Monogenetic volcanism, environment and society

Análisis morfo-estructural del Campo Volcánico Monogenético Guamuéz-Sibundoy (sur de Colombia)

Lisbeth Tatiana Murillo-Orobio¹, Darcy Lisbeth Chapuel-Cuasapud¹, Luis Alvaro Botero-Gómez²³ y Hugo Murcia^{3,4}

Abstract

Guamuéz-Sibundoy Monogenetic Volcanic Field (GSMVF) is located in the Northern Andes, southern Colombia, in a geomorphological depression known as the Sibundoy Valley. This area is influenced by a set of faults related to the Algeciras Fault System. To understand the tectonic activity recorded in the morpho-structural features and the interaction with the GSMVF, a morphostructural characterization via geographic information systems (GIS) was carried out. Using a digital elevation model, slopes, drainage, aspects, and lineaments on shaded relief were analyzed. Deflections in rivers and rectilinear segments were identified. The analysis shows that the lineaments concentration present in the area can be related to the damage zone of regional faults. These faults can be related to predominant continuous lineaments in the WNW-ESE, NW-SE, NNE-SSW y NE-SW directions. The lineaments in the WNW-ESE y NW-SE direction are related to the Sibundoy fault and Algeciras Fault System, while the lineaments in the NNE-SSW and NE-SW directions are associated with the San Francisco-Yunguillo fault. In conclusion, this work reveals regional faults that have not been previously identified, and uses these faults to propose a structural model of interaction with transverse faults.

Key words: monogenetic volcanism, structural geology, Colombian Andes, Guamuéz-Sibundoy Monogenetic Volcanic Field, Algeciras Fault System.

Resumen

El Campo Volcánico Monogenético Guamuéz-Sibundoy (CVMGS) está localizado en los Andes del Norte, sur de Colombia, en una depresión geomorfológica que se conoce como Valle de Sibundoy. Esta zona se encuentra influenciada por un conjunto de fallas relacionadas con el Sistema de Fallas de Algeciras. Con el objetivo de comprender la actividad tectónica registrada en los rasgos morfo-estructurales y la interacción con el CVMGS, se presenta una caracterización morfo-estructural a través del procesamiento de modelos digitales usando sistemas de información geográfica (SIG). Para esto, utilizando un modelo de elevación digital, se analizaron las pendientes, los drenajes, un mapa de aspectos y los lineamientos sobre un relieve sombreado, y se identificaron deflexiones en ríos y segmentos rectilíneos. El análisis evidencia que la concentración de lineamientos presentes en la zona de estudio puede relacionarse con zonas de daño de las fallas principales, con patrones de dirección WNW-ESE, NW-SE, NNE-SSW y NE-SW. Los lineamientos en sentido WNW-ESE y NW-SE se relacionan con la falla Sibundoy y el Sistema de Fallas de Algeciras, mientras que los lineamientos en sentido NNE-SSW y NE-SW con la falla San Francisco-Yunguillo. Los resultados permiten evidenciar fallas regionales que no han sido registradas en la literatura, así como proponer un modelo estructural basado en estos sistemas y la interacción con fallas transversales.

Palabras clave: vulcanismo monogenético, geología estructural, Andes Colombianos, Campo Volcánico Monogenético Guamuéz-Sibundoy, Sistema de Fallas Algeciras.

Received: November 30, 2023; Accepted: June 5, 2024; Published on-line: October 1, 2024.

Editorial responsibility: Dr. Giovanni Sosa-Ceballos

^{*} Corresponding author: Hugo Murcia, hugo.murcia@ucaldas.edu.co.

¹ Programa de Geología, Universidad de Caldas, Manizales, Colombia

² Doctorado en Ciencias - Geología, Universidad de Caldas, Manizales, Colombia

³ Instituto de Investigaciones en Estratigrafía, Universidad de Caldas, Manizales, Colombia

⁴ Departamento de Ciencias Geológicas, Universidad de Caldas, Manizales, Colombia

Lisbeth Tatiana Murillo-Orobio, Darcy Lisbeth Chapuel-Cuasapud, Luis Álvaro Botero-Gómez, Hugo Murcia.

1. Introducción

Los volcanes monogenéticos corresponden a edificios volcánicos pequeños resultantes de un solo evento eruptivo (Kereszturi and Németh, 2012). La agrupación de estos volcanes se conoce como campos monogenéticos, consistentes en un conjunto de volcanes, cada uno de los cuales ha hecho una única erupción (Murcia and Németh, 2020). El desarrollo de los campos volcánicos monogenéticos está controlado principalmente por el entorno tectónico regional, estando la mayoría relacionados con regímenes extensionales (Acocella, 2021). En Colombia, sin embargo, los campos volcánicos monogenéticos se encuentran en ambientes locales de transtensión y transpresión asociados con la subducción oblicua (e.g. Botero-Gómez et al., 2018; Sánchez Torres et al., 2022; Vargas-Arcila et al., 2023). Considerando que el entorno tectónico regional controla la aparición y la distribución de los volcanes (Avellán et al., 2020), es imperante realizar una caracterización morfo-estructural de los campos volcánicos como base para definir el o los modelo vulcano-tectónicos que los enmarcan (e.g. Avellán et al., 2019; Gómez-Vasconcelos et al., 2021; Liotta et al., 2023).

El Campo Volcánico Monogenético Guamuéz-Sibundoy (CVMGS) (Flórez, 2003; Monsalve-Bustamante et al., 2020), está localizado en el flanco oriental de la Cordillera Central, en los departamentos de Nariño y Putumayo (Figura 1), 4 km al SW de la población de Santiago. En esta zona se destaca una depresión amplia de aproximadamente 98.32 km² de extensión, con predominio de depósitos Cuaternarios, que se conoce como Valle de Sibundoy (Velandia et al., 2001). Este campo se ve influenciado por los sistemas de fallas NE-SW Algeciras, del Río Suaza y el Río Cauca, en los cuales se destaca la falla San Francisco-Yunguillo (Murcia & Cepeda, 1991). Esta falla corresponde en este sector con el trazo principal del Sistema de Fallas de Algeciras (SFA) que controla el flanco sur de la cuenca (Velandia et al., 2001). De acuerdo con el Servicio Geológico Colombiano (anteriormente INGEOMINAS), en el año 1834 y 1935 se registraron sismos con epicentro en el Valle de Sibundoy, los cuales podrían ser un indicio de la actividad neotectónica de la zona que se relacionan con los segmentos de falla del sistema al borde sur de la cuenca (Núñez, 2003).

En este trabajo se presenta un análisis de la geología estructural y actividad tectónica del CVMGS, con base en fotointerpretación sobre un modelo de elevación digital, identificación de lineamientos y datos corroborados en campo. En relación con la información obtenida, se realiza una caracterización geomorfológica, un análisis de drenajes y una identificación de lineamientos como insumo para plantear un modelo vulcano-tectónico que permita definir la posible interacción entre estructuras presentes en la zona como fallas y fracturas en el basamento con el ascenso de magma.

2. Marco geológico-estructural

La configuración tectónica de Colombia está caracterizada por un margen continental deformado en el límite de tres placas tectónicas: Suramericana, Nazca y Caribe (Taboada et al., 1998, Figura 1). La subduccion de estas placas da origen a la cadena montañosa denominada los Andes del Norte; esta cadena orogénica resulta de procesos de subducción-obducción y colisiones que ocurrieron en el margen occidental de Colombia abarcando desde el Precámbrico hasta la actualidad (McCour et al., 1984; Taboada et al., 1998; Acosta et al., 2007). El vulcanismo en la Cordillera Central (Figura 1) esta dado por la subduccion de la placa Nazca debajo de la placa Suramericana, lo que ha generado actividad tectónica y volcánica reciente (Taboada et al., 1998). Los Andes Colombianos abarcan a tres secuencias montañosas: cordilleras Oriental, Central y Occidental, separadas por los valles interandinos como el valle del río Magdalena, el valle del río Cauca, los valles del río Atrato y el río San Juan, y la serrania de Baudó (Toussaint & Restrepo, 1994).

El basamento de la zona de estudio esta conformado por rocas metamórficas del Complejo Migmatítico La Cocha-Río Téllez de edad Precámbrica (Núñez, 2003; Zapata-García et al., 2017). Estas rocas se encuentran en contacto fallado con el Batolito de Sombrerillos de edad Jurásico Inferior (Garcia, 2018; Restrepo et al., 2021), y rocas sedimentarias de las Formaciones Caballos y Villeta de edad Cretácico (Restrepo et al., 2021). Tambien aflora el Batolito de Mocoa (Nuñez, 2003; Arango et al., 2015) de edad Jurásico Inferior (Nuñez, 2003; Arango et al., 2015) y rocas volcánicas de la Formación Saldaña de edad Jurásica (Nuñez, 2003). Hacia el sector NW de la zona de estudio afloran lavas y depósitos volcaniclásticos de edad entre finales del Mioceno e inicios del Plioceno y finales del Plioceno e inicio del Pleistoceno (Murcia & Pichler, 1986; Núñez, 2003; Restrepo et al., 2021). El Cuaternario está representado por depósitos de caída piroclástica, lahares y lavas, glaciares, coluviales y aluviales.

Teniendo en cuenta la configuración tectónica, el sistema de fallas activas en Colombia se da como resultado de la convergencia de las placas tectónicas mencionadas y se extienden paralelamente a los piedemontes de las cordilleras colombianas (Taboada *et al.*, 1998). Hacia el Este de Colombia se destacan fallas con azimut NE-SW y fallas con dirección cercana N-S, que dan origen a la geometría de la Cordillera Oriental colombiana; estas fallas que tenían componentes normales se reactivaron a fallas inversas y de rumbo durante el Cenozoico por el cambio de eventos extensivos a compresivos (Helmes *et al.*, 1995). Hacia el sur la Cordillera Oriental limita con dos grandes sistemas de falla: el Sistema del Piedemonte Llanero y el Sistema del Valle del Magdalena. Para la zona de estudio, se destacan dos zonas que hacen parte del Piedemonte Llanero: en el sector sur se destacan las fallas de Mocoa y Florencia, las

Figura 1. Mapa geológico de la zona objeto de estudio con unidades cronoestratigrafías (Modificado y adaptado de Núñez, 2003; Restrepo *et al.*, 2021); nótense las estructuras volcánicas del Campo Volcánico Monogenético Guamuéz-Sibundoy delimitados por polígonos rojos y las principales fallas de la zona reportadas por el Servicio Geológico Colombiano (2020) y Restrepo *et al.* (2021). 1: Campanero, 2: Victoria, 3: Manoy, 4: Mijoy, 5: Bijinchoy, 6: Fuisanoy, 7: Mujundinoy Norte-Mujundinoy Sur, 8: Corota, 9: Yaku, 10: Guayapungo, 11: Encano, 12: Guamez, 13: Estero, 14: Patascoy, 15: Taita Muchivioy-Mama Muchivioy, 16: Laurel, 17: Santa Teresita. Elaborado en ArcGIS a partir del DEM 12.5 m.

cuales se caracterizan por su componente inverso en direccion NNE. Además, son de importancia las fallas de alto ángulo de Altamira-Algeciras y Sibundoy con componente de rumbo lateral derecho. Hacia el norte se da un cambio de azimut con respecto al sector sur a N-S y se destaca la falla Santa Marta Bucaramanga en el Macizo de Santander (Taboada *et al.*, 1998). Del mismo modo, el valle Alto del Magdalena tiene segmentos de las fallas Algeciras- Altamira y De Suaza con una componente de rumbo lateral derecha. Como segmentos al suroccidente se encuentran las fallas de Afiladores y Sibundoy, las cuales representan un fallamiento activo que sigue la cinemática principal (Taboada *et al.*, 1998)

2.1. Sistema de Fallas Algeciras

El Sistema de Fallas Algeciras (SFA) es un conjunto de fallas que tienen continuidad desde la frontera con el Ecuador hasta unirse con el Sistema de Fallas de Guaicaramo; estos sistemas de fallas pueden estar relacionadas genéticamente con fases progresivas de la orogenia Andina (Velandia et al., 2001; Chicangana-Montón et al., 2022; Gómez-Hurtado et al., 2022). Particularmente, para la zona SW de Colombia, el SFA ha tenido varias denominaciones, como Suaza, Garzón, Pitalito y Altamira (Murcia, 1991). Sin embargo, Velandia (2005) denomina SFA a la integración de un conjunto de fallas locales mapeadas con tendencia NE-SW, las cuales están distribuidas en seis sectores: Algeciras-Balsillas, Zuluaga-Garzón, Altamira-Pitalito, San Juan de Villalobos-Yunguillo, Sibundoy-La Cocha y Monopamba-Ecuador. Las características del relieve estructural catalogan a la falla como de rumbo deslizante lateral derecha (Vergara, 1996; Paris & Romero, 1994; Velandia, 2005; Anderson et al., 2016; Cediel & Shaw, 2019) cuyas evidencias estructurales a lo largo de la falla son observadas en el desplazamiento moderado de abanicos Cuaternarios, lomos de presión, drenajes decapitados, ganchos de flexión, facetas triangulares, cuencas de tracción y alineamientos de rasgos morfotectónicos (Diederix, 2020; Gómez-Hurtado et al., 2022). Para la zona de estudio, en el sector Sibundoy-La Cocha, el SFA está relacionado con fallas que siguen la tendencia regional en dirección NE-SW y fallas transversales en dirección NW-SE; formando levantamiento y depresiones que pueden hacer parte de un sistema de "wrench fault'' como el Valle de Sibundoy y la laguna de La Cocha (Figura 2) (Velandia et al., 2001, 2005).

2.2. Falla Sibundoy

Las fallas en dirección NW observadas en esta zona incluyen la falla Sibundoy (Velandia *et al.*, 2001). Su dirección en rumbo varía entre N50-60° W, con desplazamiento dextral que corta y desplaza la mayoría de estructuras y unidades litoestratigráficas expuestas en el área. Esta falla, al norte de las poblaciones de San Francisco y Sibundoy, presenta una zona amplia de cizalla (Núñez, 2003; Restrepo *et al.*, 2021). Es uno de los rasgos tectónicos más destacados del área por su gran extensión, desde el piedemonte Amazónico hasta el flanco occidental de la Cordillera Central.

2.3. Falla Quinchoa

Esta falla tiene una dirección ENE-WSW, la cual se encuentra cubierta en su trazo por el Valle de Sibundoy. Se caracteriza por ser una estructura en echelón; su mecanismo de formación está asociado con los rasgos neotectónicos de la falla San Francisco-Yunguillo con componente en rumbo dextral y dirección NE-SW; algunos de los ríos que atraviesan el Valle de Sibundoy como el Putumayo y Quinchoa presentan trazos orientados que se sugiere están asociados con el control estructural de la falla (Nuñez, 2003).

2.4. Falla Colón

El trazo de la falla Colón con tendencia N35E (Nuñez, 2003) y cinemática dextral, atraviesa el tramo oriental del Valle de Sibundoy y el Complejo Migmatítico La Cocha Río-Téllez, hasta interceptarse con la falla San Francisco-Yunguillo con componente en rumbo dextral y dirección NE-SW.

2.5. Falla San Francisco-Yunguillo

La falla inversa San Francisco-Yunguillo con dirección NE-SW, tiene un componente de desplazamiento dextral y pone en contacto al Batolito de Sombrerillos con las formaciones Saldaña, Caballos y Villeta (Núñez, 2003). Es una de las estructuras geológicas más relevantes del área de estudio; tiene rasgos de actividad reciente, como la formación del Valle de Sibundoy cruzado en el oriente por la falla Colón; el valle se considera como una cuenca *pull apart* (Velandia *et al.*, 2001) con forma romboidal (Núñez, 2003). La falla controla el flanco sur del Valle, con una diagonal mayor que tiene una longitud cercana a los 18 km orientada N60°E (Velandia *et al.*, 2001).

2.6. Falla de La Victoria

Esta falla tiene una dirección NE-SW con cinemática dextral, atribuida por estar asociada como una falla paralela al Sistema de Fallas de Río Suaza con dirección NE-SW y desplazamiento en rumbo dextral; la falla atraviesa la laguna de La Cocha (Figura 2) y continua su trazo hacia el NE de la zona de estudio.

Figura 2. Mapa de disección vertical de la zona de estudio; nótense las estructuras volcánicas del Campo Volcánico Monogenético Guamuéz-Sibundoy delimitados por polígonos rojos y las principales fallas de la zona reportadas por el Servicio Geológico Colombiano (2020) y Restrepo *et al.* (2021). 1: Campanero, 2: Victoria, 3: Manoy, 4: Mijoy, 5: Bijinchoy, 6: Fuisanoy, 7: Mujundinoy Norte-Mujundinoy Sur, 8: Corota, 9: Yaku, 10: Guayapungo, 11: Encano, 12: Guamez, 13: Estero, 14: Patascoy, 15: Taita Muchivioy-Mama Muchivioy, 16: Laurel, 17: Santa Teresita.

3. Campo Volcánico Monogenético Guamuéz-Sibundoy (CVMGS)

El Campo Volcánico Monogenético Guamuéz-Sibundoy (CVMGS) corresponde a volcanes emplazados en el Macizo colombiano (cordilleras Central y Oriental) al sur occidente del país, en los departamentos de Nariño y Putumayo (Núñez, 2003) (Figura 2). Su formación se da como respuesta al magmatismo generado por los procesos de subducción oblicua de la placa Nazca bajo la placa Suramericana (Montes *et al.*, 2019; Restrepo *et al.*, 2021). Este evento magmático fue emplazado en un régimen tectónico transtensional, con el esfuerzo compresivo horizontal máximo (σ 1) en dirección NE-SW (Grajales *et al.*, 2020) y se considera como vulcanismo de retro-arco (Diederix *et al.*, 2020). Actualmente, se conocen 19 volcanes en la zona, los cuales se caracterizan por presentar morfologías cónicas y en depresión. La secuencia morfo-cronológica del más reciente al más antiguo de estas estructuras, según Rivera (2021), es: Campanero, Encano-Guamuéz, Guayapungo, Patascoy, Estero, Mujundinoy Norte-Mujundinoy Sur, Corota, Mijoy, Manoy, Taita Muchivioy-Mama Muchivioy, Victoria, Bijinchoy, Fuisanoy y Yaku (Tabla 1).

Algunos estudios previos (e.g. Nuñez, 2003; Rodriguez & González, 2004, Diederix *et al.*, 2020) definen la composición del

Núm.	Volcán	Coordenadas	Altitud
1	Campanero	1°8'13" N; 77°6'42" W	3020
2	Victoria	1°6'05" N; 77°4'59" W	3072
3	Manoy	1°5'47" N; 77°4'52" W	3114
4	Mijoy	1°5'36" N; 77°4'46" W	3128
5	Bijinchoy	1°5'15" N; 77°4'59" W	3057
6	Fuisanoy	1°5'56" N; 77°4'05" W	3048
7	Mujundinoy Norte Mujundinoy Sur	1°5'21" N; 77°5'38" W 1°5'04" N; 77°5'39" W	3180
8	Corota	1°5'20" N; 77°6'16" W	3072
9	Yaku	1°4'31" N; 77°6'20" W	3048
10	Guayapungo	1°3'33" N; 77°7'41" W	2839
11-12	Encano-Guamuéz	1°2'56" N; 77°7'31" W 1°2'52" N; 77°7'41" W	2968
13	Estero	1°3'14" N; 77°3'59" W	2840
14	Patascoy	1°1'54" N; 77°2'17" W	3340
15	Mama Muchivioy Taita Muchivioy	1°7'16" N; 77°0'25" W 1°6'59" N; 77°0'46" W	2306 2385
16 17	Laurel Santa Teresita	1°3'48" N; 77°6'33" W 1°3'49" N; 77°6'24" W	2923 2952

Tabla 1. Coordenadas con origen WGS1984 de los volcanes constituyentes del Campo Volcánico Monogenético Guamuéz-Sibundoy (CVMGS). Tomado y modificado de Rivera- Lara (2021).

vulcanismo de Guamuéz-Sibundoy como basaltos ultramáficos y nefelínicos. Sin embargo, Robertson *et al.* (2002) describen a este conjunto de volcanes como andesíticos. La relación del Sistema de Fallas de Algeciras con la formación de cuencas *pull apart* y el vulcanismo monogenético dentro del área de estudio se da debido a regímenes de esfuerzos transtensionales (Diederix *et al.*, 2020). A su vez, el sistema de fallas estaría facilitando el ascenso del magma (Rivera-Lara, 2021).

4. Metodología

4.1. Análisis morfométrico y de drenajes

A partir del analisis digital en el *software* ArcGIS, se procesó un mapa de sombras mediante la herramienta *hillshade* con base en un modelo de elevación digital (DEM) con resolución 12.5 m obtenido del satélite Alos Palsar. Posterioremnte, se realizó un mapa de aspectos siguiendo la clasificación de orientación de las laderas propuesta por Bonachea-Pico (2006) y Sevilla-Caicedo (2013) a partir de la cual se definen nueve rangos: PLANO (dada por el valor de -1), N, NE, E, SE, S, SW, W, NW. Subsiguientemente, se realizó un mapa de pendientes mediante la herramienta *slope*, siguiendo la propuesta de la estandarización de la cartografía geomorfológica en Colombia (Carvajal, 2012). Finalmente, se realizó un mapa de drenajes mediante el uso de los programas SAGA (Sistema para Análisis Geocientíficos Automatizados), QGIS y ArcGIS. Estos drenajes fueron corregidos manualmente a través de imágenes satelitales de SAS Planet con resolución de 20 m. Estos insumos permitieron resaltar sobre el modelo de elevación digital los lineamientos existentes.

4.2. Análisis de lineamientos

Para la definición de lineamientos estructurales fueron considerados los rasgos lineales, rectilíneos y curvilíneos que resaltan en el DEM, con la ayuda de mapas de sombras y un mapa de aspectos. Para los mapas de sombras se consideraron intervalos de azimut establecidos cada 30°, con una dirección de altitud del sol de 45°. La definición del trazo de cada lineamiento se hizo de forma manual, teniendo en cuenta detalladamente el comportamiento de los drenajes, los rasgos lineales que se observan en el relieve sombreado y la inclinación de la pendiente a través del mapa de aspectos. Los datos de azimut obtenidos de cada lineamiento fueron procesados en el programa Estereonet para crear diagramas de rosas divididos en cuatro cuadrantes del área de interés.

4.3. Trabajo de campo

Con el objetivo de corroborar el análisis generado en los sistemas de información geográfica, así como las tendencias estructurales definidas sobre los modelos de elevación digital, se tomaron datos estructurales directamente en campo, tanto del basamento como de los productos volcánicos. Se analizaron estos datos, comparándolos con la información generada, correspondiendo a diaclasas principalmente. En el mismo sentido, se corroboraron litologías en la zona y se complementó el análisis geomorfológico como parte del análisis morfo-estructural.

5. Resultados

5.1. Análisis morfométrico

Las formas del terreno y el análisis de la información topográfica tuvieron como base la realización de un mapa de sombras (Figura 3A). Posteriormente, la orientación de las laderas se analizó a través de un mapa de aspectos (Figura 3B), en donde se obtuvo la posición de las laderas con respecto a los puntos cardinales y a su vez se delimitaron geoformas, lineamientos y procesos erosivos.

Teniendo como base el mapa de pendientes (Figura 4), se resaltaron a través de rangos de inclinación los valores de pendientes en la zona de estudio: valores bajos corresponden a zonas planas y valores elevados corresponden a las zonas más escarpadas. Las tendencias del relieve corresponden a: 1) Topografía plana o suavemente inclinada (<5°) con un área de 21,113.9 Ha (21.3% del área total); esta se concentra en el Valle de Sibundoy y los depósitos lacustres de la laguna de La Cocha. 2) Pendientes inclinadas (6-10°) con un área de 13,496.7 Ha (13.6% del área total); esta se encuentra en el sector NW de la zona. 3) Pendientes muy inclinadas (11-15°) con un área de 13,151.4 Ha (13,2% del área total); estas se encuentran principalmente en el sector NW y SW del Valle de Sibundoy. 4) Pendientes abruptas (16-20°) con un área de 12,149.3 Ha (12.2% del área total); estas se encuentran principalmente en el sector NW y SW del Valle de Sibundoy. 5) Pendientes muy abruptas (21-30°) con un área de 21,721.7 Ha (21.9% del área total); estas, aunque están distribuidas en la mayor parte de la zona de estudio, se concentran principalmente hacia el NW y SE de la laguna de La Cocha y alrededor del Valle de Sibundoy. Y 6) El rango de inclinación para pendientes escarpadas (31-45°) con un área de 16,172.5 Ha (16.3% del área total), y muy escarpadas (>45°) con un área de 1315.7 Ha (1.3% del área total) tienen mayor densidad hacia los sectores S y NW del Valle de Sibundoy y el N de La laguna de La Cocha.

De acuerdo con lo anterior, la zona de interés presenta cuatro ambientes que han modificado el relieve actual: denudacional, estructural, volcánico y fluvial. 1) El ambiente denudacional tiene mayor influencia geomorfológica, dado por la combinación de procesos erosivos y meteorización, asociado tanto a la influencia del clima como a la tectónica (Burbank & Pinter, 1999). Así, el levantamiento tectónico provoca que la intensidad de erosión sea mayor en relieve escarpado (Nichols, 2009). 2) Las subunidades producidas en un ambiente estructural están controladas por las estructuras geológicas (características litológicas y estructurales) y por la erosión diferencial (Gutiérrez & Gutiérrez, 2016); en este sentido, el área de estudio está influenciada por la presencia de un conjunto de fallas regionales y locales asociadas con el Sistema de Fallas Algeciras, que afectan diferentes unidades como la Formación Saldaña, Complejo Migmatítico La Cocha-Río Téllez, Formación Villeta, Formación Caballos, depósitos Cuaternarios como fluviales y volcánicos. 3) Por otro lado, la presencia del CVMGS está relacionada con geoformas de origen volcánico principalmente por la acumulación de productos volcánicos (Figura 2). 4) El ambiente fluvial está representado por geoformas que son generadas por las corrientes de agua (Figura 5), principalmente de los ríos en los que se incluyen: hacia el NW, el río Putumayo, quebrada Sinsayaco, río San Pedro y río Quinchoa, que atraviesan el Valle de Sibundoy; en el sector central el río La Chorrera, quebrada Fuisanoy, quebrada Cascajo y la quebrada Samanoy; y en la zona sur de la laguna de La Cocha los ríos: Estero, Guamuéz y Negro, estos relacionados con el trazo de fallas y lineamientos que provocan deflexiones y pueden influenciar en la densidad y el tipo de drenaje (e.g. Gutiérrez & Gutiérrez, 2016).

5.2. Análisis de drenajes

Los patrones de drenaje en el área de estudio consisten principalmente en tipo dendrítico, sub-dendrítico, sub-paralelo, radial, angular y asimétrico (Figura 5). El sector NE de la zona de estudio se caracteriza por el desarrollo de patrones sub-paralelos cuyos segmentos se unen a lo largo de los ríos principales que atraviesan el Valle de Sibundoy: al E se encuentran los ríos Putumayo y San Francisco cuyos segmentos de drenaje largos están en dirección NW-SE. El río Putumayo es de orden 5 de acuerdo con el método de Strahler y presenta una extensión de hasta 40,1 km dentro del área de interés y el río San Francisco, orden 4 y 8,4 km de longitud dentro del área de interés.

En el N de la zona, están representados por las quebradas La Hidra y Cristal cuyos segmentos están en dirección NNE-SSW, y al W por el río San Pedro, cuyos segmentos se muestran paralelos en dirección NW-SE. Estos patrones se desarrollan en rocas metamórficas del Complejo Migmatítico La Cocha Río-Téllez, rocas volcánicas del Neógeno y las formaciones Villeta, Caba-

Figura 3. Análisis morfométrico del Campo Volcánico Monogenético Guamuéz-Sibundoy (CVMGS), con la ubicación de los centros eruptivos delimitados por polígonos rojos. a) Mapa de sombras. b) Mapa de aspectos.

Figura 4. Mapa de pendientes para el Campo Volcánico Monogenético Guamuéz-Sibundoy (CVMGS) de acuerdo con los índices de inclinación de ladera propuestos por Carvajal (2012). Elaborado en ArcGIS a partir del DEM 12.5 m.

Figura 5. Mapa de anomalías de drenajes de la zona objeto de estudio donde se delimita con círculos de color verde las deflexiones y con polígonos de color morado la rectilineidad, además se ubica los centros eruptivos del Campo Volcánico Monogenético Guamuéz-Sibundoy (CVMGS) delimitados con polígonos rojos. Elaborado mediante el uso de los programas SAGA (Sistema para Análisis Geocientíficos Automatizados), QGIS y ArcGIS.

llos, Batolito de Sombrerillos y Saldaña. La quebrada Cristal de orden 2 y una longitud de 3.8 km desemboca en la quebrada La Hidra, de orden 3, la cual presenta una longitud de 8.3 km dentro del área de interés.

Los segmentos que drenan al Valle de Sibundoy están desarrollados en depósitos fluviolacustres y pasan de sub-paralelos a sub-dendríticos en flujos de lava y depósitos volcaniclásticos que cubren la mayor parte del área. Al NW de la zona de estudio se desarrollan principalmente patrones dendríticos, sub-dendríticos, angulares y radiales. En particular, los patrones radiales corresponden con los volcanes Mujundinoy Norte-Mujundinoy Sur y Guayapungo. De la misma manera, se observan redes de drenaje con patrones asimétricos. Estos se desarrollan sobre depósitos volcánicos y en algunos sectores del Complejo Migmatítico La Cocha Río-Téllez al SW de la zona y al SE abarcando parte de la Formación Saldaña.

En la Tabla 2 se presentan las ubicaciones geográficas de corrientes individuales de algunos ríos y quebradas que desarrollan rectilineidad y deflexiones asociadas a un sentido de rumbo, considerando que éstas reflejan características estructurales que se observan como desviaciones locales en patrones de drenajes y corrientes individuales.

Tongitua actitio					
Deflexión	Área	Río/Quebrada	Sentido de Rumbo	Orden Strahler	Longitud (km)
D1	Colón	San Pedro	E-W y NNE-SSW	4	11.3
D2	San Francisco	San Francisco	ENE-WSW, NW-SE y NNE-SSW	4	8.4
D3	San Francisco	San Francisco	NW-SE y NNE-SSW		
D4	Santiago	Tamauca	NW-SE, ENE-WSW y NW-SE	5	10.9
D5	Santiago	Espinayaco	NW-SE, NNE-SSW y NW-SE	5	10.1
D6	Santiago	San Pedro	NW-SE y NNE-SSW	3	11.1
D7	San Andrés	Sinsayaco	Múltiples deflexiones: NW-SE, NE-SW, NNW-SSE y NNE-SSE	3	19.3
D8	San Andrés	Quinchoa	E-W y NNW-SSE	5	13.2
D9	Santa Lucia	Putumayo	NNE-SSW y WNW-ESE	5	20.1
D10	Santa Lucia	Cascajo	NNW-SSE y NE-SW	4	10.3
D11	Santiago	Cascajo	E-W, NNW-SSE y E-W		
D12	Carrisal	Negro	NW-SE y ENE-WSW	3	4.8
D13	Carrisal	Blanca	NE-SW y WNW-ESE	2	4.6
D14	Carrisal	La Chorrera	NNW-SSE y NE-SW	5	6.0
D15	El Encano	Encano	NNW-SSE y WNW-ESE	3	12.1
D16	El Encano	La Cristalina	WNW-ESE y NNW-SSE	2	3.4
D17	Guayapungo	Negro	Múltiples deflexiones: NE-SW, NNW-SSE y NE-SW	3	6.1
D18	Valle Estero	El Laurel	NW-SE y NNE-SSW	2	8.6
D19	Balsayaco	Río Bejenjoy	ENE-WSW y NNE-SSW	2	3.1
D20	Balsayaco	Volcanyaco	NNE-SSW y NW-SE	4	11.6
D21	Balsayaco	Putumayo	NNW-SSE y WNW-ESE	5	19.6
D22	N de la V. Carrisal	Negro	NE-NNW y SW	5	14.5

Tabla 2. Nombres de los ríos o segmentos deflectados y su sentido de rumbo en el área de estudio. Orden Strahler y longitud dentro del área de estudio.

Así, la ocurrencia de la alineación entre los segmentos rectilíneos del río Encano y la quebrada Chaupiyaco en sentido WNW-ESE generan un trazo de rectilineidad considerado como anomalía (Figura 5). El río Encano de orden 3 y una longitud de 12.1 km desemboca en la laguna de La Cocha, mientras que la quebrada Chaupiyaco, en sentido contrario, es de orden 4, longitud de 7.5 km y desemboca en el río Quinchoa de orden 5.

Del mismo modo, el río Negro y la quebrada Fuisanoy drenan en sentidos contrarios, pero siguen la misma dirección NE-SW lo que generan la rectilineidad de las mismas. El río La Chorrera y el río Negro en el sector de la vereda Carrisal siguen su curso de forma paralela y alineadas en sentido NE-SW; el río Cascajo en el sector de Santa Lucia en dirección NNE-SSW; el río Vijinchoy en el sector de Balsayaco en dirección NNE-SSW; y el río Alguacil con rumbo ENE-WSW, cuyas corrientes individuales también desarrollan trazos largos y rectilíneos en la zona.

En la zona NW-SE del área se observan varias deflexiones en las corrientes de los ríos y quebradas, principalmente en los que cruzan por la planicie del Valle de Sibundoy. Hacia el tramo norte, el río San Pedro tiene cambios abruptos en la dirección de flujo, presentando una deflexión hacia el E-W y formando un ángulo recto con el siguiente tramo lineal que sigue su curso hacia el NNE-SSW (D1). El siguiente cambio abrupto se da en la conexión con el río Quinchoa, al NW-SE y luego hacia el NNE-SSW en un tramo relativamente recto (D6). La siguiente deflexión se da en el tramo del río Quinchoa en dirección E-W y NNW-SSE formando un ángulo relativamente recto cuyo segmento continúa siendo lineal hasta desembocar en el río Putumayo (D3). Al extremo Este del Valle de Sibundoy, el río San Francisco presenta un cambio en sentido NW-SE y NNE-SSW (D3) hasta conectarse con el río Putumayo, el cual sigue su curso al ENE-WSW hasta deflectarse en dirección NW-SE y NNE-SSW (D2) que continua su curso al borde de la Formación Saldaña y el Batolito de Mocoa. Por otro lado, al SE de la zona el río Volcanyaco tiene una fuerte deflexión en ángulo recto y junto con el río Bejenjoy siguen la forma de un gancho de flexión. Todas estas características se pueden ver en la Figura 5.

5.3. Análisis de lineamientos

Un total de 1026 lineamientos fueron definidos en el área de estudio (Figura 6, Material suplementario 1). Para el cuadrante NE con 188 datos, los lineamientos tienen una tendencia NNE-SSW, NE-SW, ENE-WSW y NNW-SSE (Figura 6-1). Para el cuadrante NW con 254 datos, los lineamientos muestran una tendencia predominante hacia el NNE-SSW y NE-SW, aunque también otra en dirección NW-SE (Figura 6-2). Para el cuadrante SW con 188 datos, los lineamientos muestran tres tendencias principales: WNW-ESE, ENE-WSW y NNE-SSW (Figura 6-3).

Y para el cuadrante SE con 410 datos, los lineamientos muestran una tendencia principal con orientación NE-SW, y otras con orientaciones NNW-SSE y NNE-SSW (Figura 6-4).

Con base en el análisis realizado, las tendencias encontradas se pueden relacionar con las fallas existentes en la zona. La tendencia general de lineamientos NE-SW estarían relacionados con la falla San Francisco-Yunguillo; sin embargo, para el sector NE Sibundoy, los lineamientos NW-SE estarían relacionados con la falla Sibundoy. La concentración de lineamientos transversales a lo largo del rumbo de las fallas locales se relacionaría con la falla Sibundoy y otras no registradas en la literatura. Estas zonas de falla pueden visualizarse mediante la correlación de lineamientos continuos.

En general, la presencia de diaclasas se extiende a lo largo del flanco SE del Valle de Sibundoy y se desarrollan en rocas clasificadas como andesitas y sienitas, principalmente. En estaciones geográficas (Material suplementario 2) como la Garganta de Balsayaco se reconocen tres familias de diaclasas que siguen las siguientes direcciones: S29W/10SE, S56E/87NE, N68E/67NW; sin embargo, no se observan criterios cinemáticos asociados. Las rocas en afloramiento presentan textura porfirítica, con masa fundamental vítrea y cristales de plagioclasa (30 vol.%), cuarzo (3 vol.%) y anfíbol (2 vol.%).

Hacia el sector SE, existe un alto grado de diaclasamiento que se observa en afloramientos de rocas intermedias en el río Viginchoy, las cuales tienen una familia primaria en dirección S37E/ 41NE y otras familias en dirección S35W/61SE y N76W/64SW. De igual forma, en esta zona puede reconocerse un pliegue por propagación de falla (Figura 7) con dirección S85E/21NE que pone en contacto rocas intermedias con variación en su textura y fracturamiento. La parte superior se compone de rocas porfiríticas con cristales de plagioclasa y tonalidad gris, y la parte inferior de rocas afaníticas fuertemente diaclasadas con orientaciones preferenciales en dirección S77W/86SE y S8E/6NE.

En el sector NW-SW del área de estudio se tuvo una aproximación con algunos de los edificios volcánicos del CVMGS ubicados en el departamento de Nariño. Al norte del volcán Campanero afloran rocas muy alteradas con textura porfirítica en la que las diaclasas tienen las siguientes direcciones: N26W/45NE, N26W/47NE y N53W/30NE, que coinciden con lineamientos en dirección NW-SE.

6. Discusión

6.1. Rasgos morfo-estructurales

A grandes rasgos, se evidencia que parte de la geomorfología de la zona de estudio está controlada por los sistemas de fallas y

Figura 6. Mapa de lineamientos con la ubicación de las estructuras volcánicas del Campo Volcánico Monogenético Guamuéz-Sibundoy (CVMGS) delimitados por polígonos rojos, elaborado en ArcGIS a partir del DEM 12.5 m. Diagramas de rosas con la orientación de los lineamientos generados para los sectores NE, NW, SW y SE de la zona de estudio, elaborados en el programa Estereonet. Información de lineamientos reportada en Material suplementario 1.

fracturas bajo un régimen transtensional. Las múltiples trazas de rumbo asociadas al SFA que se extienden en dirección NE-SW y fallas transversales en dirección NW-SE actúan como limites estructurales de las unidades y subunidades geomorfológicas descritas.

Sector NW: En este sector el relieve hace parte de morfologías menos escarpadas como son las laderas erosivas y laderas erosivas disectadas (Figura 4), sin embargo, a partir del análisis de los resultados obtenidos se reconocen rasgos lineales que están asociados a fracturas, fallas y lineamientos (Figura 6). En este orden de ideas, es posible reconocer el trazo de la falla La Victoria en sentido NE-SW con cinemática dextral que es cortada y desplazada por dos fallas de desplazamiento sinestral transversales en sentido WNW-ESE y NNW-SSE. Finalmente, se reconoce otra falla al norte del poblado de El Encano, la cual corta con desplazamiento sinestral a una falla transversal al Sistema de Fallas de Río Suaza en sentido NE-SW (Figura 8).

Sector NE: A escala local, los límites estructurales del Valle

Figura 7. Afloramiento representativo en campo. a) Pliegue por flexión de falla ubicado en el río Viginchoy; las rocas de la parte inferior no están afectadas por el plegamiento, pero se encuentran diaclasadas, (1° 05'19"N, 76° 59'02"W). b) Dibujo esquemático del afloramiento. c) Variacion textural de las rocas que componen el afloramiento. Información de estaciones de campo reportada en Material suplementario 1.

de Sibundoy están marcados por una zona de fallas de rumbo con tendencia NE-SW y fallas transversales NW-SE (Figura 8). En el flanco E, el relieve montañoso exhibe la mayor evidencia morfológica relacionada con un componente estructural, puesto que la falla San Francisco-Yunguillo que se extiende a lo largo de este flanco es responsable del desarrollo de escarpes faceteados, orientados al NW, con pendientes que alcanzan valores superiores a los 20°. Las facetas inciden en el patrón de drenaje subparalelo donde el flujo de agua drena en dirección de la forma de las mismas (Figura 9A). En los flancos W y N del valle limitados por la falla Colón y Sibundoy, respectivamente, a pesar de que actualmente se clasifican como laderas erosivas disectadas, aún se reconocen lineamientos en dirección NW-SE y NE-SW transversales a los sistemas de fallas mencionados (Figura 8). Finalmente, el Valle de Sibundoy que representa la morfología plana del sector NE de la zona de estudio, tiene influencia de las fallas que limitan sus

flancos como se planteó anteriormente; aquí se incluye además la falla Quinchoa. Estas fallas probablemente son las responsables de las fuertes deflexiones de los canales de drenaje principalmente en los ríos San Francisco, San Pedro y Sinsayaco (Figura 5).

Por otro lado, en el sector conocido como Balsayaco se observa una serie de deslizamientos de roca altamente fracturada y meteorizada que se localizan a 1.65 km del trazo principal de la falla San Francisco-Yunguillo (Figura 8). Estos fenómenos geológicos que están colapsando la superficie del terreno se asocian con la cercanía que tienen con la zona de daño de la falla que incide en la inestabilidad de la zona. Lo anterior combinado con otros procesos erosivos generados por el agua en temporada de lluvia y las altas pendientes dan lugar al desprendimiento de grandes volúmenes de roca.

Sector SW: En esta zona, el control estructural obedece al trazo en dirección NE-SW del Sistema de Fallas de Río Suaza

Figura 8. Mapa geomorfológico donde se presenta la relación de las unidades geomorfológicas con lineamientos propuestos en la zona objeto de estudio. Se incluye principales fallas de la zona de estudio reportadas por el Servicio Geológico Colombiano (2020) y Restrepo *et al.* (2021), las cuales fueron modificadas para este estudio de acuerdo con el DEM 12.5 m.

con cinemática dextral y una falla paralela al mismo (Figura 8) que controla el curso del río Cascajo, puesto que fluye rectilíneo al trazo de falla en dirección NE-SW. De igual forma, se sugiere cinemática dextral dado la deflexión de la quebrada El Laurel. Como respuesta a los procesos estructurales generados por estas fallas, se da la formación de un relieve montañoso alargado que conserva la misma dirección NE-SW de las fallas que limitan sus flancos. El escarpe estructural del flanco W con orientación preferencial al NE está limitado por el Sistema de Fallas de Río Suaza, mientras que el escarpe estructural del flanco E orientado al SE está limitado por una falla paralela al Sistema de Fallas de Río Suaza (Figura 9B). A esta última también se le puede atribuir otros rasgos morfológicos presentes en la vertiente oriental del río Cascajo, como la formación de escarpes faceteados y lomeríos estructurales. De la misma manera, el trazo de la Falla Afiladores al E de la Laguna de la Cocha desarrolla facetas triangulares y lineamientos rectilíneos que van en la disposición de cadenas montañosas alargadas siguiendo una alineación paralela en sentido NW-SE (Figura 9B).

Por otro lado, debido a que las zonas de falla forman fracturas que facilitan el ascenso de intrusiones magmáticas a superficie (Faulds et al., 2015; Piquer et al., 2019; Botero-Gómez et al., 2023), es importante resaltar la interacción entre la existencia de centros eruptivos y el control estructural asociado a su distribución espacial; así, se resalta la existencia de lineamientos de volcanes que pueden reflejar un control sobre la propagación del magma y el control de fallas preexistentes sobre su distribución (Le Corvec et al., 2013, Gómez-Vasconcelos et al., 2020, Grosse et al., 2020). Además, se tienen en cuenta los procesos distensivos que ejerce el SFA en la zona de estudio (Velandia et al., 2005). En este sentido, para el sector SE se evidencian dos alineaciones prominentes: 1) Alineación de los volcanes Victoria, Manoy, Mijoy y Bijinchoy que coinciden con el trazo de una falla dextral con orientación NNW-SSE trasversal al Sistema de Fallas de Río Suaza. Y 2) Alineación de los volcanes Mujundinoy Norte-Mujundinoy Sur, Corota y Bijinchoy que coinciden con el trazo de una falla dextral con orientación E-W trasversal al Sistema de Fallas de Río Suaza. Este control en la

Figura 9. Representación geomorfológica 3D del ambiente morfo-estructural. A) Rasgos morfo-estructurales del sector NE. B) Rasgos morfo-estructurales del sector SW. C) Rasgos morfo-estructurales del sector SE. Diagramas en sistema de coordenadas proyectadas origen Bogota.

alineación de los volcanes y la distribución espacial en general agrupada de los volcanes Guayapungo, Encano y Guamuez, Laurel, Santa Teresita, Fuisanoy y Yaku representan el entorno adecuado para que el magma ascienda a la superficie a través de fallas y fracturas preexistentes que actualmente están cubiertas por depósitos Cuaternarios pero que es posible identificar en la topografía de la zona.

Sector SE: Esta zona representa la parte más elevada con pendientes mayores a 31° y geomorfologías muy escarpadas (Figura 4). En este sector predominan un conjunto de relieves formados por un control estructural que corresponden a escarpes, lomeríos estructurales y espolones estructurales, debido a la presencia de fallas con movimiento de rumbo con tendencia NE-SW paralelas al Sistema de Fallas de Río Suaza (Figura 8). Estas fallas a su vez son las responsables de las deflexiones que presenta el río Putumayo (Figura 5), cuyo análisis permitió definir la cinemática dextral de las mismas. Además, en el área de estudio, el diaclasamiento con tendencia principal NE-SW sugiere la influencia tectónica de estas fallas (Figura 9C). De la misma manera, al SE el trazo del Sistema de Fallas del Río Suaza genera una alta concentración de lineamientos rectilíneos (Figura 6) que influyen en la disposición de las cuencas siguiendo una alineación paralela en sentido NE-SW.

Otros rasgos geomorfológicos que reflejan la influencia estructural en el sector SE es la presencia de ganchos de flexión que afectan depósitos que han sido cartografiados como Formación Saldaña y Batolito de Mocoa por Nuñez (2003), por lo que indicaría actividad tectónica posterior al Jurásico. Se sugiere que el lineamiento en dirección NNE-SSW transversal a la falla San Francisco-Yunguillo se puede interpretar como una falla con cinemática dextral que además controla el curso del río Viginchoy. En este río, en el cual se evidencian pliegues por flexión de falla y un alto grado de diaclasamiento, se resalta la tendencia en sentido NE-SW dado que ésta coincide con la orientación de la falla propuesta. Sin embargo, la tendencia principal va orientada al NW-SE, lo que indicaría que en la zona deben existir lineamientos que estén ejerciendo influencia en este sector con orientación NW-SE y que no se pueden reconocer en la interpretación.

Adicional a esto, el análisis morfo-estructural permite proponer una falla paralela a la falla San Francisco-Yunguillo que define su trazo por el notable lineamiento del río Alguacil en dirección ENE-WSW. Además, se asocia un gancho de flexión y escarpes estructurales a la zona de influencia ejercida por la misma y se le atribuye cinemática dextral pues desplaza a otras fallas longitudinales (Figura 9C). De esta manera, se propone un modelo que integra geomorfología y geología estructural de la zona (Figura 8).

6.2. Fallamiento

La evolución de los diferentes sistemas de drenaje está relacionada con factores como: 1) la resistencia de las rocas a los procesos erosivos, y 2) un control estructural que influye en el comportamiento de los drenajes haciendo que estos sigan la tendencia de fallas o sean desviados por las mismas (Mount, 1954). Teniendo en cuenta esto, en el sector NE (Figura 5) se resaltan las tendencias de los ríos que drenan hacia la planicie del Valle de Sibundoy en donde se encuentran las mayores concentraciones de anomalías en los drenajes de la zona. El cauce del río San Francisco al norte está alineado con el trazo de la falla Quinchoa, sin embargo, es desviado probablemente por el macizo rocoso o por una falla hasta alinearse con el trazo de la falla San-Francisco Yunguillo. De la misma manera, el río San Pedro está controlado por el trazo de la falla Colón en el cual se observan varias anomalías angulares.

En el sector SE del Valle de Sibundoy (Figura 5), la relación de la deflexión abrupta del río Alguacil-Bejenjoy sugiere que la desviación en su trayectoria se debe a la influencia de un gancho de flexión. Del mismo modo, se asocia el trazo del río Putumayo a un control estructural de la zona asociado con la falla San Francisco-Yunguillo que pasa al borde de un escarpe en el que se reconoce el desarrollo de facetas triangulares (Figura 9C). Los segmentos largos lineales de los ríos Cascajo y Vijinchoy fluyen en dirección NNE-SSW, el río Cascajo fluye por el trazo de una falla existente con cinemática dextral y el río Vijinchoy está asociado con un trazo de lineamiento; tanto la falla como el lineamiento están paralelos al Sistema de Fallas de Río Suaza. Al SE de la zona se propone el trazo de tres fallas: una falla transversal a la falla San Francisco-Yunguillo en dirección ENE-WSW, la cual indica una cinemática dextral debido al desplazamiento de las fallas trasversales a la misma en dirección NE-SW, y dos fallas en sentido de rumbo NE-SW paralelas al Sistema de Fallas de Suaza cuya cinemática dextral se deduce de la deflexión del río Putumayo en sentido NNW-SSE-WNW-ESE (Figura 8).

De acuerdo con los lineamientos asociados a la deflexión de los drenajes (Figura 5), se propone también la cinemática de ciertas fallas (Figura 8). De este modo, la rectilineidad de los ríos Encano y Chaupiyaco sugiere la influencia de una zona de falla por la cual el drenaje sigue las fisuras ocasionadas por el evento deformativo; su trazo se propone como una falla con sentido de rumbo WNW-ESE y cinemática sinestral, siendo la responsable del desplazamiento de la falla de La Victoria. Del mismo modo, el trazo lineal del río Negro y la quebrada Faisanas en dirección NE-SW está asociada con un lineamiento acorde al Sistema de Fallas de Río Suaza. Aquí, la deflexión del río Negro en dirección NE-SW, NNW-SSE y NE-SW sugiere la cinemática dextral de las fallas en la zona que influyen tanto en el drenaje como en las geoformas entre las que se destacan lomeríos estructurales.

6.3. Modelo estructural del campo volcánico

Las fallas regionales y su efecto en la deformación frágil, así como en la dirección de lineamientos y zonas de fractura que se destacan en el área de estudio (Figura 6), se comportan como los conductos por los cuales se dio la circulación de magma que contribuyó en la formación del CVMGS. El área donde se da la mayor concentración de volcanes pertenecientes al CVMGS está alineada en paralelo con el trazo del Sistema de Fallas de Río Suaza y la Falla San Francisco-Yunguillo asociadas (Figura 2) regionalmente al Sistema de Fallas Algeciras. Estas fallas longitudinales con desplazamiento de rumbo vertical en dirección NE-SW forman zonas de distensión con expresión neotectónica de los trazos que componen este sistema que influye hacia el sur del país (Velandia *et al.*, 2001) (Figura 10).

Con base en la información generada, se plantean por lo menos siete escenarios para el emplazamiento del vulcanismo

monogenético en el Valle de Sibundoy (Figura 11). Estos escenarios se proponen teniendo en cuenta los registros geomorfológicos actuales y asumiendo actividad sísmica de las fallas implicadas durante el momento del emplazamiento de magma hacia la superficie.

En este mismo sentido, los escenarios favorables como mecanismos para su ascenso se asumen con disponibilidad de magma superficial y fracturamiento profundo. De acuerdo con los registros sísmicos actuales, se tienen sismos con profundidades de hasta 42 km asociados con la subducción. La concentración de estos se da principalmente en el Valle de Sibundoy y se asocia con el trazo de la falla San Francisco Yunguillo y la falla Quinchoa que es uno de los ramales del Sistema de Falla de Río Suaza. Si existiese disponibilidad de magma y una fractura lo suficientemente profunda, el magma podría ascender por medio de alguno de los siguientes mecanismos:

6.3.1. El trazo de una falla paralela a otra

En este escenario (Figura 11A) se incluye al volcán Estero,

Figura 10. Modelo estructural propuesto para el emplazamiento de los volcanes del del Campo Volcánico Monogenético Guamuéz-Sibundoy (CVMGS). y zonas aledañas a la Laguna de La Cocha y el Valle de Sibundoy. Elaborado en ArcGIS a partir del DEM 12.5 m para la zona de estudio.

ya que no se tiene un mecanismo estructural consistente para determinar el origen de este volcán. Sin embargo, este se encuentra espacialmente relacionado con el trazo de una falla paralela al Sistema de Fallas de Río Suaza con dirección NE-SW, por lo que se propone el ascenso de magma a través de fallas preexistentes que actualmente están cubiertas por depósitos Cuaternarios; estas a su vez generan fracturas en profundidad acorde con el campo de esfuerzos al momento de su emplazamiento, las cuales funcionan como alimentadores para la intrusión del material (e.g. Fitz-Alvira, 2022).

6.3.2. Curvatura en las fallas

En este escenario (Figura 11B) se incluyen a los volcanes del CVMGS que están relacionados con el trazo del Sistema de Fallas de Río Suaza (Encano, Guamuéz, Guayapungo, Laurel y Santa Teresita). Esta falla de rumbo con cinemática dextral en dirección NE-SW, presenta curvaturas en su trazo. Así, la liberación de presión permite que se den zonas de acomodación y distención por donde el magma pudo ascender y generar el emplazamiento de los volcanes.

Figura 11. Mecanismos de ascenso de magma asociados con lineamientos y fallas propuestos. a) El trazo de una falla paralela a otra. B) Curvatura de las fallas c) Interacción de por lo menos dos sistemas de fallas. d) La interconexión de por lo menos dos sistemas de fracturas. e) Contrastes litológicos. f) Sintaxis tectónica dilatacional. g) El trazo de un lineamiento paralelo a una falla.

6.3.3. Interacción de por lo menos dos sistemas de fallas

En este escenario (Figura 11C) se incluyen los volcanes Taita Muchivioy-Mama Muchivioy. Teniendo en cuenta que el Valle de Sibundoy es atravesado por dos fallas regionales reconocidas como la falla Colón y San Francisco-Yunguillo, se atribuye la asociación espacial de estos volcanes con la interacción de las mismas, generando concentración de tensiones que fracturan la corteza y permiten el ascenso de magma.

6.3.4. La interconexión de por lo menos dos sistemas de fracturas

En este escenario (Figura 11D) se incluye el volcán Campanero, ya que el sector NW en donde este se encuentra está influenciado por el trazo de fallas longitudinales como el Sistema de Fallas de Río Suaza, un trazo continuo a la falla la Victoria y de lineamientos uno en sentido N-S y el otro en sentido NW-SE. Así, se proponen redes de fracturas suficientes para interactuar y conformar un conducto eficaz para el ascenso de material a través de la liberación de tensión generada en la zona donde se dio el fracturamiento de la corteza.

6.3.5. Contrastes litológicos

En este escenario (Figura 11E) se incluye el volcán Patascoy. Su ubicación es el resultado de un claro contraste entre las lavas y depósitos volcaniclásticos, y el Batolito de Mocoa. El contacto entre estas dos unidades pudo generar zonas de debilidad debido a la diferencia de densidades entre rocas plutónicas y volcánicas que a su vez generaron espacios de acomodación por los cuales el magma alcanzó la superficie.

6.3.6. Sintaxis tectónica dilatacional

En este escenario (Figura 11F) se incluyen los volcanes Victoria, Manoy, Mijoy, Bijinchoy, Mujundinoy Norte-Mujundinoy Sur, y La Corota. La sintaxis tectónica dilatacional consiste en la interacción de fallas con comportamiento transcurrente que se desplazan en sentidos contrarios. De esta manera, en la zona de intersección se puede dar contracción o dilatación dependiendo del movimiento de las fallas. En la zona de estudio se propone que el ascenso del magma se dio a través del proceso de sintaxis tectónica dilatacional teniendo en cuenta los lineamientos propuestos que se asocian espacialmente con la alineación NNW-SSE de los volcanes: Victoria, Manoy, Mijoy y Bijinchoy y alineación E-W de los volcanes: Bijinchoy, Mujundinoy Norte-Mujundinoy Sur, y La Corota.

6.3.7. El trazo de un lineamiento paralelo a una falla

En este escenario (Figura 11G) se incluyen los volcanes Fuisanoy y Yaku. A pesar de ser un área cubierta por lavas de edad Neógena, se pudo evidenciar un lineamiento paralelo al Sistema de Fallas de Río Suaza que se acentúa hacia el NE del Fuisanoy; este probablemente sería el alimentador que permitió la formación de los volcanes Yaku y Fuisanoy. El ambiente húmedo o con saturación de agua en la zona y el contacto de esta misma con zonas de altas temperaturas generadas en profundidad y transmitidas a través del trazo de esta falla dieron paso a erupciones explosivas que modelaron su estructura.

7. Conclusiones

La distribución de los drenajes en la zona de estudio, patrones de drenajes y anomalías están directamente relacionados con el comportamiento reológico y la influencia tectónica del Sistema de Fallas de Algeciras. Así, las fallas Colón, Quinchoa, Sibundoy y San Francisco-Yunguillo se relacionan con la deflexión de los drenajes en el Valle de Sibundoy, mientras que los ganchos de flexión desarrollados en rocas competentes del Batolito de Mocoa modelan el curso de los ríos Bijinchoy y Volcanyaco.

Los procesos de intensa deformación y exhumación en la Cordillera Oriental asociados con el trazo del Sistema de Fallas de Algeciras se manifiestan en las geoformas estructurales desarrolladas a lo largo del piedemonte llanero. En la zona de estudio, estas evidencias fisiográficas corresponden preferencialmente a ganchos de flexión, lomeríos estructurales, espolones y escarpes faceteados que se asocian espacialmente con los trazos de fallas regionales y fallas propuestas en este trabajo.

La zona de estudio presenta lineamientos con tendencias de rumbo NNE-SSW, NE-SW, ENE-WSW, NW-SE, WNW-ESE; estos lineamientos están asociados con las fallas San Francisco-Yunguillo, Sibundoy y el Sistema de Fallas de Río Suaza. La concentración de lineamientos transversales a lo largo del trazo de las fallas locales presentes en el área puede deberse a la existencia de zonas de falla como la falla Sibundoy y otras no registradas en la literatura; estas zonas de falla pueden visualizarse mediante la correlación de lineamientos continuos.

Con los insumos analizados en este trabajo, se destacan fallas regionales que no han sido registradas en la literatura. Su relación con los componentes morfométricos y geomorfológicos en el sector permite nombrarlas y sugerir una cinemática teniendo en cuenta las fallas ya reconocidas. De acuerdo con esto, en el sector se proponen: 1) Fallas longitudinales en dirección NE-SW paralelas al Sistema de Fallas de Río Suaza con componente en rumbo dextral, y 2) Fallas trasversales en dirección ENE-WSW paralelas a la falla San Francisco-Yunguillo con componente en rumbo sinestral.

El modelo estructural del CVMGS está basado en los trazos de fallas regionales con componente en rumbo pertenecientes al Sistema de Fallas de Algeciras y su interacción con trazos de fallas transversales. Estas crean zonas de transtensión y fracturamiento en la corteza terrestre a través de las cuales se da el ascenso de magma que permite el emplazamiento del vulcanismo monogenético del CVMGS. Los principales mecanismos propuestos para el emplazamiento de vulcanismo monogenético en la zona del Valle de Sibundoy son: el trazo de una falla paralela a otra, curvaturas en el trazo de una falla, la interacción de dos sistemas de fallas, la interconexión de dos sistemas de fracturas, contrastes litológicos, sintaxis tectónica dilatacional y el trazo de lineamientos paralelos a una falla.

8. Agradecimientos

Este trabajo se llevó a cabo en el Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, en el marco del proyecto MINCIENCIAS, convocatoria 890: "Vulcanismo en el centro y suroccidente del país: Implicaciones de origen, evolución, amenaza, relación con el desarrollo de suelos volcánicos y potencial geoturístico" otorgado al grupo de investigación "Grupo de Investigación en Estratigrafía y Vulcanología (GIEV) Cumanday" de la Universidad de Caldas.

9. Referencias

- Acocella, V. (2021). Volcano-tectonic processe. Switzerland: Springer.
 Acosta, J., Velandia, F., Osorio, J., Lonergan, L., & Mora, H. (2007).
 Strike-slip deformation within the Colombian Andes. En A. Coward,
 A. C. Ries, R. W. H. Butler, R. H. Graham (Eds.), *Deformation of* the Continental Crust: The Legacy of Mike (pp. 303-319) Geological Society, London, Special Publications, doi: https://doi.org/10.1144/ GSL.SP.2007.272.01.16
- Ahmadi, H., & Pekkan, E. (2021). Fault-based geological lineaments extraction using remote sensing and GIS a review. *Geosciences*, 11(5), 183. doi: <u>https://doi.org/10.3390/geosciences11050183</u>
- Anderson, V. J., Horton, B. K., Saylor, J. E., Mora, A., Tesón, E., Breecker, D. O., & Ketcham, R. A. (2016). Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. *Geosphere*, 12(4), 1235-1256. doi: <u>https://doi.org/10.1130/GES01294.1</u>
- Arango, M.I., Rodríguez, G., Zapata, G., Bermúdez, J.G. (2015). *Catálogo de unidades litoestratigráficas de Colombia: monzogranito de Altamira*. Servicio Geológico Colombiano.

- Servicio Nacional de Geología y Minería (2009) *Atlas de deformaciones cuaternarias de los Andes. Argentina.* Servicio Nacional de Geología y Minería
- Avellán, D. R., Cisneros- Máximo, G., Macías, J. L., Gómez-Vasconcelos, M. G., Layer, P. W., Sosa-Ceballos, G., & Robles-Camacho, J. (2020). Eruptive chronology of monogenetic volcanoes northwestern of Morelia–Insights into Volcano-tectonic interactions in the central- eastern Michoacán-Guanajuato Volcanic Field, México. *Journal of South American Earth Sciences*.100, 102554. doi: https://doi.org/10.1016/j. jsames.2020.102554
- Avellán, D. R., Macías, J. L., Layer, P. W., Cisneros, G., Sánchez-Núñez, J. M., Gómez-Vasconcelos, M. G., Pola, A., Sosa-Ceballos, G., García-Tenorio, F., Reyes Agustín, G., Osorio-Ocampo, S.,García-Sánchez. L., Mendiola, I. F., Marti, J., López-Loera, H., & Benowitz, J. (2019). Geology of the late Pliocene–Pleistocene Acoculco caldera complex, eastern trans-Mexican volcanic belt (México). *Journal of Maps*, 15(2), 8-18. doi: https://doi.org/10.1080/17445647.2018.1531075
- Bierman, P. R., Montgomery, D. R., & Massey, C. A. (2013). Key Concepts in Geomorphology-NSF supports community-based creation of a new style of textbook. In AGU Fall Meeting Abstracts. EE.UU.
- Bonachea-Pico, J. (2006). Desarrollo, aplicación y validación de procedimientos y modelos para la evaluación de amenazas, vulnerabilidad y riesgo debidos a procesos geomorfológicos. [Tesis doctoral]. Universidad de Cantabria, Santander, España.
- Botero-Gómez, L. A. (2022). Control estructural y relación temporal de los volcanes pertenecientes al campo volcánico monogenético Villamaría-Termales, Caldas, Colombia. [Tesis de maestría]. Universidad de Caldas, Manizales, Facultad de Ciencias Exactas y Naturales.
- Botero-Gómez, L. A., & López-Palacio, J. (2023). Estado de la geotermia en Colombia: educación prospectiva y producción. *Energía y geociencias*, ACGGP.35, 32-34.
- Botero-Gómez, L. A., Murcia, H., & Hincapié, G. (2023). The effect of fault systems on volcanic activity: Insights from the subductionrelated, Quaternary Villamaría-Termales monogenetic volcanic field in Colombia. *Journal of Volcanology and Geothermal Research*, 444, 107969. doi: https://doi.org/10.1016/j.jvolgeores.2023.107969
- Botero-Gómez, L. A., Osorio, P., Murcia, H., Borrero, C., & Grajales, J. A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte I): Características morfológicas y relaciones temporales. *Boletín de Geología*. 40(3), 85-102. doi: http://dx.doi.org/10.18273/revbol.v40n3-2018005
- Brenning, A., & Azócar, G. F. (2010). Minería y glaciares rocosos: impactos ambientales, antecedentes políticos y legales, y perspectivas futuras. *Revista de Geografía Norte Grande*, 47,143-158. doi: http://dx.doi.org/10.4067/S0718-34022010000300008
- Burbank, & Pinter. (1999). Landscape evolution: the interactions of tectonics and surface processes. *Basin Research*, 11(1), 1-6. doi: <u>https://</u> doi.org/10.1046/j.1365-2117.1999.00089.x

Burbank, DW & Anderson, RS (2013). Geomorfología tectónica. Geo-

ciencia ambiental e ingeniería, 19(2), 198-200.

- Bustamante, A., Juliani, C., Hall, C. M., & Essene, E. J. (2011). 40Ar/39Ar ages from blueschists of the Jambaló region, Central Cordillera of Colombia: implications on the styles of accretion in the Northern Andes. *Geologica Acta*, 9(3), 351-362. doi: <u>https://doi.org/10.1344/105.000001697</u>
- Bustamante, C., Archanjo, C. J., Cardona, A., & Vervoort, J. D. (2016).
 Late Jurassic to Early Cretaceous plutonism in the Colombian Andes:
 A record of long-term arc maturity. *Bulletin GSA*, 128(11-12), 1762-1779. doi: https://doi.org/10.1130/B31307.1
- Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G., & Vervoort, J. (2010). U-Pb LA-ICP-MS geochronology and regional correlation of Middle Jurassic intrusive rocks from the Garzón Massif, Upper Magdalena Valley and Central Cordillera, southern Colombia. *Boletín de Geología*, 32(2), 93-109.
- Caballero, V., Parra, M., & Mora Bohórquez, A.R. (2010). Levantamiento de la Cordillera Oriental de Colombia durante el Eoceno tardío-Oligoceno temprano: proveniencia sedimentaria en el Sinclinal de Nuevo Mundo, cuenca Valle Medio del Magdalena. *Boletín de* geología, 32(1), 45-77.
- Carvajal, J. H. (2012). Propuesta de estandarización de la cartografía geomorfológica en Colombia. Bogotá. Servicio Geológico Colombiano
- Castro, J. S. (2021). As condições de cristalização dos vulcões Amazonas, Sancancio e Lusitania do Campo Vulcânico Monogenético Villamaría--Termales, em Manizales, Colômbia. [Tesis de pregrado]. Universidade Federal do Rio de Janeiro, Instituto de Geociências.
- Cavell, D. E. (2020). Petrogenesis of Colombian Arc Volcanoes: A Regional Study. [Tesis de doctorado]. Department of Earth Sciences, The University of Birmingham, England. <u>https://etheses.bham.ac.uk/id/</u> eprint/11070/
- Cediel, F., & Shaw, R. P. (2019). Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction. Springer International Publishing. Switzerland. <u>https://link.springer.com/</u> book/10.1007/978-3-319-76132-9
- Cengiz, O., Sener, E., & Yagmurlu, F. (2006). A satellite image approach to the study of lineaments, circular structures and regional geology in the Golcuk Crater district and its environs (Isparta, SW Turkey). *Journal of Asian Earth Sciences*, 27(2), 155-163. doi: https://doi.org/10.1016/j.jseaes.2005.02.005
- Charlton, R. (2007). *Fundamentals of fluvial geomorphology*. Routledge. London.
- Chicangana-Montón, G., Bocanegra-Gómez, A., Pardo-Mayorga, J., Salcedo-Hurtado, E. D. J., Gómez-Capera, A., & Vargas-Jiménez, C. A. (2022). Sismicidad y sismotectónica para el sector norte del ámbito del Sistema de Fallas de Algeciras, Cordillera Oriental, Colombia. *Boletín de Geología*, 44(1), 111-134. doi: <u>https://doi.org/10.18273/revbol.</u> <u>v44n1-2022005</u>
- Cline, K. M., Page, W. D., Gilliam, M. L., Cluff, L. S., Arias, L. A., Benalcázar, L. G., & López, J. H. (1981). Quaternary activity on the Romeral

and Cauca Faults, northwest Colombia. Revista CIAF, 6(1-3), 115-116.

- Cooper, M. A., Addison, F. T., Álvarez, R., Coral, M., Graham, R. H., Hayward, A.B., Howe, S., Martínez, J., Naar, J., Peñas, R., Pulham, A.J & Taborda, A. (1995). Desarrollo de cuencas e historia tectónica de la cuenca de los Llanos, Cordillera Oriental y Valle Medio del Magdalena, Colombia. *Boletín AAPG*, 79(10). 1421-1442.
- Cortés, M., Colletta, B. y Angelier, J. (2006). Estructura y tectónica del segmento central de la Cordillera Oriental de Colombia. *Revista de Ciencias de la Tierra Sudamericana*, 21(4), 437-465.
- Dar, R. A., Chandra, R., & Romshoo, S. A. (2013). Morphotectonic and lithostratigraphic analysis of intermontane Karewa basin of Kashmir Himalayas, India. *Journal of mountain science*, 10, 1-15. doi: <u>https:// doi.org/10.1007/s11629-013-2494-y</u>
- Diederix, H., Bohórquez, O. P., Mora-Páez, H., Peláez, J. R., Cardona, L., Corchuelo., Ramírez, J & Díaz-Mila, F. (2020). The Algeciras Fault System of the Upper Magdalena Valley, Huila Department. *The geology of Colombia*, 4, 423-452. doi: <u>https://doi.org/10.32685/pub.</u> esp.38.2019.12
- Duque-Caro, H. (1990). The Choco Block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. *Journal of South American Earth Sciences*, 3(1), 71-84. doi: https://doi.org/10.1016/0895-9811(90)90019-W
- Duraiswami, R. A., Bondre, N. R., Dole, G., Phadnis, V. M., & Kale, V. S. (2001). Tumuli and associated features from the western Deccan Volcanic Province, India. *Bulletin of Volcanology*, 63, 435-442. doi: https://doi.org/10.1007/s004450100160
- Einsele, G. (1992). *Sedimentary Basins; Evolution, Facies and Sediment Budget*. Springer-Verlag. Berlin.
- Farangitakis, GP, McCaffrey, KJ, Willingshofer, E., Allen, MB, Kalnins, LM, van Hunen, J & Sokoutis, D. (2021). La evolución estructural de las cuencas separables en respuesta a cambios en el movimiento de las placas. *Investigación de cuencas*, 33(2),1603-1625.
- Faulds, J., & Hinz, N. (2015). Favorable tectonic and structural settings of geothermal systems in the Great Basin region, western USA: Proxies for discovering blind geothermal systems. [Presentación de paper].
 World Geothermal Congress, Melbourne, Australia. <u>https://www. osti.gov/biblio/1724082</u>
- Fitz Alvira, N. (2022). Geología y análisis vulcano-tectónico del vulcanismo monogenético al sur del graben de Penjamillo, Michoacán (México). [Tesis de maestría] Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.
- Flórez, A. (2003). Colombia: evolución de sus relieves y modelados. Universidad Nacional de Colombia. Red de Estudio de Espacio y Territorio, RET. Bogotá.
- Fossen, H. (2016). *Structural geology*. (2a ed). Cambridge university press. England.
- García-Chinchilla, D. A., & Vlach, S. R. F. (2019). Geological mapping of intrusive rocks: a case study in the Garzón region, the Eastern Cordil-

lera of the Colombian Andes. Geología USP. *Serie Científica*, 19(4), 43-62. doi: 10.11606/issn.2316-9095.v19-158365

- Gómez-Hurtado, E., Aguirre-Hoyos, L. M., Diederix, H., Audemard M., F. A., Mora-Páez, H., Bohórquez-Orozco, O. P., Muñoz, O. F., González, D. A., López-Isaza, J. A., Escobar-Rey, L. K., Martínez-Díaz, G. P., Ramírez-Cadena, J., Idárraga-García, J., López-Herrera, N. R., Barragán, W., Tique, Y. P., Fonseca, H. A., Jiménez, J. A., & Plazas-Ruiz, J. M. (2022). *Neotectónica y paleosismología de la Falla de Algeciras, Huila, Colombia.* Servicio Geológico Colombiano.
- Gómez-Vasconcelos, M. G., Macías, J. L., Avellán, D. R., Sosa-Ceballos, G., Garduño-Monroy, V. H., Cisneros-Máximo, G., Layer, P. W., Benowitz, J., López-Loera, H., López, F. M., & Perton, M. (2020). The control of preexisting faults on the distribution, morphology, and volume of monogenetic volcanism in the Michoacán-Guanajuato Volcanic Field. *Bulletin GSA*, 132(11-12), 2455-2474. doi: https://doi.org/10.1130/B35397.1
- Gómez-Vasconcelos, M. G., Macías, J. L., Avellán, D. R., Sosa-Ceballos, G., & Garduño-Monroy, V. H. (2021). *Tectonic control on monogenetic volcanism in the Michoacán-Guanajuato Volcanic Field*, *México* [Sesión de asamblea]. 2021 European Geosciences, Union Göttingen Germany.
- Goudie, A. (2004). *Encyclopedia of geomorphology* (vol. 2). New York. Psychology Press.
- Grajales, J. A., Nieto-Samaniego, Á. F., Barrero-Lozano, D., Osorio, J. A., & Cuellar, M. A. (2020). Emplazamiento del magmatismo Paleoceno-Eoceno bajo un régimen transtensional y su evolución a un equilibrio dinámico en el borde occidental de Colombia. *Revista Mexicana de Ciencias Geológicas*, 37(3), 250-268. doi: http://dx.doi.org/10.22201/ cgeo.20072902e.2020.3.1570
- Grosse, P., Ramacciotti, M. L. O., Fochi, F. E., Guzmán, S., Orihashi, Y., & Sumino, H. (2020). Geomorphology, morphometry, spatial distribution and ages of mafic monogenetic volcances of the Peinado and Incahuasi fields, southernmost Central Volcanic Zone of the Andes. *Journal of Volcanology and Geothermal Research*, 401, 106966. doi: https://doi.org/10.1016/j.jvolgeores.2020.106966
- Gutiérrez, F., & Gutiérrez, M. (2016). Landforms of the earth: an illustrated guide. Springer.
- Harff, J., Meschede, M., Petersen, S., Thiede, J. (2016). *Encyclopedia* of Marine Geosciences. Springer Dordrecht.
- Helmens, K. F., & Van der Hammen, T. (1995). Memoria explicativa para los mapas del Neogeno-Cuaternario de la Sabana de Bogota-Cuenca alta del Rio Bogotá (Cordillera Oriental, Colombia). Análisis Geográficos, 24, 91-142.
- Hobbs, W. H. (1904). Lineaments of the Atlantic border region. *Bulletin* of the Geological Society of America, 15(1), 483-506. doi: https://doi. org/10.1130/GSAB-15-483
- Howard, A. D. (1967). Drainage analysis in geologic interpretation: a summation. AAPG bulletin, 51(11), 2246-2259. doi: https://doi. org/10.1306/5D25C26D-16C1-11D7-8645000102C1865D

- Huggett, R., & Shuttleworth, E. (2022). *Fundamentals of geomorphology*. Taylor & Francis.
- Irving, E. M. (1971). La evolución estructural de los Andes más septentrionales de Colombia. *Boletín geológico*, 19(2), 1-90. doi: https://doi. org/10.32685/0120-1425/bolgeol19.2.1971.395
- Kearey, P. (2009). *The Encyclopedia of the solid earth sciences*. John Wiley & Sons.
- Keller, E. A., & Pinter, N. (1996). Active tectonics: Earthquakes Uplift and Landscapes. Prentice Hall.
- Kereszturi, G. & Németh, K. (2012). Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. En A.
 K. Németh. (Ed.), Updates in Volcanology-New Advances in Understanding Volcanic Systems, inTech Open: Rijeka, Croatia. (pp. 3-88). Book metrics overview.
- Latrubesse, E. M. (2015). Large rivers, megafans and other Quaternary avulsive fluvial systems: A potential "who's who" in the geological record. *Earth-Science Reviews*, 146, 1-30. doi: <u>https://doi.org/10.1016/j.</u> earscirev.2015.03.004
- Le Corvec, N., Spörli, K. B., Rowland, J., & Lindsay, J. (2013). Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. *Earth-Science Reviews*, 124, 96-114. doi: https://doi.org/10.1016/j.earscirev.2013.05.005
- Liotta, D., Brogi, A., Wheeler, W. H., Bastensen, E., Garduño-Monroy, V. H., Macias, J. L., Sosa-Ceballos, G., Pola, A., Avellán, D. R., Bianco, C., Olvera-García, E., Gómez-Alvarez, F., Israde-Alcantara, I., Jiménez-Haro, A., Luigi Piccardi, L., & Zucchi, M. (2023). Tectonicmagmatic-hydrothermal interactions in a hot dry rock geothermal system: The role of the transfer and normal faults in the Acoculco caldera (Mexico). *Journal of Volcanology and Geothermal Research*, 444, 107963. doi: https://doi.org/10.1016/j.jvolgeores.2023.107963
- Martínez Martínez, J. A. (2021). Marco Jurídico sobre la generación de Energía Geotérmica en Colombia. Tesis de pregrado, Facultad de Ciencias Jurídicas, Programa de derecho. Pontifica Universidad Javeriana, Bogotá. https://repository.javeriana.edu.co/handle/10554/56109
- McCourt, W. J., Aspden, J. A., & Brook, M. (1984). New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. *Journal of the Geological Society*, 141(5), 831-845. doi: https://doi.org/10.1144/gsjgs.141.5.0831
- Mon, R. (2005). Control tectónico de la red de drenaje de los Andes del norte argentino. *Revista de la Asociación Geológica Argentina*, 60(3), 461-466.
- Monsalve-Bustamante, M. L., Tapias, J. G., & Nuñez-Tello, A. (2020).
 Rear–Arc Small–Volume Basaltic Volcanism in Colombia: Monogenetic Volcanic Fields. En C. C. Gómez Tapias, J.; Mateus Zavala, D.; Pinilla Pachon, A.; et. al (Eds.), *The Geology of Colombia* (pp. 353-396). Servicio Geológico Colombiano.
- Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin.

Earth-Science Reviews, 198, 102903. doi: https://doi.org/10.1016/j. earscirev.2019.102903

Moody, J. D., & Hill, M. J. (1956). Wrench-fault tectonics. *Geological Society of America Bulletin*, 67(9), 1207-1246. doi: https://doi.org/10.1130/0016-7606(1956)67[1207:WT]2.0.CO;2

- Mount, J. F. (1954). *California rivers and streams: The conflict between fluvial process and land use.* University of California Press.
- Murcia, A., & Cepeda, H. (1991). Memoria explicativa: Geología de la plancha 429–Pasto. Escala 1:100.000. Ingeominas, Bogotá.
- Murcia, A., & Pichler, H. (1986). Geoquímica y dataciones radiométricas de las ignimbritas cenozoicas del SW de Colombia. [Presentación de paper]. Memorias del Simposio Internacional sobre Neotectónica y Riesgo Volcánicos, Bogota.

Murcia, H., Borrero, C., & Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes' volcanic province. *Journal of Volcanology and Geothermal Research*, 383, 77-87. doi: <u>https://doi.org/10.1016/j.jvolgeores.2018.06.013</u>

Nichols, G. (2009). *Sedimentology and stratigraphy*. John Wiley & Sons. Niemeyer, H. (1999). *Apuntes de geologia estructural*. Antofagasta, Chile.

- Núñez, A. (2003). Reconocimiento Geológico Regional de las Planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyaco Departamentos de Caquetá, Cauca, Huila, Nariño y Putumayo. Escala 1:100.000. Memoria explicativa. Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS), Bogotá.
- Ortiz, W. C. (1970). La Cocha: Un Lago Andino en el Sur de Colombia. Boletin de la Sociedad Geográfica de Colombia, 17(101), 1-13.
- Papadaki, E. S., Mertikas, S. P., & Sarris, A. (2011). Identification of lineaments with possible structural origin using ASTER images and DEM derived products in Western Crete, Greece. *EARSeL eProceedings*, 10(1), 9-26
- París, G., & Romero, J. A. (1994). Fallas activas en Colombia. *Boletín geológico*, 34(2-3), 4-25. doi: https://doi.org/10.32685/0120-1425/ bolgeol34.2-3.1994.347
- Pérez-Peña, JV, Azañón, JM, & Delgado, J. (2004). Metodología para el análisis de redes de drenaje mediante índices geomorfológicos y su relación con la tectónica activa. *Geotemas*, 6, 259-262.
- Piquer, J., Yáñez, G., Rivera, O., & Cooke, D. R. (2019). Long-lived crustal damage zones associated with fault intersections in the high Andes of Central Chile. *Andean Geology*, 46(2), 223-239. doi: <u>https:// doi.org/10.5027/andgeoV46n2-3106</u>
- Pubellier, M., Deffontaines, B., Quebral, R., & Rangin, C. (1994). Drainage network analysis and tectonics of Mindanao, southern Philippines. *Geomorphology*, 9(4), 325-342. doi: <u>https://doi.org/10.1016/0169-555X(94)90053-1</u>
- Restrepo, M., Bustamante, C., Cardona, A., Beltran-Trivino, A., Bustamante, A., Chavarria, L., & Valencia, V. A. (2021). Tectonic implications of the jurassic magmatism and the metamorphic record at the

southern Colombian Andes. *Journal of South American Earth Sciences*, 111, 103439. doi: https://doi.org/10.1016/j.jsames.2021.103439

- Restrepo-Moreno, S. A., Foster, D. A., Bernet, M., Min, K., & Noriega, S. (2019). Morphotectonic and orogenic development of the Northern Andes of Colombia: A low-temperature thermochronology perspective. En A. Cediel, F., Shaw, R.P. (Eds.), *Geology and Tectonics of Northwestern South America:* (pp. 749-832). Frontiers in Earth Sciences. Springer, Cham. doi: https://doi.org/10.1007/978-3-319-76132-9_11
- Richards, JP (2000). Lineaments revisited. Society of Economic Geologists Newslette, 42(1), 14-20. doi: <u>https://doi.org/10.5382/SEG-news.2000-42.fea</u>
- Rivera Lara, V. (2021). Estudio morfométrico y geomorfológico del campo volcánico mono genético Guamuez – Sibundoy, Colombia. [Tesis de pregrado], Programa de geología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales.
- Robertson, K., Flórez, A., & Ceballos, J. L. (2002). Geomorfología volcánica, actividad reciente y clasificación en Colombia. *Cuadernos de Geografía, Revista Colombiana de Geografía*, 11(1-2), 37-76.
- Rodríguez Ospina, G., Alfaro Valero, C., & González Idárraga, C. E. (2019). *Geotermia en Colombia*. Libros del Servicio Geológico Colombiano.
- Rodríguez, G., & González, H. (2004). Características geoquímicas y marco tectónico de los basaltos alcalinos del sur de Colombia. *Boletín de Ciencias de la Tierra*, (16), 9-22.
- Rodríguez-González, A., & Fernandez-Turiel, J. L. (2015). Las geoformas volcánicas y su modelado morfométrico con Sistemas de Información Geográfica (SIG). *Enseñanza de las Ciencias de la Tierra*, 23(1), 40-48.
- Salazar-Muñoz, N., de la Ossa, C. A. R., Murcia, H., Schonwalder-Ángel, D., Botero-Gómez, L. A., Hincapié, G., Dasilva, J. C., & Sánchez-Torres, L. (2021). Andesitic (SiO2: ~ 60 wt%) monogenetic volcanism in the northern Colombian Andes: Crystallisation history of three Quaternary volcanoes. *Journal of Volcanology and Geothermal Research*, 412, 107194. doi: https://doi.org/10.1016/j.jvolgeores.2021.107194
- Sánchez Torres, L., Murcia, H., & Schonwalder Ángel, D. (2022). The northernmost volcanoes in South America (5–6° N): the potentially active Samaná Monogenetic Volcanic Field. *Frontiers in Earth Science*, 10, 880003. doi: https://doi.org/10.3389/feart.2022.880003
- Sánchez-Torres, L., Toro, A., Murcia, H., Borrero, C., Delgado, R., & Gómez-Arango, J. (2019). El Escondido tuff cone (38 ka): a hidden history of monogenetic eruptions in the northernmost volcanic chain in the Colombian Andes. *Bulletin of Volcanology*, 81(12), 1-14. doi: https://doi.org/10.1007/s00445-019-1337-2
- Sarhan, M. A. (2017). Wrench tectonics of Abu Gharadig Basin, Western Desert, Egypt: a structural analysis for hydrocarbon prospects. *Arabian Journal of Geosciences*, 10, 1-14. doi: <u>https://doi.org/10.1007/</u> s12517-017-3176-9

Scheidegger, A. E. (2003). Morphotectonics. Springer, Berlin.

Sevilla Caicedo, S. P. (2013). Análisis SIG para el modelamiento de movimientos de ladera usando software libre en el tramo el Tiro Río Sabanilla de la vía Loja Zamora. [Tesis de pregrado], Universidad Técnica Particular de Loja, Loja, Ecuador.

- Sharma, V. K. (2010). *Introduction to process geomorphology. CRC Press.* Taylor & Francis group, Boca Raton.
- Solano-Acosta, J.D.; Despaigne Diaz, A.I.; Pearse, J. (2020). Morphotectonic analysis of the upper guajira, Colombia. a gis and remote sensing approach. 2020100476. doi: <u>https://doi.org/10.20944/preprints202010.0476.v1</u>
- Soliman, A., & Han, L. (2019). Effects of vertical accuracy of digital elevation model (DEM) data on automatic lineaments extraction from shaded DEM. Advances in space research, 64(3), 603-622. doi: <u>https:// doi.org/10.1016/j.asr.2019.05.009</u>
- Soulas, J.P., Egüez, A., Yepes, H., & Pérez, V.H. (1991). Tectónica activa y riesgo sísmico en Los Andes Ecuatorianos y el extremo sur de Colombia. *Boletín de Geologia Ecuatoriano*, 2(1), 3-11.
- Suarez, A. F. (1990). The basement of the Eastern Cordillera, Colombia: An allochthonous terrane in northwestern South America. *Journal of South American Earth Sciences*, 3(2-3), 141-151. doi: <u>https://doi.org/10.1016/0895-9811(90)90026-W</u>
- Taboada, A., Dimaté, C. y Fuenzalida, A. (1998). Sismotectónica de Colombia: deformación continental activa y subducción. *Física de la Tierra*, 10. 111-147.
- Terrones Mendoza, D. J. (2023). Caracterización Geomorfológica del Distrito de Magdalena, Caserío La Viña y Huaquillas. [Tesis de pregrado]. Facultad de ingeniería. Universidad Nacional de Cajamarca. Perú. http://hdl.handle.net/20.500.14074/5586
- Thouret, J. C. (1999). Volcanic geomorphology an overview. *Earth-science reviews*, 47(1-2), 95-131. doi: https://doi.org/10.1016/S0012-8252(99)00014-8
- Toro-Toro, L. M., Vallejo, F., Salazar-Ríos, A., Murcia, H., Osorio-Ocampo, S., García-Arias, M., & Arredondo, C. (2020). Granulitic rocks at the Western Cordillera of Colombia: Evidence of metamorphism in the Colombian Caribbean Oceanic Plateau. *Journal of South American Earth Sciences*, 101, 102632. doi: https://doi.org/10.1016/j. jsames.2020.102632
- Torres Gonzalez, D. E. (2018). Caracterización de las estructuras asociadas a sistemas de fallas tipo" strike slip" y su implicancia geológica-petrolera. La cuenca Mio-oligocena de Tincopalca, sistema de fallas Condoroma-Caylloma en el sur del Perú. [Sesión de conferencia].2018. IX Seminario Internacional de Exploración, Explotación, Procesamiento y Transporte de Hidrocarburos, Lima,

- Toussaint, J. F., & Restrepo, J. J. (1994). The Colombian Andes during cretaceous times. *Cretaceous tectonics of the Andes*. 61-100. doi: https://doi.org/10.1007/978-3-322-85472-8_2
- Udias, A., & Buforn, E. (2017). *Principles of seismology*. Cambridge University Press. New York.
- Vargas-Arcila, L., Murcia, H., Osorio-Ocampo, S., Sánchez-Torres, L., Botero-Gómez, L. A., & Bolaños, G. (2023). Effusive and evolved monogenetic volcanoes: two newly identified (~ 800 ka) cases near Manizales City, Colombia. *Bulletin of Volcanology*, 85(7), 42. doi: https://doi.org/10.1007/s00445-023-01655-y
- Velandia, F., Acosta, J., Terraza, R., & Villegas, H. (2005). The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. *Tectonophysics*, 399(1-4). 313-329. doi: <u>https://doi.org/10.1016/j.tecto.2004.12.028</u>
- Velandia, F., Terraza, R., & Villegas, H. (2001). *El Sistema de Fallas Algeciras hacia el Suroeste de Colombia y la actual transpresión de Los Andes del Norte.* [Sesión de conferencia].2001 VIII Congreso Colombiano de Geología
- Velandia, J., Murcia, H., Németh, K., & Borrero, C. (2021). Uncommon mafic rocks (MgO> 10 wt.%) in the northernmost Andean volcanic chain (4° 25 "N): Implications for magma source and evolution. *Journal of South American Earth Sciences*, 110. 103308. doi: <u>https://doi.org/10.1016/j.jsames.2021.103308</u>
- Vergara, H. (1996). Rasgos y actividad neotectónica de la Falla de Algeciras. In Memorias VII Congreso Colombiano de Geologia, 1. 491-500.
- Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W & Beltrán, A. (2011). Geocronología, geoquímica y evolución tectónica de las cordilleras Occidental y Central de Colombia. *Litos*, 125 (3-4). 875-896.
- Woodward, JC, Macklin, MG, Krom, MD, Williams, MA y Gupta, A. (2007). The Nile: Evolution, Quaternary Environments and Material Fluxes. En A. Gupta, A. (Ed.) *Large Rivers: Geomorphology and Management*, (pp. 261-289). John Wiley & Sons.
- Zapata-García, G., Rodríguez García, G., & Mejía, MIA (2017). Petrografía, geoquímica y geocronología de rocas metamórficas aflorantes en San Francisco Putumayo y la vía Palermo-San Luis asociadas a los complejos La Cocha-Río Téllez y Aleluya. *Boletín de Ciencias de la Tierra*, (41). 47-64.
- Zingaretti, V. (2023). Evolución geomorfológica del río Blanco Este tras las recientes erupciones del volcán Calbuco, Chile. [Tesis de maestría]. Facultad de Ciencias forestales y recursos naturales, Universidad Austral de Chile, Valdivia.

10. Anexo 1

Tabla de valores de azimut de los lineamientos por sectores.

X0	Y0	X1	¥1	LONGITUD	C1	C2	C3	C4	AZIMUT
669992.6713	612493.8007	670393.7247	612878.1435	555.4847446	1.043478262	0.80667155	46.21887525	46.21887525	46.2
668889.7743	614265.12	669675.1706	614499.0678	819.4992069	3.357142859	1.281292655	73.41266145	73.41266145	73.4
669825.5657	608199.1868	670393.7247	608199.1868	568.1590311	0	0	0	0	180.0
668438.5892	606862.342	669574.9073	606945.8948	1139.385715	13.60000011	1.497399001	85.79464303	85.79464303	85.8
669975.9607	607330.2377	669574.9073	606945.8948	555.4847446	1.043478262	0.80667155	46.21887525	46.21887525	226.2
670527.4092	613646.8293	670527.4092	613061.9597	584.8695908	0	0	0	0	180.0
655297.9621	611053.6289	655784.7964	611434.6297	618.1983687	1.277777778	0.906750164	51.95295747	51.95295747	52.0
653752.7923	611392.2963	654387.7936	611625.1301	676.3417708	2.727272727	1.219351533	69.86369657	69.86369657	69.9
652821.4571	611349.9628	653519.9585	611117.129	736.2851211	-3	-1.249045772	-71.56505118	71.56505118	108.4
652884.9572	605571.4513	653414.125	605021.1169	763.4700193	-0.961538462	-0.765792833	-43.87669729	43.87669729	136.1
654387.7936	611349.9628	653519.9585	611117.129	898.5261738	3.727272727	1.308676486	74.98163937	74.98163937	255.0
653308.2914	613784.1344	653879.7926	614143.9684	675.3473937	1.588235294	1.008874765	57.80426607	57.80426607	57.8
654387.7936	614101.635	655128.6284	614482.6358	833.0653058	1.944444444	1.095785571	62.78388844	62.78388844	62.8
655433.5806	613334.5106	656343.7491	613313.3439	910.4145783	-43	-1.547544704	-88.66778015	88.66778015	91.3
653519.9585	613064.4663	654049.1262	613530.1339	704.8863689	1.136363636	0.849141476	48.65222278	48.65222278	48.7
655594.296	614355.6355	656398.6309	614376.8022	804.6134031	38	1.54448661	88.49256424	88.49256424	88.5
669966.4914	601512.7348	670553.8676	601814.3604	660.294461	1.947368424	1.096396445	62.81888894	62.81888894	62.8
671141.2438	615276.3874	671045.9936	614117.51	1162.78512	0.082191781	0.082007446	4.698680545	4.698680545	184.7
671220.6189	613736.5093	671490.4945	614117.51	466.8986909	0.708333331	0.616296936	35.31121336	35.31121336	35.3
666648.6098	610228.1273	667077.2356	609751.8763	640.7301267	-0.8999999999	-0.732815101	-41.98721245	41.98721245	138.0
668077.3626	605068.7419	669156.8648	605179.8672	1085.206767	9.714285736	1.468216475	84.12260741	84.12260741	84.1
670776.118	608180.2482	671331.7441	608180.2482	555.6261113	0	0	0	0	180.0
668006.6341	602656.9436	668828.0717	602539.5954	829.7773251	-6.999999983	-1.428899272	-81.86989763	81.86989763	98.1
666984.028	603143.1006	667604.2973	602556.3594	853.8144619	-1.057142855	-0.813168799	-46.59114022	46.59114022	133.4
671309.1487	614173.8347	670527.4092	613646.8293	942.7890983	1.483361485	0.977634607	56.01433689	56.01433689	236.0
670135.6663	609278.7369	670621.8233	608792.5799	687.5297837	-1	-0.785398163	-45	45	135.0
670655.3514	606998.8283	671145.6999	607146.4215	512.0795359	3.322296861	1.278425488	73.24838487	73.24838487	73.2
667436.6569	609345.793	667077.2356	609751.8763	542.2981918	-0.88509252	-0.724517608	-41.51180115	41.51180115	318.5
670527.4092	613061.9597	670393.7247	612878.1435	227.2881854	0.727272728	0.628796287	36.02737342	36.02737342	216.0
670769.3023	608675.7079	671356.6785	608628.0828	589.303759	-12.3333334	-1.489892228	-85.3645366	85.3645366	94.6
654402.1446	611088.7127	655297.9621	611053.6289	896.5042069	-25.53363511	-1.531652304	-87.7572127	87.7572127	92.2
655297.9621	611053.6289	655449.8967	610580.7117	496.7240764	-0.321271122	-0.310855568	-17.81071209	17.81071209	162.2
654550.8084	612374.534	655288.9974	612049.0959	806.7421861	-2.268292684	-1.155568991	-66.20922614	66.20922614	113.8
667952.3163	601393.5431	669078.5493	601806.4952	1215.503159	2.727272724	1.219351532	69.86369655	69.86369655	69.9
668227.6177	601681.3582	669003.4671	601919.1185	825.593744	3.263157896	1.273431182	72.96223221	72.96223221	73.0
667138.9259	603683.5502	671305.9879	604334.2626	4419.778709	6.403846151	1.415891193	81.12458963	81.12458963	81.1
668803.2479	605372.8996	669466.474	605347.8722	663.6981336	-26.50000054	-1.533078375	-87.83892056	87.83892056	92.2
669741.7754	608288.5917	670267.3508	608413.7287	540.2673023	4.20000021	1.337053147	76.60750231	76.60750231	76.6
670505.1111	609439.852	670842.981	609101.9822	477.8201852	-1	-0.785398163	-45	45	135.0
670680.3029	612906.1469	671431.1249	612881.1195	751.2389922	-29.9999994	-1.53747533	-88.09084753	88.09084753	91.9
670505.1111	612793.5236	670943.0906	612718.4414	444.3685083	-5.833333291	-1.401018052	-80.27242138	80.27242138	99.7
671118.2824	612405.5989	670429.1414	612638.7239	798.9132141	-2.956100459	-1.244597261	-71.31017025	71.31017025	288.7
670855.4947	611867.5098	670017.0768	611955.1057	850.1987174	-9.571428596	-1.466696389	-84.03551291	84.03551291	276.0
665837.5011	610928.9823	666100.2888	610103.0781	883.2841686	-0.318181817	-0.30805278	-17.65012418	17.65012418	162.3

669391.3918	611679.8043	670041.073	610515.013	1495.803125	-0.557766159	-0.508786154	-29.15129928	29.15129928	150.8
655513.6988	612005.1605	653599.1027	613744.5648	2718.650085	-1.100719424	-0.833306681	-47.74495589	47.74495589	312.3
655926.6509	609840.2904	655449.8967	610580.7117	942.7212149	-0.643895851	-0.572072103	-32.77731708	32.77731708	327.2
652973.4178	607224.9272	654425.0069	606361.4819	1765.194174	-1.681159421	-1.034188752	-59.25465072	59.25465072	120.7
653411.3972	606849.5162	653911.9452	606011.0983	976.4695779	-0.597014926	-0.538221702	-30.83783195	30.83783195	149.2
653286.2602	614495.3867	653211.178	613907.2429	592.9170006	0.127659574	0.126972789	7.275004913	7.275004913	187.3
653236.2054	613807.1333	653086.0411	613256.5305	570.7125171	0.272727271	0.266252047	15.25511861	15.25511861	195.3
654237.3014	614620.5237	653879.7926	614143.9684	595.7495746	0.750193845	0.643625158	36.87700514	36.87700514	216.9
653849.3767	614507.9004	653636.6438	614170.0306	399.2635089	0.629629631	0.561921563	32.19573398	32.19573398	212.2
653461.452	609990.4548	653811.8356	610491.0028	610.9966876	0.7	0.610725964	34.9920202	34.9920202	35.0
654362.4384	610090.5644	654212.274	609452.3657	655.6271122	0.235294118	0.231090667	13.24051992	13.24051992	193.2
653811.8356	610015.4822	653949.4863	609477.3931	555.4165844	-0.255813953	-0.250443089	-14.34933202	14.34933202	165.7
669103 5767	610566 085	669178 6589	609952,9137	617,7510537	-0 122448981	-0.121842438	-6.981057461	6 981057461	173.0
669466 474	606987 1669	668665 5972	606987 1669	800 8767837	0	0	0	0	360.0
6600/11 0082	605560 6051	660016 0672	605961 0435	963 1/85057	2 187/00000	1 1/2018200	65 /3282867	65 /13282867	65.4
660441 4466	605408 0266	670067 1216	605772 229	692 5722765		1.142010277	66 25050540	66 25050540	66.2
(()(()()))	(10252 2521	((0175 (742	(105(1 2205	522 2452925	2.21212121	1.170150120	(7.04517009	(7.04517008	202.0
009000.0932	010555.5521	0091/3.0/42	010301.3203	535.2452825	-2.301020945	-1.1/0159158	-07.04517998	07.04517998	293.0
669453.9603	610641.1672	669941.9946	610428.4343	532.3840279	-2.294117643	-1.159/31//9	-66.44773629	66.44773629	113.0
668452.8643	60/162.358/	669053.5219	60/162.358/	600.65/58/8	0	0	0	0	180.0
668302.6999	606599.2422	669123.3236	606795.7296	843.8190119	4.176470575	1.335/8411	76.53479187	76.53479187	76.5
669091.063	604509.4544	669403.9055	604521.968	313.0926676	25.00000144	1.530817642	87.70939009	87.70939009	87.7
668427.8369	604584.5365	668815.7616	604559.5091	388.7311892	-15.5000003	-1.506369489	-86.30861408	86.30861408	93.7
669003.4671	604659.6187	669453.9603	604659.6187	450.4931908	0	0	0	0	180.0
668540.4602	603157.9748	669241.2274	603233.057	704.7779687	9.333333258	1.464060653	83.88449638	83.88449638	83.9
668815.7616	604559.5091	669116.0904	604271.6941	415.9746541	-1.043478258	-0.806671548	-46.21887516	46.21887516	133.8
667759.9625	603980.003	668114.9944	603758.6324	418.392918	-1.603789321	-1.013259617	-58.05549963	58.05549963	121.9
668114.9944	603758.6324	668515.4328	603946.3379	442.2490915	2.133333336	1.132459767	64.88516514	64.88516514	64.9
668515.4328	603946.3379	669103.5767	604008.9064	591.4626362	9.399999958	1.464811968	83.92754357	83.92754357	83.9
669453.9603	604659.6187	669704.2343	604572.0228	265.1605436	-2.857142833	-1.234121505	-70.70995363	70.70995363	109.3
669403.9055	604521.968	669841.885	604396.8311	455.5055463	-3.500000012	-1.292496669	-74.05460415	74.05460415	105.9
669704.2343	604572.0228	669992.0494	604622.0776	292.135262	5.749999995	1.398605512	80.13419305	80.13419305	80.1
668290.1862	604321.7489	668815.7616	604359.29	526.914437	13.99999971	1.499488861	85.91438313	85.91438313	85.9
652835.7671	607612.8519	653561.5616	607788.0437	757.8306688	4.142857128	1.333947565	76.42956557	76.42956557	76.4
653599.1027	610728.7631	653361.3424	610178.1603	602.8328458	0.431818181	0.407631505	23.35556484	23.35556484	203.4
666738.4875	611354.4481	667639.4739	611980.1331	1112.311635	1.440000001	0.963808663	55.22216866	55.22216866	55.2
668590.515	609652.5849	668540.4602	610666.1946	1024.925757	-0.049382716	-0.049342632	-2.82712458	2.82712458	357.2
653010.9589	601506.1664	653248.7191	602069.2829	611.2529244	0.422222222	0.399515494	22.89055166	22.89055166	22.9
653248.7191	602069.2829	653599.1027	602319.5569	430.587662	1.4	0.950546841	54.46232221	54.46232221	54.5
652885.8219	601456.1116	653373.8561	601693.8719	542.8696218	2.05263158	1.117457631	64.02560605	64.02560605	64.0
652910.8493	602106.824	653298.7739	602407.1528	490.5944875	1.29166667	0.911990292	52.25319469	52.25319469	52.3
653298.7739	602407.1528	653436.4246	602745.0227	364.8339062	0.407407406	0.386875716	22.16634574	22.16634574	22.2
652835.7671	608163.4547	653486.4794	608038.3177	662.6355547	-5.200000013	-1.380808039	-79.11447297	79.11447297	100.9
653436.4246	611479.5851	653698.1688	611762.2688	385.2532481	0.925925926	0.746955574	42.79740185	42.79740185	42.8
654612.7124	611304.3933	654988.1234	611329.4207	376.2443141	14.99999972	1.504228162	86.18592509	86.18592509	86.2
654988.1234	611329.4207	655438.6166	611629.7495	547,8208836	1.5	0.982793723	56.30993247	56.30993247	56.3
653698.1688	611762.2688	654450.0343	611880.0235	785,7410146	6.385014593	1.415441631	81.09883161	81.09883161	81.1
654437 5206	612480 6811	654941 1468	612480 6811	503.6261953	0	0	0	0	180.0
654262.3288	612793.5236	654825.4453	612793.5236	563.1164885	0	0	0	0	180.0
	= = = 2		= = = 0		-	-	-	-	

670842.981	613456.7497	671381.0701	613369.1538	545.1723664	-6.142857158	-1.409421217	-80.75388728	80.75388728	99.2
671255.9331	613506.8045	671706.4263	613631.9415	467.550407	3.599999986	1.299849475	74.47588894	74.47588894	74.5
670943.0906	612718.4414	671315.8538	612777.5651	377.4228872	6.304797824	1.413497278	80.98742839	80.98742839	81.0
670742.8714	613244.0168	671068.2276	613156.4209	336.9416774	-3.714285677	-1.307801593	-74.9315117	74.9315117	105.1
671220.6189	613736.5093	670918.0632	613581.8867	339.7765732	1.956736555	1.098343881	62.93046886	62.93046886	242.9
671255.9331	613506.8045	670955.6043	613556.8593	304.4714557	-5.99999998	-1.405647649	-80.53767776	80.53767776	279.5
671068.2276	613156.4209	671406.0975	613244.0168	349.0402642	3.857142821	1.317122228	75.46554479	75.46554479	75.5
670555.1659	612655.8729	671018.1728	612480.6811	509.1708674	-2.642857131	-1.209067084	-69.27444105	69.27444105	110.7
670142.2138	612393.0852	670692.8166	612180.3523	604.0076614	-2.588235291	-1.202100424	-68.87528083	68.87528083	111.1
670505.1111	609690.126	671618.8304	610053.0233	1183.100417	3.068965513	1.255802426	71,95217891	71.95217891	72.0
669353.8507	609139.5233	670167.2412	608951.8178	837.834301	-4.33333334	-1.343997479	-77.00538323	77.00538323	103.0
668490.4054	607900.667	669716.748	608038.3177	1245.903347	8.909090922	1.459019285	83.59564728	83.59564728	83.6
668365.2684	606173.7764	669103 5767	606549 1874	829 8626178	1 966666669	1.100392064	63 04782109	63 04782109	63.0
670742 8714	608851 7082	671381.0701	608739 0849	648 0598516	-5 666666652	-1 396124127	-79 99202017	79 99202017	100.0
670555 1659	608563 8931	671292 4383	608501 3246	743 9948627	-11 78344465	-1 486134357	-85 14922642	85 14922642	94.9
671293 4742	607537 7697	670642 7618	607813 0711	713 828/288	-2 36363636368	-1 17055567	-67.0678096	67.0678996	202.0
660501 611	610916.4686	660002.0404	610866 /138	403 5546909	-8	-1 //6//1332	-82 87/08365	82 87/08365	97.1
670067 1316	613/31 7223	670442 5426	613360 1538	380 5803106	5 00000068	1 405647640	80 53767774	80 53767774	00.5
660054 5083	613010 7566	670492 5074	613707 0237	578 6148560	2 520/11761	1 10/305002	68 12860278	68 42860278	111.6
670517 6249	612121 2025	671070 709	612020 0705	765 2201202	14.07804225	1 50/120862	°6 19025021	86 18035021	02.8
661020 7121	612621.0415	662646 5077	612204.0716	200 5022125	-14.97604255	-1.304130803	-60.16055051	65.02721017	95.0
656715.014	601010 1195	656027 7087	602671 6122	702 2110002	-2.140140140	-1.155115454	-03.03721017	15 78045610	115.0
050/15.014	601919.1185	050927.7987	6020/1.0122	/95.2110002	0.282772728	0.275577998	10.0(477070	13.78945019	15.8
667038.8163	601218.3513	666851.1108	602081.7966	883.0125333	-0.21/391304	-0.214060683	-12.264//3/2	12.264//372	347.7
667278.2089	605338.3689	668/06.961/	605338.3689	1428.752858	0	0	0	0	180.0
662882.0323	614274.0867	664125.9944	612583.6469	2098.816044	-0./35880/31	-0.634403368	-36.3486355	36.3486355	143.7
665582.5309	613/14.9893	667008.2881	614451.558	1604.//948/	1.9356/4623	1.093944647	62.67841131	62.67841131	62.7
667771.7228	601371.1933	666673.6998	603183.5927	2119.067335	-0.605839416	-0.54470213	-31.20913312	31.20913312	328.8
669023.4588	613864.0666	667624.879	614031.8385	1408.606763	-8.336194411	-1.451408002	-83.15955285	83.15955285	276.8
666295.3994	612446.9888	668461.8145	613040.0298	2246.119258	3.653061229	1.303599099	74.69072653	74.69072653	74.7
667813.3154	609643.7736	666457.4081	611181.2756	2049.97483	-0.881889764	-0.722718869	-41.40874095	41.40874095	318.6
659558.867	602988.8428	660162.3722	605369.3356	2455.802174	0.253521127	0.248289909	14.2259639	14.2259639	14.2
660538.3776	605120.8808	666753.9817	610554.375	8399.27169	1.143942345	0.852436649	48.84102227	48.84102227	48.8
657645.5256	601727.9799	657195.7331	605167.5701	3468.87506	-0.130769231	-0.130031376	-7.450249066	7.450249066	352.5
656798.8573	604902.9863	659047.8201	608263.2013	4043.374707	0.669291338	0.589817484	33.79405249	33.79405249	33.8
661739.1493	606024.348	662017.774	604985.6687	1075.400546	-0.268248939	-0.262079034	-15.01602254	15.01602254	165.0
663489.5217	605812.4933	663618.1338	607724.386	2095.616664	0.067269513	0.067168319	3.848461194	3.848461194	3.8
671145.6999	607146.4215	672031.3596	607346.9483	908.0770938	4.416666663	1.348135386	77.24246783	77.24246783	77.2
671220.6189	613736.5093	671490.4945	614117.51	466.8986909	0.708333331	0.616296936	35.31121336	35.31121336	35.3
670776.118	608180.2482	671331.7441	608180.2482	555.6261113	0	0	0	0	180.0
671309.1487	614173.8347	670527.4092	613646.8293	942.7890983	1.483361485	0.977634607	56.01433689	56.01433689	236.0
670769.3023	608675.7079	671356.6785	608628.0828	589.303759	-12.3333334	-1.489892228	-85.3645366	85.3645366	94.6
667138.9259	603683.5502	671305.9879	604334.2626	4419.778709	6.403846151	1.415891193	81.12458963	81.12458963	81.1
670680.3029	612906.1469	671431.1249	612881.1195	751.2389922	-29.9999994	-1.53747533	-88.09084753	88.09084753	91.9
670842.981	613456.7497	671381.0701	613369.1538	545.1723664	-6.142857158	-1.409421217	-80.75388728	80.75388728	99.2
671255.9331	613506.8045	671706.4263	613631.9415	467.550407	3.599999986	1.299849475	74.47588894	74.47588894	74.5
670943.0906	612718.4414	671315.8538	612777.5651	377.4228872	6.304797824	1.413497278	80.98742839	80.98742839	81.0
671068.2276	613156.4209	671406.0975	613244.0168	349.0402642	3.857142821	1.317122228	75.46554479	75.46554479	75.5
670505.1111	609690.126	671618.8304	610053.0233	1183.100417	3.068965513	1.255802426	71.95217891	71.95217891	72.0

670742.8714	608851.7082	671381.0701	608739.0849	648.0598516	-5.666666652	-1.396124127	-79.99202017	79.99202017	100.0
670555.1659	608563.8931	671292.4383	608501.3246	743.9948627	-11.78344465	-1.486134357	-85.14922642	85.14922642	94.9
671293.4742	607537.7697	670642.7618	607813.0711	713.8284288	-2.363636368	-1.17055567	-67.0678996	67.0678996	292.9
670517.6248	613131.3935	671272.728	613080.9795	765.3801808	-14.97804235	-1.504130863	-86.18035031	86.18035031	93.8
671220.6189	613736.5093	671490.4945	614117.51	466.8986909	0.708333331	0.616296936	35.31121336	35.31121336	35.3
670776.118	608180.2482	671331.7441	608180.2482	555.6261113	0	0	0	0	180.0
671309.1487	614173.8347	670527.4092	613646.8293	942.7890983	1.483361485	0.977634607	56.01433689	56.01433689	236.0
670769.3023	608675.7079	671356.6785	608628.0828	589,303759	-12.3333334	-1.489892228	-85.3645366	85.3645366	94.6
667138.9259	603683.5502	671305.9879	604334.2626	4419,778709	6.403846151	1.415891193	81.12458963	81.12458963	81.1
670680 3029	612906 1469	671431 1249	612881 1195	751 2389922	-29 9999994	-1 53747533	-88 09084753	88 09084753	91.9
670842 981	613456 7497	671381 0701	613369 1538	545 1723664	-6 142857158	-1 409421217	-80 75388728	80 75388728	99.2
671255 9331	613506 8045	671706 4263	613631 9415	467 550407	3 599999986	1 299849475	74 47588894	74 47588894	74.5
670043 0006	612718 4414	671315 8538	612777 5651	277 102827	6 30/70782/	1.277047473	80.087/2830	80.087/2830	81.0
671068 2276	612156 4200	671406.0075	612244 0168	340.0402642	2 9571/2921	1.413497270	75 46554470	75 46554470	75.5
(70505 1111	(00(00 12)	(71(19.9204	(10052 0222	1192 100417	2.069065512	1.31/122220	71.05217901	71.05217901	73.5
6/0505.1111	609690.126	6/1618.8304	610053.0233	1183.100417	3.068965513	1.255802426	71.95217891	71.95217891	12.0
6/0/42.8/14	608851.7082	6/1381.0/01	608/39.0849	648.0598516	-5.666666652	-1.396124127	-79.99202017	/9.99202017	100.0
670555.1659	608563.8931	671292.4383	608501.3246	743.9948627	-11.78344465	-1.486134357	-85.14922642	85.14922642	94.9
671293.4742	607537.7697	670642.7618	607813.0711	713.8284288	-2.363636368	-1.17055567	-67.0678996	67.0678996	292.9
670517.6248	613131.3935	671272.728	613080.9795	765.3801808	-14.97804235	-1.504130863	-86.18035031	86.18035031	93.8
668359.6869	608360.0573	671791.8687	613618.9261	6368.145486	0.652646408	0.578233364	33.1303313	33.1303313	33.1
667181.6625	610627.3646	671543.7482	616034.5718	7223.449579	0.806716937	0.678823237	38.89370651	38.89370651	38.9
667181.6625	610627.3646	672257.0291	616572.6609	8116.931246	0.853677641	0.706625254	40.48664473	40.48664473	40.5
660200.0458	605950.6225	664223.7049	609686.5467	5699.118554	1.077018413	0.822462419	47.12362543	47.12362543	47.1
667996.6708	612459.3856	665527.5742	610710.3098	3050.864604	1.411657926	0.954463712	54.6867424	54.6867424	234.7
668337.4548	610726.8463	668178.7045	611912.182	1209.561127	-0.133928572	-0.133136328	-7.628149692	7.628149692	352.4
668908.9559	610769.1798	668305.7047	612039.1823	1477.764536	-0.475	-0.443448337	-25.40771813	25.40771813	334.6
671202.65	609342.8247	671054.483	611512.4124	2174.641147	-0.068292683	-0.068186809	-3.906816383	3.906816383	356.1
669593.7578	611650.5675	670705.01	611610.8799	1111.960703	-27.99999955	-1.535097214	-87.95459148	87.95459148	92.0
664697.6359	609105.5137	665069.3738	607602.4344	1557.6404	-0.247317499	-0.242452367	-13.89149737	13.89149737	166.1
661199.4087	605464.4755	661378.4289	604374.5112	1105.060969	-0.164244096	-0.16279066	-9.327217745	9.327217745	170.7
660492.5139	603963.9653	660538.3776	605120.8808	1157.824205	0.039643087	0.039622339	2.270192825	2.270192825	2.3
669134.9838	608667.0958	670341.4863	608794.096	1229.095458	9.5	1.465919388	83.99099404	83.99099404	84.0
654590.0538	610863.043	656042.6192	609108.852	2337.874093	-0.828054299	-0.691614681	-39.62660226	39.62660226	140.4
654693.2415	609743.8533	655891.8064	608640.5385	1639.191933	-1.086330936	-0.826753881	-47.36950808	47.36950808	132.6
653519.9585	611117.129	655296.4927	608450.0382	3241.182163	-0.666094362	-0.587606288	-33.66736033	33.66736033	146.3
652772.3627	609386.665	654963.117	607283.2233	3097.557691	-1.041509434	-0.805728079	-46.16481838	46.16481838	133.8
652899.3629	606894.2851	653804.2397	605640.1575	1570.236787	-0.721518986	-0.625022719	-35.81116388	35.81116388	144.2
654701 179	613958 6742	656074 3693	612236 2332	2258 528565	-0.797235024	-0 673052706	-38,56307943	38 56307943	141.4
662332,7929	606476 2038	662640 3472	605298 748	1216 960079	-0.261202467	-0.255494056	-14 6387311	14 6387311	165.4
662694 2138	606738 234	663084 8481	605510 /151	1288 462008	-0.318153071	-0.308026677	-17 6/862855	17 64862855	162.4
663026 0106	608167 7707	664651 1846	607161 /18/	1200.402000	-0.719693368	-0.623821079	-35 74231502	35 74231502	144.3
66/108 2560	608/28 1525	664700 3516	607627 086	1105 604057	-0.862718126	-0.711831/1	-40 7840355	10 78/0355	130.2
666200 2075	610067 5407	666027 1902	600225 7550	1048 466596	0.767276011	0.654520224	-+0.7049333	37 50176796	142.5
000298.8973	(10720 7407	((0)) 41 2(0)	(11097.4001	1046.400380	-0.707570011	-0.034529524	-57.50170780	29.71200225	141.3
008042.1654	012/38.7438	009244.3604	011987.4281	902.80/686	-0.801520572	-0.0/306/433	-38./1289225	38./1289225	141.3
666343.6323	611564.369	664382.2404	611698.4813	1965.971611	-14.62499992	-1.502526519	-86.08842817	86.08842817	273.9
663644.6229	611698.4813	660895.3214	611782.3015	2750.578948	-32.80000026	-1.540317963	-88.25371839	88.25371839	271.7
670655.3514	606998.8283	672031.3596	607346.9483	1420.15663	3.952684125	1.323003049	75.80249098	75.80249098	75.8
659204.0616	607981.2674	658521.4352	603456.8834	4591.380171	0.150877193	0.149747727	8.579912772	8.579912772	188.6

~	
8	
ē	
F	
Ö	
_	

Tabla de información de campo con estaciones.

Obsevaciones											epósito de caída, paleosuelo obablemente proveniente de Cerro lealde				ltamente meteorizados					
Clasificacion											D Pr A				AI					
Componentes											Fragmento de pómez, biotita					Pómez, biotita, plagio- clasa,anfibol	Flujos de lava y depositos de caída	Flujo de lava y depostios de caída (escoria) y líti- cos volcánicos de tamaño lapilli a bloques	Anffbol y masa fun- damental de color gris oscuro	
Estructura, tex- tura de la roca	Afanítica	Afanítica	Afanítica	Afanítica	Afanítica	Afanítica													Porfirítica	
Cinemática	×	х	x	dextral-inversa (pitch 15°)	dextral-inversa (pitch 15°)	х	×	х	x	x	×	x	x	х	х	x	x	×	×	x
Dip	WS97	61SW	MS68	84NW	MN09	88SE	38SW	39W	44SW	MN09	×	x	×	х	х	x	×	×	×	х
Dip-dir	76/195	61/192	89/243	84/275	60/276	88/142	38/231	39/242	44/220	60/281	×	×	×	х	х	×	×	x	×	x
Dato	diaclasa de enfria- miento	diaclasa de enfria- miento	diaclasa de enfria- miento	plano de falla	plano de falla	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Deposito	Volcán La Corota	Lavas Mujundinoy Sur	Laguna Verde	Depositos	Deposito masivos	Contacto discor- dante	Deposito	Tumulli	Lavas Volcan Fuisanov
Referencia geográfica	Volcan Guayapun- go	Volcan Guayapun- go	Volcan Guayapun- go	Quebrada de la Vereda Naranjal	Quebrada de la Vereda Naranjal	Cascada hacia vol- can Campanero	Isla Larga	Vista volcan la Corota	Quebrada	Cerca al Volcan Bijinchoy	volcan Manoy?	Tamavioy-Volcanes Muchivioy	Tamavioy-Volcanes Muchivioy	Tamavioy-Volcanes Muchivioy	Vereda Balsayaco	Quebrada Fuisanoy				
madas	ML0.80°LL	M.,.L0,80°LL	ML0.80°LL	77°08'13"W	77°08'13"W	77°07'35''W	77°07'35''W	77°07'35''W	77°07'34"W	77°07'34"W	77°08'13'W	77°06'16''W	77°06'19"W	77°05'03"W	77°04'53''W	77°00'36''W	77°00'25''W	77°00'29"W	76°58'57''W	77°02'36''W
Coorde	01°03'34''N	01°03' 34"N	01°03'34''N	01°04'28"N	01°04`28''N	01°08°05″N	N''60''00''0	N.,20,80°10	N.,50,80°10	N"č0°00°00	01°04'28''N	01°05'42''N	N., EE, 50° 10	01°05'34''N	01°05'41"N	N.,22,20°10	N.,12,20°10	01°07'10''N	N". E1 "70° 10	N., 1£, 90° 10
Esta- ción		1	-	7	7	6	б	ю	б	б	4	5	9	٢	~	6	10	11	12	13

	Muy alteradas	Muy alteradas	Muy alteradas				Altamente fracturada, caida de roca y deslizamiento	Altamente fracturada, caida de roca y deslizamiento	Altamente fracturada, caida de roca y deslizamiento	Altamente fracturada, caida de roca y deslizamiento	Altamente fracturada, caida de roca y deslizamiento	Altamente fracturada, caida de roca y deslizamiento	Х	Fracturada	Fracturada
							Andesita	Andesita	Andesita	Andesita	Andesita	Andesita		Andesita	Andesita
						Depósitos volcánicos, pómez, obsidiana	Cristales de plagioclasa de 2-3 mm, euhedra- les-subhedrales y masa fundamental grisacea <1mm	Cristales de plagioclasa de 2-3 mm, euhedra- les-subhedrales y masa fundamental grisacea <1mm	Cristales de plagioclasa de 2-3 mm, euhedra- les-subhedrales y masa fundamental grisacea <1mm	Cristales de plagioclasa de 2-3 mm, euhedra- les-subhedrales y masa fundamental grisacea <1mm	Cristales de plagioclasa de 2-3 mm, euhedra- les-subhedrales y masa fundamental grisacea <1mm	Cristales de plagioclasa de 2-3 mm, euhedra- les-subhedrales y masa fundamental grisacea <1mm	Х	Masa fundamental de co- lor gris oscuro, cristales <1mm	Masa fundamental de co- lor gris oscuro, cristales <1mm
	Porfirítica	Porfirítica	Porfirítica	Estructuras en llama		Estratificación paralela	Porfirítica	Porfirítica	Porfirítica	Porfirítica	Porfirítica	Porfirítica	Х	Afanítica	Afanítica
×	х	×	×	×	х	×	×	×	×	×	×	×	х	×	×
×	45NE	47NE	30NE	Х	x	×	38NW	15SE	10SE	22SE	77SE	72SE	x	33SW	65SE
x	45/64	47/64	30/37	х	х	x	38/330	15/108	10/119	22/143	77/126	72/156	х	33/197	65/093
Lavas Volcan Fuisanoy	Diaclasa	Diaclasa	Diaclasa	Depoitos	Geoforma del vol- can Maar Yaku	Estratificación	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Geoforma: silleta y lomerios	Diaclasa	Diaclasa
Quebrada Fuisanoy	Quebrada volcan Campanero	Quebrada volcan Campanero	Quebrada volcan Campanero	Maar Yaku	Maar Yaku	Maar Yaku	Garganta de Bal- sayaco	Aguas termales El Salado	Aguas termales El Salado	Aguas termales El Salado					
77°02'45''W	77° 6'42"W	77° 6'42"W	77° 6'42"W	77° 07'11"W	77° 06'41"W	77° 07'14"W	76° 58'58"W	76° 58'27"W	76° 58'27"W	76° 58'25"W					
N"05°20°10	1° 08'35"N	1° 08'35"N	1° 08'35"N	1° 04'46"N	1°04'44'N	1° 03'49"N	1° 06'15"N	1° 06'15"N	1° 06'13"N	1° 06'00"N					
14	15	15	15	16	17	18	19	19	20	20	20	20	21	22	23

Fracturada	Fracturada	Fracturada													
Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita	Andesita		Andesita	Andesita			Sienita	Sienita
Masa fundamental de co- lor gris oscuro, cristales <1mm	Cristales de plagioclasa de 1-4 mm, subhedra- les-anhedrales; masa fundamental gris oscuro <1mm	Cristales de plagioclasa de 1-4 mm, subhedra- les-anhedrales; masa fundamental gris oscuro <1mm	Masa fundamental de co- lor gris oscuro, cristales <1mm		Masa fundamental de co- lor gris oscuro, cristales <1mm	Cristales de plagioclasa de 2-5mm, euhedra- les-subhedrales; Masa fundamental de color gris oscuro <1mm	Masa fundamental de co- lor gris oscuro, cristales <1mm		Feldepato, plagiocla- sa,cuarzo,anfibol; de 1-3 mm	Feldepato, plagiocla- sa,cuarzo,anfibol; de 1-3 mm					
Afanítica	Porfirítica	Porfirítica	Afanítica	Afanítica	Afanítica	Afanítica	Afanítica	Afanítica		Afanítica	Porfirítica	Afanítica	Vesicular	Faneritica	Faneritica
×	x	inversa	×	×	×	×	×	×	Х	×	X	×	×	×	×
43NW	42SW	49NE	41NE	61SE	64SW	83SW	55SW	79SE	21NE	86SE	67SE	06NE	×	76SW	WS08
43/272	42/236	49/068	41/053	61/125	64/194	83/205	55/188	711/62	21/05	86/167	67/132	06/082	x	76/217	80/166
Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Lavas	Diaclasa	Diaclasa
Aguas termales El Salado	Aguas termales El Salado	Aguas termales El Salado	Rio Viginchoy	Rio Viginchoy	Rio Viginchoy	Rio Viginchoy	Rio Viginchoy	Volcan Muchivioy Norte	Via a la vereda El Porotal	Via a la vereda El Porotal					
76° 58'25"W	76° 58'25"W	76° 58'23"W	76° 59'09"W	76° 59'09"W	76° 59'09"W	76° 59'08"W	76° 59'08"W	76° 59'08"W	76° 59'02"W	76° 59'02"W	76° 59'02"W	76° 59'02"W	77° 00'44"W	76° 57'59"W	76° 57'59"W
1° 06'00"N	1° 06'00''N	1° 05'55"N	1° 05'12"N	1° 05'12"N	1° 05'12"N	1° 05'13"N	1° 05'13"N	1° 05'13"N	1° 05'19"N	N"91'20 °1	N.,61,50 °I	N"91'20 °1	1° 06'58"N	1° 06'11"N	1° 06'11''N
23	23	24	25	25	25	26	26	26	27	27	27	27	28	29	29

				Contacto neto entre sienita y andesita	Contacto neto entre sienita y andesita	Contacto neto entre sienita y andesita	Contacto neto entre sienita y andesita							Lentes de roca muy alterada envevi- dos en suelo arcilloso de color marron a grisaceo
Sienita	Sienita	Sienita		Sienita	Andesita	Sienita	Andesita							
Feldepato, plagiocla- sa,cuarzo,anfibol; de 1-3 mm	Feldepato, plagiocla- sa,cuarzo,anfibol; de 1-3 mm	Feldepato, plagiocla- sa,cuarzo,anfibol; de 1-3 mm	Xenolito de roca andesíti- ca en sienita	Feldepato, plagiocla- sa,cuarzo,anfibol; de 1-3 mm	Cristales de plagioclasa y piroxeno de 1-2 mm; masa fundamental de color gris oscuro <1 mm	Feldepato, plagiocla- sa,cuarzo,anfibol; de 1-3 mm	Cristales de plagioclasa y piroxeno de 1-2 mm; masa fundamental gris oscuro <1 mm	Feldepato, plagiocla- sa,cuarzo,anfibol; de 1-3 mm	Se reconoce cristales de anfibol-piroxeno					
Faneritica	Faneritica	Faneritica	х	Faneritica	Porfirítica	Faneritica	Porfirítica	Faneritica	Faneritica	Faneritica	Faneritica	Faneritica	Faneritica	Lentes
×	x	×	х	×	×	Х	×	×	x	×	Х	×	x	×
30NW	MN09	75SE	×	WS89	20NW	20NW	63SE	57NE	53SW	69SE	49SE	56SE	55NW	×
30/351	60/299	75/160	x	68/228	20/292	20/292	63/137	57/061	53/215	69/157	49/092	56/162	55/329	×
Diaclasa	Diaclasa	Diaclasa	xenolito	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Diaclasa	Intrusion
Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal	Via a la vereda El Porotal
76° 57'59"W	76° 58'03"W	76° 58'03"W	76° 58'03"W	76° 58'06"W	76° 58'06"W	76° 58'06"W	76° 58'06"W	76° 58'10"W	76° 58'10"W	76° 58'10"W	76° 58'25"W	76° 58'25"W	76° 58'25"W	76° 58'25"W
1° 06'11"N	1° 06'13"N	1° 06'13"N	1° 06'13"N	1° 06'14"N	1° 06'14"N	1° 06'14"N	1° 06'14"N	1° 06'14"N	1° 06'14"N	1° 06'14"N	1° 05'55"N	1° 05'55"N	1° 05'55"N	1° 05'55"N
29	30	30	30	31	31	31	31	32	32	32	33	33	33	34

1314 | Geofísica Internacional (2024) 63-4