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Abstract

Evaluating air temperature perturbation is important to know the anthropic activity's effect on the environmental 
system. The study case was La Malinche volcano, concerning the urban, agricultural, and forest environments. 
The air temperature data (average, maximum, minimum, standard deviation and range), was analyzed by prin-
cipal components analysis (PCA), and the Kruskal-Wallis (K-W) test. Data analyses were made on a diurnal 
(warming and cooling rates), daily and monthly basis. The K-W test showed that warming and cooling rates 
are significantly different between the agricultural, urban, and forest zones, despite the north and south sides 
of La Malinche volcano had significant differences. The PCA indicated more perturbation concerning the 
cooling rates of air temperature among the environments than the warming rates. The average, maximum, and 
minimum air temperature of the urban environment and the standard deviation and range of the agricultural 
environment were the highest. The minimum air temperature changes more than the maximum in the volcano's 
urban, agricultural, and forest south side. The K-W test showed that the environmental conditions differed sig-
nificantly based on average and maximum. The daily air temperature on the north side of La Malinche Volcano 
was very different from the south side. The PCA with average, maximum, minimum, standard deviation, and 
range showed that the environments are modified. The average monthly air temperature in the agricultural and 
forest areas was lower than average. Minimum air temperature increase was more accentuated in urban areas 
than in agriculture and forest areas and increased more than maximum.

Resumen

La evaluación de la perturbación de la temperatura del aire es muy importante para conocer el efecto de las 
actividades antrópicas en el sistema ambiental. El área de estudio fue el ambiente urbano, agrícola y forestal en 
la zona del volcán La Malinche. Utilizamos cinco estadísticas de datos de temperatura del aire y se examinaron 
mediante el análisis de componentes principales (PCA) y la prueba de Kruskal Wallis. El trabajo se realizó 
sobre una base diurna (tasas de calentamiento y enfriamiento), diaria y mensual. La prueba K-W mostró que 
las tasas de calentamiento y enfriamiento son significativamente diferentes entre las zonas agrícolas, urbanas 
y forestales, incluso, los lados norte y sur del volcán La Malinche tuvieron diferencias significativas. El PCA 
indicó que había más perturbación en relación con las tasas de enfriamiento de la temperatura del aire entre 
los ambientes que con las tasas de calentamiento. La temperatura del aire promedio, máxima y mínima de un 
ambiente urbano y la desviación estándar y el rango de un ambiente agrícola fueron las más altas. La tem-
peratura mínima del aire cambia más que la máxima del lado sur urbano, agrícola y forestal del volcán. La 
prueba K-W mostró que las condiciones ambientales eran significativamente diferentes según el promedio y 
el máximo. La temperatura del aire diaria en el lado norte de la Malinche difirió significativamente de la del 
lado sur. El PCA con promedio, máximo, mínimo, desviación estándar y rango, mostró que los ambientes se 
encuentran perturbados. La temperatura media mensual del aire en las zonas agrícolas y forestales fue inferior 
a lo normal. El aumento de la temperatura mínima del aire fue más acentuado en las zonas urbanas que en las 
zonas agrícolas y forestales y aumentó más que el máximo.
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1. Introduction

The air temperature is an indicator of the structure, function-
ality, and geographic location of environmental systems and plays 
an essential role in biological and ecological functions. Similarly, 
body temperature is a crude indicator of basal metabolism (Prot-
siv et al., 2020). The environmental air temperature depends on 
latitude (Fuelner et al., 2013) and altitude (Hemond and Fechner, 
2015; Isaak et al., 2018; Chen et al., 2018) and is influenced by 
many factors (Sun, 2016), such as time on day, weather, surface 
type, geographical location, and elevation. Therefore, the spatial 
and temporal study of the air temperature and their relationship 
to the anthropic environment modifications are of great interest 
as urban areas and land-use change. Furthermore, temperature 
increase can dramatically affect the cells of living organisms and 
the populations, with ecological consequences (Waldock et al., 
2018), by altering the relationships between biodiversity and 
the functioning of ecosystems (García et al., 2018), increasing 
the respiration rate and decreasing the plants' photosynthesis 
(Duffy et al., 2021).

The effect of environmental modifications on air temperature 
has been analyzed by comparing rural and urban areas or their 
surroundings; in places where buildings abound, the temperature 
is higher than in other areas (Suomi and Käyhkö, 2012; Wiesner 
et al., 2014; Zhou et al.,2017). Vitt et al., 2015, reported that rural 
areas show lower average, maximum, and minimum temperatures 
than urban areas, derived from constructions and reduced vege-
tation (Shiflett et al., 2017). The change of natural conditions by 
asphalt and concrete creates the phenomenon called urban heat 
island due to the vast urbanization in large cities (Zeleňáková 
et al., 2015; Vuckovic et al., 2017). The spatial and temporal 
heat island and heat wave combination act synergistically (Li 
and Bou-Zeid, 2013). The difference between urban and rural 
areas can be naturally due to altitude and latitude; it depends on 
the observation time, instrumentation, and the location of the 
measuring station (Peterson, 2003).

Environmental temperature differences are relative. For exam-
ple, the difference is more significant between urban and wetland 
areas, followed by a body of water and forest (Ayandale, 2017), 
due to the surface heat island intensity and the type of landscape 
being more influenced by seasonal, diurnal and climatic factors 
(Yang et al., 2017). As air temperature is a dynamic variable, the 
differences between urban and rural areas also depend on seasons 
and daytime; even in the diurnal cycle, the warming and cooling 
rates are asymmetric (Bernhardt et al., 2018). The differences are 
more pronounced in autumn than spring (Wiesner et al., 2014; 
Suomi and Käyhkö, 2012). Furthermore, these authors reported 
that the differences between the daily minimum temperatures 
are more significant, which are not constant during the day and 
are more pronounced than at night (Oleson, 2012).

Figure 1a shows parallel lines (f(x)=mx+b) of a correlated 
variables system. Each line is a vector fi (x) multiplied by a scalar 
αi. The sum of vectors multiplied by its respective scalar gives 
a new vector f multiplied by a respective scalar α, which is to 
say, the lines are a linear combination. This new vector is the 
principal component and represents the linear combination of 
the original variables (Joliffe and Cadima, 2016). The variables 
of this example can be represented perfectly by the principal 
component (Figure 1b) due to the correlations or loading between 
the original variables, and the principal component is equal to 1. 
Similarly, in an undisturbed environment, the gradual change of 
air temperature in a topography area can be represented graph-
ically as parallel lines or patterns and then by principal compo-
nents. On the contrary, when a line is not parallel to the others 
(Figure 2a) due to the system being modified or perturbed, the 
variables are represented by two principal components (Figure 
2b). In the first example, one principal component represents all 
original variables; in the second example, the representation is 
partitioned by two components. The use of principal components 
to explore patterns and perturbations is reported in the litera-
ture (Abid et al., 2018; Blommer and Rehm, 2014; Imtiaz and 
Sarwate, 2016; Hajrya and Mechbal, 2013). On the basis above 
described, we analyzed the modifications of air temperature 
gradient among urban, agricultural, and forest environments in 
the Mexican Highland.

2. Materials and Methods

2.1 Weather stations

Air temperature data recorded on the following weather 
stations from 2016 to 2019 were used: Huamantla (Hla), locat-
ed in an agricultural area; Tlaxcala (Tla), located in the urban 
area of Tlaxcala City; La Malinche I (LMI), and La Malinche 
II (LMII), both located on the north and south slopes of the La 
Malinche stratovolcano forest, respectively (Figure 3). The data 
were obtained from the Mexican Meteorological Service (Ser-
vicio Meteorológico Nacional) (SMN) website (https://smn.
conagua.gob.mx/es/observando-el-tiempo/estaciones-me-
teorologicas-automaticas-ema-s). Meteorological variables 
were collected and monitored at these stations based on the 
World Meteorological Organization (SE, 2013; Fernández et 
al., 2015). Regarding altitude and distance among the weather 
stations, the Tla and Hla have a minor altitude difference (10 m) 
but the most extensive distance (35.3 km). On the other hand, 
the Hla and LMI have the most remarkable altitude difference 
(709 m) but are closer (14.1 km). Table 1 shows more data about 
the weather stations.

The air temperature perturbation among urban, agricultural 

https://smn.conagua.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s
https://smn.conagua.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s
https://smn.conagua.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s
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and forest environments was analyzed on a diurnal, daily, and 
monthly basis.

2.2 Diurnal air temperature analysis

The diurnal analysis was carried out using air temperature 
data registered every 10 minutes (T10). It considered two diurnal 
intervals: the first corresponds to the warming phase from 7:30 to 
14:30, and the second is the cooling phase from 15:30 to 22:30 
hours local time. The warming and cooling rates were calculat-
ed for each day in both phases. These intervals were selected 
because the maximum air temperature peak occurs between 
14:30 and 15:30 in the study area. The maximum temperature 
peak is reached at different day hours (Sun, 2016; Nwofor and 
Dike, 2010). The warming and cooling rates were estimated 
using the slope of the linear regression equation. Radons et al. 

(2019) reported better performance of a linear function than the 
sinusoidal function in the morning, immediately after twilight, 
when the temperature changes are more pronounced. The linear 
regression equation used is (McBean and Rovers, 1998):

	 T ti i10

' � � �� � � 	 (1)

Where:
T ti i10

' � � �� � �= air temperature every 10 minutes
α= the ordinate at the origin
β= warming or cooling rate
ti= every 10 minutes
εi= random error

Figure 1. Parallel lines of gradually change variables (a), perfectly represented variables by component 1 (b).
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Figure 2. Parallel and no parallel lines of variables (a). Represented variables by two components (b).

A comparison of warming and cooling rates was made among 
the four years in a weather station (vertically shaded) and the 
four weather stations in a year (horizontally shaded) (Table 2). 
This comparison could be called orthogonal comparison. Ergo 
resulted in 48 comparisons, for example, Tla-16 with Tla-17, 
Tla-16 with Hua-16, and so on.

The comparison of warming and cooling rates among the 
years and weather stations was made using the Kruskal-Wallis 
nonparametric test (McBean and Rovers, 1998):
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Where:
H = Kruskal-Wallis statistic
R1,R2,…,R16 = sum of warming or cooling rates in each group 

formed by a weather station and a year (a cell in Table 2).
n1, n2,…,n16 = number of warming or cooling rates (observations) 
in each group (weather station-year)
N = total number of warming or cooling rates in the sixteen 
groups

The warming and cooling rates were analyzed in the sixteen 
weather station-year groups using the principal components anal-
ysis (PCA). The PCA is a mathematical procedure that transforms 
a system of correlated variables into another of uncorrelated 
variables to reduce its dimensionality and determine linear 
combinations (Daultrey, 1976; Schuenemeyer & Drew, 2011). 
As in the introduction mentioned, the principal component is the 
linear combination of original variables and is the new vector 
multiplied by a scalar or eigenvalue (λi), which in turn represents 
the variance of original variables. In this study, those variables 
are the warming or cooling rates in the groups. The variables of 
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Figure 3. Location of study area.

Table 1. Information on weather stations.

Weather 
Station

Coordinates
Altitude (*masl) Type Environmental 

conditionWest 
Latitude

North 
Longitude

Tlaxcala (Tla) 98°14'48" 19°19'29" 2232 Synoptic meteorolo-
gical automatic

Urban (area of Tlax-
cala City)

Huamantla (Hla) 97°57'59" 19°23'10" 2222 Meteorological 
automatic

Agricultural (area of 
Huamantla Valley)

La Malinche I (LMI) 98°02'39" 19°17'51" 2931 Meteorological 
automatic

Forest (northern 
slope of La Malin-

che volcano)

La Malinche II 
(LMII) 98°01'56" 19°08'27" 2748 Meteorological 

automatic

Forest (southern 
slope of La Malin-

che volcano)

*masl: meters above sea level

         Legend
Tlaxcala State
Hua station
LMI station
LMII station
Tla station
Urban areas
La Malinche forest area
Agriculture area
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Table 2. Comparison among weather stations and year.

Year
Weather station

Tla Hua LMI LMII ##

2016 Tla-16 Hua-16 LMI-16 LMII-16 6

2017 Tla-17 Hua-17 LMI-17 LMII-17 6

2018 Tla-18 Hua-18 LMI-18 LMII-18 6

2019 Tla-19 Hua-19 LMI-19 LMII-19 6

# 6 6 6 6 48

# Number of comparisons among the four years in a weather station, ## Number of comparisons among the four 
weather stations in a year

a system can be represented by one principal component (Figure 
1a), and its eigenvalue represents 100% of the variance of the 
original variables. Otherwise, when the variables are represented 
by two or more components, the original variables' variance will 
not be distributed by only one eigenvalue. The eigenvalues were 
calculated with the characteristic equation of the matrix {R}:

	 |{R}-λi{I}|=0	 (3)

Where:
{R}= correlation matrix of warming or cooling rates in each group
λi = eigenvalues of the principal components
{I} = identity matrix

The loads or correlations of the principal components with 
the warming and cooling rates in each group were calculated 
with the following matrix equation:

	 L E� � � � ��� ��
1

2 	 (4)

Where:
{L} = matrix of loads or correlations between the principal 
components and the warming and cooling rates in each group
{E} = matrix of eigenvectors associated with each eigenvalue
{Λ}= diagonal matrix of λi, the elements outside the diagonal 
are zero

When the original variables are represented by a unique 
principal component, the loading or correlation of each variable 
with the principal component is perfected, that is, the element 
of the first column (li1) of matrix {L} are equal to 1 (Figure 1b); 
otherwise, all lij elements are between -1 and 1 (Figure 2b).

2.3 Daily and monthly air temperature analysis

The daily analysis was carried out by grouping the T10 data 
from 00:00 to 23:50 hrs. local time. Therefore, each day had 144 
values, with which the daily air temperature statistics: average 
(Tave,d), maximum (Tmax,d), minimum (Tmin,d), standard deviation 
(Tave,d), and range (TRa,d), were estimated for the sixteen weather 
station-years groups. Tmax,d and Tmin,d were selected from the 144 
values. Tave,d and TSD,d were calculated using the 144 values. The 
calculus of Tave,d with the 144 values is more robust because the 
average is underestimated if it is calculated by (Tmax,d+Tmin,d )/2, 
due to the assumption of a symmetric rise and fall of tempera-
ture during the day (Bernhardt et al., 2018). TRa,d was calculated 
subtracting Tmax from Tmin. The monthly analysis was carried out 
by grouping T10 data according to the month. The monthly air 
temperature statistics were similar to daily statistics: average 
(Tave,m), maximum (Tmax,m), minimum (Tmin,m), standard deviation 
(TSD,m) and range (TRa,m). The daily air temperature statistics for 
the four weather stations and years were analyzed using the K-W 
test and PCA, just as it was in diurnal air temperature (previous 
section).

3. Results

3.1 Diurnal air temperature

3.1.1 warming and cooling rates

The correlation coefficients of T10 versus time were significant 
(p<0.05) in all sixteen groups (4 years X 4 weather stations). 
The box and whisker plots of warming and cooling rates are 
in Figure 4. The average warming rates had an interval from 
2.6×10-2 °C·10 min-1 (in the LMI weather station and 2016 year, 
abbreviated as LMI-16) to 3.4×10-2 °C·10 min-1 (Hua-19). The 
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Figure 4. Warming (a) and cooling (b) rates in the groups (weather station-year).

minimum warming rate had values from 3.1×10-4 °C·10 min-1 
(LMI-16) to 6.9×10-3 °C·10 min-1 (Hua-19), and maximum 
warming rates were from 5.0×10-2 °C·10 min-1 (LMI-16) to 
8.1×10-2 °C·10 min-1 (Hua-19). The ranges had values from 
5.0×10-2 (LMI-18) to 7.9×10-2 °C·10 min-1 (Hua-18), and the 
standard deviations were from 9.6×10-3 °C·10 min-1 (LMI-19) to 
1.5×10-2 °C·10 min-1 (Hua-17).

Concerning cooling rates, the average values of 
the groups were from -3.0×10-2 °C·10 min-1 (LMII-17) to 
-2.0×10-2 °C·10 min-1 (LMI-16). The minimum cooling 
rates had values from -7.4×10-2 °C·10 min-1 (Hua-16) to 
-3.8×10-2 °C·10 min-1 (LMI-17), and the maximum cooling 
rates were from -2.2×10-3 °C·10 min-1 (Hua-19) to -1.5×10-4 

°C·10 min-1 (LMI-16). The cooling rates range were from 
3.7×10-2 °C·10 min-1 (LMI-17) to 7.4×10-2 °C·10 min-1 (Hua-16), 
and the standard deviation values were from 7.6×10-3 °C·10 min-1 
(LMI-19) to 1.4×10-2 °C·10 min-1 (LMII-17).

3.1.2 Comparing heating and cooling rates

A comparison of the warming and cooling rates groups with 
K-W is shown in the matrix of Figure 5. The blocks indicate a 
group (a pair of weather station-years). The black blocks mean 
that a group had no significant difference (p>0.05), and the grey 
blocks indicate that a group had a significant difference (p<0.05). 
The two matrices (Figure 5a and Figure 5b) have similar distribu-
tion of the blocks. That means that in the weather station year, the 
warming and cooling rates are similar with the K-W test, except 
for the diagonals´ blocks marked by the ellipses. The diagonals 
show that at the Tla and LMI, and the LMI and LMII weather 
stations, the warming rates showed no significant differences, 
while the cooling rates did. The Hua and LMI weather stations 
significantly differed in the warming and cooling rates. The 
warming and cooling rates in the years in each weather station 
had no significant difference, except for 2016 and 2017 at the 
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Tla weather station. In percentage terms, the matrix warming 
rates had (6/48)*100= 12.5% of grey blocks, while the matrix 
cooling rates had (13/48)*100= 27% of grey blocks, both with 
significant differences.

3.1.3. Principal component analysis of warming and cooling 
rates

The principal component analysis (PCA) showed that three 
components represented 84% of the accumulated total variance 
of warming rates in the sixteen groups (Figure 6). The eigen-
value (λi) of each component represents the total variance of 
the original variable. Components 1, 2, and 3 represented 59%, 
18%, and 7% of the total variance, respectively. Figure 7a shows 
the correlations of the warming rates of the sixteen groups with 
the components 1 and 2. The correlation or loading between the 
original variables and components is given by L values (equation 
4). The warming rates with component 1 had correlation values 
from -0.91 to -0.41, and with component 2, they had values from 

-0.43 to 0.84 (indicated with red lines in the figures). These 
correlations values formed two subgroups of weather stations 
based on years, one composite with 2017, 2018 and 2019, and 
another with 2016.

Concerning the cooling rates, the PCA showed that 79% 
of the total variance was represented by three components 
(Figure 6). Components 1, 2 and 3, correspond to 40, 22 and 
17%, respectively. The correlations between cooling rates and 
the component 1 were from -0.92 to -0.28, and the correlations 
with the component 2 were from –0.68 to 0.72. Figure 7b shows 
the correlations of cooling rates with components 1 and 2. It 
is observed that, unlike the figure of warming rates, the cool-
ing rates form four groups composite by the weather stations 
according to the years. The groups of cooling rates for 2018 
and 2019 have diametrically opposite correlations (positive 
and negative values) with component 2. The group of cooling 
rates for 2017 had negative correlations with component 1. 
The group of cooling rates for 2016 had poorly correlated with 
component 2.

Figure 5. Matrix comparing warming (a) and cooling (b) rates. Black box= no significant difference, grey box= significant difference. WS = 
Weather station.
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Figure 6. Accumulated total variance of principal components for air temperature warming and cooling rates.

Figure 7. Warming a) and cooling b) rates correlations with two principal components for weather station-year groups.

3.2 Daily air temperature

3.2.1 Average, minimum, maximum, standard deviation, 
and range

The average (Tave,d), minimum (Tmin,d), maximum (Tmax,d), 
standard deviation (TSD,d) and range (TRa,d) daily air temperature, 
calculated with T10 data are depicted in Figure 8. The average 
daily air temperature (blue line) of the Tla weather station is 
on top, followed by Hua (red line), LMII (pink line), and LMI 

(green line) weather stations (Figure 8a), this kind of behavior 
is shown too in the maximum daily air temperature (Figure 8b), 
but no like that in the case of minimum air temperature, which 
behavior was as follows: Tla, LMI, LMII, and Hua weather sta-
tions (Figure 8b). For the case of standard deviation and range 
statistics, the Hua weather station is on top, followed by Tla, 
LMII, and LMI weather stations (Figure 8, c, and d). The lowest 
and highest values and their corresponding date are in Table 3. 
The lowest Tave,d was calculated in Hua weather station, and the 
highest was calculated in Tla weather station. As to Tmax,d, the 

Warming Cooling
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Table 3. Lowest and highest values of air temperature statistics.

Statistics Lowest Highest

Average daily Hua-dec-17
Agricultural: 3.4°C

Tla-may-16
Urban: 21.6°C

Maximum daily LMII-ene-16
South-forest: 6.4°C

LMII-abr-19
South-forest: 32.9°C

Minimum daily Hua-dec-17
Agricultural: -9.4°C

Tla-oct-17
Urban: 15.4°C

SD daily LMII-nov-18
South-forest: 0.3°C

Hua-ene-19
Agricultural: 11.5°C

Range daily LMII-nov-18
South-forest: 1.1 °C

Hua-ene-19
Agricultural: 32.4°C

Figure 8. Daily air temperature: a) average, b) minimum and maximum, c) standard deviation, d) range.



Hipólito Muñoz-Nava et al. | 1055 

lowest and highest values were calculated in the LMII weather 
station. The lowest and highest Tmin,d were calculated in the same 
weather stations as the calculated for average. Concerning TSD,d 
and TRa,d, the lowest and highest were calculated in LMII and 
Hua weather stations, respectively. The lowest values of these 
statistics occurred in winter, and the highest occurred in spring.

The most frequent Tave,d and Tmax,d were higher in the Tla 
weather station from 16 to 18°C and from 25 to 30°C, respective-
ly, than in other weather stations. This weather station recorded 
15 days with air temperatures higher than 30°C in 2019. On the 
other hand, Hua weather station registered more days with Tmin,d 
below or equal to 0°C than other weather stations. This weather 
station had 80 days with Tmin,d below 0°C in 2017, which was 
a higher number of days than the other three years. The most 
frequent TSD,d values were from 4 to 6°C in the four weather 
stations and years. The Hua weather station had more days, from 
132 to 151, with TSD,d values from 4 to 6°C, except for 2017, in 
which values from 6 to 7°C in 60 days were calculated. The most 
frequent TRa,d values were from 10 to 20°C at the four weather 
stations. In 2019, the LMI weather station had 194 days with 
TRa,d values from 10 to 15°C, the highest number of days with 
this air temperature range.

3.2.2. Comparing daily air temperature statistics

The comparison of daily air temperature statistics of the four 
weather stations and the four years is presented similarly to the 
comparison of warming and cooling rates. The matrix comparison 
of the K-W test for each statistic is in Figure 9. Tave,d and Tmax,d had 
similar results (Figure 9a), as well as TSD,d and TRa,d (Figure 9c). 
Tmin,d had a different matrix comparison (Figure 9b) compared 
to the other statistics. The four years in each weather station had 
no significant differences (black blocks) except for Tmin,d at the 
Tla weather station in 2016 and 2017. Tave,d and Tmax,d were sig-
nificantly different among the weather stations in all years. Tmin,d 
was significantly different at the Tla weather station compared 
to the other three weather stations. TSD,d and TRa,d at Tla weather 
stations were not significantly different compared with the Hua 
and the LMII weather stations. Among the other weather stations, 
they were. The average and maximum air temperature comparison 
matrix had (26/48)*100= 54.16% of grey blocks significantly 
different, the minimum air temperature comparison matrix had 
(16/48)*100= 33.3% of grey blocks. The standard deviation and 
range comparison matrix had (17/48)*100= 35.4% of grey blocks.

3.2.3. Principal component analysis of daily air temperature 
statistics

The accumulated total variance of Tave,d, Tmax,d, Tmin,d, TSD,d, 

and TRa,d, represented by the principal components are shown in 
Figure 10. The PCA showed that three components represented 
about 90% of the accumulated total variance of Tave,d and Tmin,d 
statistics, while four components did it for Tmax,d, TSD,d, and TRa,d. 
Components 1, 2, and 3 represented about 75%, 9%, and 5% 
of Tave,d and Tmin,d total variance, respectively. TSD,d, and TRa,d 
had a similar representation of accumulated variance by the 
components, the first three components represented 79% of the 
accumulated total variance. Components 1, 2, and 3 represented 
about 44%, 23%, and 12% of the accumulated total variance of 
TSD,d, and TRa,d. Tmax,d was represented in less measure for the 
first three components with a value of 77%. Components 1, 2, 
and 3 represented 37%, 24%, and 16% of the accumulated total 
variance of Tmax,d, respectively.

The correlations or L values (equation 4) of the sixteen 
weather station-year groups, with two principal components, 
are shown in Figure 11. It can see that the dots, which represent 
a weather station and a year of Tave,d and Tmin,d had similar dot 
distribution in the graph but different positions for each specific 
weather-year group (Figures 11a and 11c). TSD,d and TRa,d had 
similar dots distribution and position (Figures 11d and 11e). 
The dots of Tmax,d (Figure 11b) differ concerning the other four 
statistics. The correlations between Tave,d and component 1 was 
around -0.78 to -0.92, and the correlations with component 2 
were about -0.38 to 0.55 (red lines). Tave,d of four weather stations 
in 2016 formed a group because they had positive correlations 
of about 0.5 with component 2. The correlations between Tmax,d 
and component 1 was about -0.06 to -0.82, and the correlations 
with component 2 were about -0.37 to 0.93. The four weather 
stations in 2016 formed a group because their correlation rounded 
0.9 with component 2. Tmin,d had correlations with component 1 
from -0.91 to -0.79 and with component 2, from -0.91 to -0.79. 
Tmin,d in 2019 had the lowest correlation with component 2, while 
in the Tave,d analysis, the weather stations in 2017 had the lowest 
correlations with this component. TSD,d and TRa,d had correlations 
of about -0.05 to -0.9 with component 1 and about -0.9 to 0.4 
with component 2. Due to this, the weather stations of 2017, 
2018, and 2019 formed a group, while the weather stations of 
2016 formed another.

3.3 Monthly air temperature

The average, minimum, maximum, standard deviation, and 
monthly range of air temperature, calculated grouping T10 data 
by month are shown in Figure 12. The highest values of the 
monthly average (Tave,m) and maximum (Tmax,m) were observed 
from April to May, and the lowest in December and January. 
These parameters were the lowest in the north and south forest 
weather stations, followed by the agricultural and urban weather 
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Figure 9. Comparison of daily air temperature statistics: a) average and maximum, b) minimum, c) standard deviation and range. Black box 
= no significant difference, grey box = significant difference. WS = Weather station.

Table 4. Statistics of minimum and maximum daily air temperature.

Weather
station n

Minimum daily air temperature
Ave Min Max Kurtosis Skewness S. D.

Tla 1212 8.9 -2.8 15.4 -0.28 -0.60 3.33
Hua 1398 5.2 -9.4 13.6 -0.20 -0.40 4.15
LMI 1329 5.7 -1.4 11.9 -0.25 -0.45 2.34
LMII 1265 5.6 -3.5 12.0 -0.20 -0.42 2.84

Weather
station n

Maximum daily air temperature
Ave Min Max Kurtosis Skewness S. D.

Tla 1212 25.4 10.7 32.7 1.97 -0.70 2.73
Hua 1398 22.8 8.5 30.0 1.44 -0.58 2.68
LMI 1329 18.8 7.2 28.1 0.16 -0.08 3.15
LMII 1265 21.2 8.3 32.9 1.46 -0.48 2.84
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Figure 10. The accumulated total variance of principal components for daily air temperature statistics.

Figure 11. Daily air temperature statistics correlations with two principal components for weather stations-years groups.

Average

Standard deviation

Maximum

Range

Minimum
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stations. The lowest values of the monthly minimum (Tmin,m) were 
in January, and the highest were from June to October. Tmin,m 
values were higher in the urban weather station and dropped in 
the agricultural weather station. The monthly standard deviation 
(TSD,m) and range (TRa,m) presented upper values from November 
to January and lower ones from June to October. TSD,m and TRa,m 
presented the lowest values in the north and south forest weather 
stations, and the highest values in the agricultural weather station.

Figure 12 shows that Tave,m, Tmax,m, and Tmin,m had an increasing 
stage from January to May, a flat line from June to July, and 
a decreasing stage from August to December. The TSD,m and 
TRa,m behaviors were opposite to Tave,m, Tmax,m, and Tmin,m. In the 
phases from January to May and from August to December, the 
inter-monthly changes of Tave,m and Tmin,m were more noticeable 
than Tmax,m, TSD,m and TRa,m. In the January to May phase, Tave,m, 
Tmax,m and Tmin,m showed positive and TSD,m and TRa,m negative 
slopes, with values of 1.5, 1.2, 1.9, -0.2, and -0.8 °C/month, 
respectively. From August to December, the changes were the 
opposite, with negative slopes of Tave,m, Tmax,m and Tmin,m and 

positive for TSD,m and TRa,m, with values of -1.0, -0.2, -1.7, 0.47, 
and 1.5°C/month, respectively.

4. Discussion

4.1 Diurnal air temperature

4.1.1 warming and cooling rates

The statistics analyzed (average, minimum, maximum, and 
range) had different values between warming and cooling rates 
in the sixteen groups (Figure 5), except for standard deviation, 
which had values rounded to 1.0×10-2 °C·10 min-1 in both types 
of rates. The average warming and cooling rates fluctuated 
similarly between groups, but with opposite sign rounding 
3.0×10-2 °C·10 min-1 for warming rates and -3.0×10-2 °C·10 min-1 
for cooling rates. The minimum rates had more fluctuation 
between the groups in the cooling phase than in the warming 

Figure 12. Monthly air temperature statistics: a) average, maximum, and minimum, b) standard deviation, c) range.
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phase. The highest minimum values of cooling rates are in the 
forest (LMI weather station) and the lowest in urban (Tla weather 
station in 2016) and agriculture (Hua weather station in 2016), it 
may be because 2016 was an El Niño year (Martínez et al., 2017). 
In contrast to the minimum, the maximum had more fluctuation 
in the warming phase than in the cooling phase. However, the 
lowest values of maximum warming rates are in forests and the 
highest in agriculture and urban weather stations. The range 
of warming rates was dissimilar to the range of cooling rates. 
These results show that the vegetation of the forests dampens 
the air warming by biophysical mechanisms (Li et al., 2015) and 
by the suppression of mixing due to the lower roughness of the 
open areas, which causes the temperatures to rise more rapidly 
than in the forests (Lee et al., 2011). However, these differences 
between the forest and the agricultural area can also be caused 
by elevation in sites (Good, 2015; Hemond and Fechner, 2015).

4.1.2 Comparing heating and cooling rates

Multiple comparisons of warming rates between the weather 
stations-years combinations, with the K-W test, and comparisons 
of cooling rates showed that environmental conditions heat up at 
similar rates in 87.5% of combinations and cool down in 73%. 
The consistent warming rates differences between agricultural 
(Hua weather station) and forest of the north side of La Malinche 
volcano (LMI weather station) in 2016, 2018, and 2019 stand out. 
The cooling rates significantly differed between the agricultural, 
urban, and forest areas of the north side of La Malinche volcano 
and between the north and south forests of La Malinche volcano 
(Figure 4b). The forest cooling rates of the north slope of La 
Malinche volcano (LMI weather station) are higher than the south 
forest (LMII weather station). The differential cooling rates in La 
Malinche volcano can be due to its symmetrical conical shape, 
its location in the north latitude, and that it is an isolated volcano 
in the trans-Mexican volcanic belt (Castro-Govea and Siebe, 
2007), all of them causing that the north side is less exposed to 
the sun. Nevertheless, the cooling rate of the forest's south slope 
is comparable to the agricultural and urban areas.

4.1.3 Principal component analysis of warming and cool-
ing rates

The PCA showed that three components represented the total 
variances of the warming and cooling rates, rounding 80%. This 
percentage was comparable to those reported in the analysis of 
other climatological variables (Bethere et al., 2017; Isaak et al., 
2018; Zuśka et al., 2019). In general, this indicated that warming 
and cooling rates in the sixteen groups of weather stations-years 
meet the criteria that the groups can be a linear combination 

(Schuenemeyer and Drew, 2011) or covariate similarly (Hurth 
and Pokorna, 2005). However, the variance values components 
indicate that air temperature warming rates were partially a 
linear combination forming two groups among years, one for 
2017, 2018, and 2019 and another for 2016. This result indicates 
a perturbation relating air temperature among the urban, agri-
cultural, and forest environments studied. Concerning cooling 
rates, the linear combination was weaker; in other words, there 
was more perturbation because the variance representativeness 
of component 1 was equal to 40%. In this case, the dots repre-
senting weather stations-year were more disperse, according to 
Figures 7a and 7b. The dots distribution in Figures 7a and 7b 
also indicates that the air temperature warming rates are differ-
ent from cooling rates. This clearly shows the effect of forest, 
agriculture, and urbanization. If variation in air temperature 
were due to the altitudinal and spatial gradient, then the dots 
would be concentrated in some place on the graphic and would 
be a perfectly linear combination with rounding values of 100% 
by the first principal component. Consequently, the PCA could 
be a valuable tool to detect changes in air temperature gradient 
caused by perturbation of the system.

4.2 Daily air temperature

4.2.1 Average, minimum, maximum, standard deviation, 
and range

The analysis of air temperature statistics showed that the lines 
of the average and the maximum urban weather station were on 
top in the graphics, followed by agricultural, south forest, and 
north forest of La Malinche volcano. The minimum air tempera-
ture had behavior where the urban weather station was on top, 
followed by south forest, north forest, and agricultural weather 
stations. The standard deviation and range were similar to the 
average and the maximum, but agriculture had the highest val-
ues, followed by urban and forest weather stations. The average, 
maximum, standard deviation, and range in the forest were lower 
than in agricultural and urban areas. The average and maximum 
difference is due to altitude (Hemond and Fechner, 2015; Chen 
et al., 2018; Isaak et al., 2018), which between forest and urban 
and agricultural weather stations is from 500 to 700m (Table 1). 
However, the differences in daily temperature between urban and 
agricultural areas cannot be attributed to the effect of altitude 
since there is a difference of 10 meters between them. The lower 
values of standard deviation and range in the forest are possibly 
due to the vegetation cover. The literature describes that forests 
have an important but complex role in air temperature (Li et al., 
2015; Lee et al., 2011; Shiflett et al., 2017; De Frenne et al., 
2019). The minimum air temperature values in the forest were 
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between urban and agricultural, which means that the forest 
buffers air temperature.

The Tave,d and Tmax,d most frequent values were higher in the 
urban environment than in agricultural and forest. That could 
be because, in urban areas, the air temperature increases with 
its size compared to its surroundings (Zhuo et al., 2017). The 
Tmax,d >30°C occurs when a heatwave is presented (Rosenzweig 
et al., 2006). A heatwave was registered throughout the coun-
try in 2019, which caused the air temperature rise above 30°C 
(Pascual et al., 2019) in the urban areas but not in forest and 
agricultural ones.

The Tmin,d most frequent values in the urban area were higher 
than in the agricultural and forest areas. In the agricultural area, 
devoid of vegetation in winter, the highest number of days with 
temperatures below 0°C, caused by cold fronts, were recorded 
(Pascual et al., 2019). The urban area had fewer days, with 
Tmin,d <0°C and more days with Tmax,d > 30°C. In agricultural 
areas, there were more days with Tmin,d <0°C, than in urban and 
forest areas. This result clearly shows that the forests buffer the 
ambient temperature because they did not show Tmin,d <0°C in 
the agricultural area nor Tmax,d > 30°C in the urban area.

The most frequent values of TSD,d and TRa,d in the agricultural 
area were higher than in urban and forest areas, accentuating the 
TRa,d difference between the agricultural and forest areas because 
the vegetation cover reduces the range temperature (Lee et al., 
2011). In winter, TRa,d was higher than in summer-autumn in 
the three environmental conditions; this result is comparable to 
that reported in the literature (Qu et al., 2014). In winter, TRa,d is 
higher due to the lack of cloudiness (Braganza et al., 2004; Roy 
and Balling Jr., 2005), cold fronts (Pascual et al., 2019), and the 
lack of vegetation cover (Lee et al., 2011), which cause more 
significant fluctuations in temperature during the day.

4.2.2 Comparing daily air temperature statistics.

According to the environmental conditions analyzed, we ex-
pected that the air temperature differences could be among urban, 
agricultural, and forest, but not among years. Indeed, regarding 
the latter, the K-W test showed that among years, there were no 
significant differences, except for minimum air temperature at 
urban conditions. The K-W test showed that the environment 
conditions analyzed were significantly different (p<0.05) based 
on Tave,d and Tmax,d. With Tmin,d, TSD,d and TRa,d, the differences 
between the environmental conditions were not consistent. It 
is plausible to say that the temperature differences between ur-
ban and agricultural areas are not due to altitude because both 
have a difference of 10 m, but according to their environmental 
conditions and the differences between the north forest and the 
south forest are due to position in the La Malinche volcano. The 

north forest is located at a higher altitude and is less exposed to 
solar radiation compared to the south forest, which is located at 
a lower altitude and is more exposed to solar radiation.

4.2.3 Principal component analysis of daily air temperature 
statistics

The PCA showed that the total variances of Tave,d and Tmin,d 
were represented (>80%) by two components, while Tmax,d, TSD,d 
and TRa,d, by three components. Similarly to warming and cooling 
rates, the analysis using five statistics indicated that daily air tem-
perature can be a linear combination (Schuenemeyer and Drew, 
2011; Hurth and Pokorna, 2005) but with a perturbation degree 
characterized by the variance of components. The correlation 
values (Figure 10) showed that the linear combination of the 
environmental conditions is based on years. The statistics (Tmax, 
and TRa,d) for 2016 resulted in a partially linear combination, and 
those for 2017, 2018, and 2019 resulted in another. This result 
reveals that although the thermal gradient is still preserved in 
the study area, if the urbanization and the agricultural regions 
continue increasing, and so does the reduction of the forest, the 
natural thermal gradient is at risk of breaking. The conjugation 
of the results of the K-W test and the PCA showed that the tem-
peratures had significant differences and were a partially linear 
or perturbed combination.

4.3 Monthly air temperature

The monthly behavior of Tave,m, Tmax,m and Tmin,m showed that 
the values were higher in April and May and lower in winter. 
This is probably due to the minimization of topographic factors 
during the winter months, the short duration of the day, and the 
lowest angle at which the sun's rays strike the earth's surface 
(Dutta et al., 2017). In the agricultural area, the inter-monthly 
changes of Tave,m, Tmin,m, TSD,m and TRa,m, were more significant 
than in the forest and the urban area. This result is comparable 
to that reported in the literature (Shiflett et al., 2017; Rushayati 
et al., 2018; Wong and Peck, 2005). The inverse behavior of TSD,m 
and TRa,m concerning Tave,m, Tmax,m and Tmin,m, shows the effect of 
rainfall and cold fronts in the study area from May to June and 
November to February, respectively.

The Tave,m in the agricultural and forest areas was lower 
than average monthly air temperature (1981-2010), while in 
the urban areas, they were higher in March, April, October, 
November, and December 2019. In these months, Pascual et 
al. (2019) reported similar monthly temperatures on a national 
scale (Mexico). Concerning the monthly Tmax,m, they were lower 
than their respective normal ones in the three environmental 
conditions. There weren't significant differences between the 
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Tmax,m and normal ones in the agricultural area, while the most 
considerable difference was in the forest.

In the three environmental conditions, the monthly Tmin,m 
was higher than the average minimum air temperature. Monthly 
Tmin,m increasing was more accentuated in urban areas than in 
agriculture and forest areas. The Tmin,m increased more than the 
monthly Tmax,m; this result is consistent with that reported in other 
studies (Qu et al., 2014; Machiwal et al., 2019). From January 
to May, the monthly changes of Tave,m, Tmax,m and Tmin,m were 
lower than those reported by Chinchorkar et al. (2013), but the 
changes from August to December were more significant than 
those of the same authors. The monthly changes of Tmin,m were 
comparable to those reported in the literature (López-Díaz et 
al., 2013; Colunga et al., 2015).

5. Conclusions

The five statistics (average, minimum, maximum, standard 
deviation, and range) had no values persistent in warming and 
cooling rates. The K-W test showed that warming and cooling 
rates are significantly different between the agricultural, urban, 
and forest areas. Even the north and south sides of La Malinche 
volcano have a significant difference in cooling rate. The PCA 
showed that the warming and cooling rates were partially a linear 
combination in the agricultural, urban, and forest. Still, cooling 
rates had less value of variance, indicating a high degree of per-
turbation in these environmental conditions. In others words the 
cooling rate is more sensitive to show the system perturbation.

The average, maximum, and minimum air temperature in 
urban, standard deviation, and range in agriculture had the 
highest values in graphics. These differences between urban and 
agricultural environments cannot be attributable to altitude but 
to cover vegetation and topography

Comparing air temperature along years, there were no signifi-
cant differences except for minimum air temperature in the urban 
environment. The average and maximum daily air temperatures 
significantly differed between the environmental conditions. The 
daily air temperature on the north side of La Malinche resulted 
in a significant difference concerning the south side, likely due 
to solar radiation incidence.

The maximum, standard deviation, and range daily air tem-
perature in urban, agricultural, and forest environments showed 
more perturbation degrees than average and minimum air tem-
perature. The statistics of air temperatures showed significant 
differences in the environments, and the PCA showed that they 
are perturbed.

The monthly behavior of average, maximum, and minimum 
air temperature showed that the values were higher in April and 

May and lowered in winter; standard deviation and range had 
inverse behavior. The average monthly air temperature in the 
agricultural and forest areas was lower than the normal monthly 
air temperature (1981-2010). While in the urban area, they were 
higher in March, April, October, November, and December. The 
monthly minimum air temperature increase was more accentu-
ated in urban areas than in agriculture and forest areas, and the 
minimum increased more than the maximum monthly.
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