and all viewing directions (0°-
315°) were used for automatic lineament mapping (Figures 
10 and 11).

Figure 7. Contour (a) and DEM map (b) were used to derive the Hillshade and Slope Map.
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Figure 8. Shaded relief map created from DEM image.

Examination of the lineament maps of the integrated shad-
ed relief maps in the west and east directions shows that these 
lineaments do not largely represent the faults identified in the 
study area. North-south and northwest-southeast trending linea-
ments are dominant on both maps. The automatically extracted 
lineaments generally do not coincide with the NNE and E-W 
trending faults in the study area. The lineaments obtained from 
the integrated shaded relief maps show a more intense distri-
bution than those obtained from the satellite imagery. One of 
the main reasons for this is the higher resolution of these maps. 
Again, the lineament maps obtained from the integrated shaded 
relief maps reveal a fairly dense distribution compared to the 
faults observed in the field, as well as a homogenous distribution 
throughout virtually the whole area, except the eastern section, 
which has rather flat terrain.

One explanation for this is that the faults found in the field 
typically occur at various formation boundaries. Intra-formation 
faults are more difficult to detect and map.

Second, formation boundaries and stratification in sedimenta-
ry rocks can also create lineaments. Since DEM does not include 
linear trending structures such as man-made roads, etc., it has an 
advantage in producing maps containing lineaments of geological 
origin. The lineaments derived from the integrated shaded relief 
maps covering all viewing directions show more overlap with 
the faults in the study area than those derived from other maps 
(Figure 10). The profile curvature map (Figure 12) and the dip 
map (Figure 13) were also used to generate lineament maps.

These maps were produced from 10 × 10 meter resolution 
DEM images using appropriate GIS methods. To derive the 

lineament map from these generated maps, the filters were ap-
plied similarly to other images and predefined thresholds were 
used. The lineament map derived from the profile curvature 
map (Figure 11) is concentrated in the WNW-ESE and NNE-
SSW directions, representing the orientation of the faults in the 
study area. However, it did not generally coincide with the faults 
identified in the field.

According to the dip map, the eastern part of the study area 
is horizontal or nearly horizontal, while the dip of the western 
parts varies between 100-3500 (Figure 13). The lineament map 
derived from the slope gradient map shows the best agreement 
with the field faults in terms of strike (Figure 13).

Similarly, the lineaments derived from the slope gradient 
map overlap the faults the most (Figure 14).

Another method used to compare faults mapped in the field 
and automatically generated lineament maps is to compare 
their orientations. For this reason, strike and strike-length rose 
diagrams were constructed from the lineaments derived from 
satellite imagery and DEM maps (Figures 15 and 16). The rose 
diagrams of the faults show an NW-SE and NE-SW trend (Figure 
15a). When the lineaments of fractures and faults are evaluated 
together, they give NW-SE and NE-SW trends (Figure 15b, c). 
When the field lineaments are evaluated together, they give a 
dominant NW-SE trend (Figure 15d). It can be seen that the 
most compatible diagrams are those obtained from the field data 
(Figures 15 a, b, c, d). The rose diagram is obtained from the 
shaded relief map (Figure 15 e). There is less agreement with 
the rose diagrams obtained from the slope and profile curvature 
map (Figure 15 f, g).

Lighting Direction
Shaded Relief Maps
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Figure 9. a) Shaded relief maps and lineaments of 0°, 45°, 90°, and 135° viewing directions of the study area. b) Shaded relief maps and 
lineaments of the 180°, 225°, 270° and 315° viewing directions of the study area.
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East (0-45-90-135)

Integrated Shaded Relief Maps (ISRM) and Lineaments

DEFINED FAULTS IN THE FIELD AUTOMATIC LINEAMENTS MAPS

West (180-225-270-315)

Figure 10. Integrated shaded relief maps of the study area for West (180°, 225°, 270°, and 315°) and East (0°, 45°, 90°, 135°) and their 
automated lineament maps.

Figure 11. Integrated shaded relief map and linearity of the study area for all viewing directions (0°,45°, 90°, 135°, 180°, 225°, 270°, 360°).
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Figure 13. Slope map of the study area and related lineaments.
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The lineaments obtained from the east and west-shaded 
relief maps of the Landsat ETM-8 satellite images show the 
dominant lineaments. It can be seen that the most compatible 
diagrams are those obtained from the field data (Figures 16 a, 
b, c, d). Some of which are NNE-SSW trending (Figures 16 e, 
g, h, j, l, m). Some of them are approximately N-S and NW-SE 
(Figures 16 f, k).

Rose diagrams of lineaments obtained from Landsat-8 and 

Slope Map and Field Compatible Faults

Google Earth images were also generated (Figures 17a, b). In 
general, similar lineament trends were obtained. In these rose 
diagrams, lineaments developed in all directions. Dominant 
lineaments orientations, N0-100E, N40-500E, N70-800E, and 
N50-600W, N70-800W and N80-900W.

The general trends of the lineaments obtained from satellite 
images are consistent with the lineaments obtained from the 
terrain, shaded relief, and slope maps.

Automatic Lineaments Field fault Lineament compatible with faults

Figure 14. Slope map and field-compatible faults.
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Figure 15. Automated lineament maps and rose diagrams of the strikes of faults.

Figure 16. Rose diagrams of lineaments obtained from field data and shaded relief map.

LENGHT-STRIKE ROSE DIAGRAMS
FAULT ROSE DIAGRAM

FAULT ROSE DIAGRAM

0

180

45

225

90

270

135

315

SHADED RELIEF

CRACKS ROSE DIAGRAM

CRACKS ROSE DIAGRAM

SLOPE PROFILE CURVERTURE

FAULTS CRACKS ROSE
DIAGRAM

FAULTS CRACKS ROSE
DIAGRAM

FIELDS FAULTS

FIELDS FAULTS

a

a

e

j

e f

b

b

f

k

c

c

g

l

d

d

h

m

g

I .- -.-
♦ ~ /- # 

. ·t·. ·)r-· -~-
I 

- -l ~ 

~ '--J 

■ 
I 1/lt\ \ \ ,. 

■ ■ ■ --L I J.-

I I 
~ 

♦ ♦ 

X 

l \ 
I - - -!Jt; I 

xx J 
♦ ♦ 

■ I --'- ■ _,__ I _..L ■ 

I 
I 

t # 

)l( - ' I 
I 

■ ■ ■ ■ 
I 

I 

# ♦ 

< 
X 
,x 

I t - - - + -I ~ ~ l J 

■ ■ ■ ■ I 

♦ 

l 
I 

I 

♦ 

I- t t 
• --+ - I - -\- I 

I I 

I 

■ 
• f t \ 

♦ t I I 
■ L ' ■ 

# ♦ 

I ■ I I 



Ramazan Demircioğlua et al. | 1189 

Figure 17. a) Landsat image-based lineament  rose diagram. b) Google Earth image-based lineament  rose diagram

5. Conclusion and discussion

Lineaments of faults and fractures detected by field obser-
vations of the study area were compared with the lineaments 
obtained from satellite images (Landsat-8 and Google Earth) and 
computerised topographic maps, slope gradient maps, integrated 
hillshade maps, and profile curvature maps. It is seen that the 
orientations of the lineaments obtained from these maps are 
compatible with the faults and fractures detected in the field in 
the rose diagrams prepared.

The lineament map obtained from the slope maps is com-
patible with the majority of the faults and fractures identified 
in the field.

Fault and fracture orientations developed during the polyphase 
deformation in the study area vary. Natural and artificial struc-
tures such as valleys, valley sides, and artificial boundaries, which 
are not related to faults and fractures, also show lineaments in 
satellite images (Google Earth and Lansat 8). These are not in-
cluded in the evaluation. In this study, similarities are observed 
between the automatically generated lineaments from fieldwork 
observations and satellite images.

The general orientation of the lineaments obtained from the 
Shaded Relief Maps was determined as N20-500E.

The orientations of the lineaments obtained from the slope 
maps are in good agreement with the lineaments obtained from 
satellite images (Landsat-8 and Google Earth) and field studies. 
According to the slope maps, the orientation of the lineaments 
was determined as N0-100E, N30-500E, N20-300W, N40-500W, 
and N80-900W.

In the rose diagrams of the lineaments obtained from Land-
sat-8 and Google Earth images, the orientations of the lineaments 
were determined as N0-100E, N40-500E, N70-800E, and N50-
600W, N70-800W and N80-900W.

Lineaments extracted from Hillshade maps show less homoge-
neity in areas where the topography is flat. These lineaments ap-
pear to be less compatible with faults and fractures in the terrain.

The profile curvature map was used for experimental pur-
poses. However, it was determined that the lineaments obtained 
from this map are generally unrelated to the faults identified in 
the field.

In this study, the lineaments obtained by remote sensing are 
in agreement with the lineaments obtained by fieldwork studies. 
However, it has been shown that they should be supported by 
fieldwork observations. The revealed lineaments contribute to the 
tectonic interpretation of the region. The lineaments detected in 
the region will contribute to the exploration of water resources 
and mineral deposits.
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