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RESUMEN
En la interpretación de pruebas de trazadores entre pozos en yacimientos petroleros, geotérmicos y en acuíferos se emplean

diversos métodos de regresión no lineal para determinar algunas de las propiedades físicas promedio del sistema roca fluido. Con
este propósito se ajustan modelos analíticos a los datos de campo de surgencia del trazador y se determinan los parámetros libres
del modelo. La no linealidad inherente al problema puede en ocasiones dar lugar a soluciones múltiples, las cuales corresponden
a distintos mínimos locales. En la metodología de interpretación tradicional se hace uso de un solo método de optimización, y se
considera diversos valores iniciales de los parámetros para analizar la existencia de varias soluciones. En general, este procedimiento
resulta complicado y requiere de largos tiempos de cómputo. Además, para obtener resultados confiables es necesario proponer
valores iniciales cercanos al óptimo global, los cuales en muchos de los casos de campo se desconocen. El empleo de distintos
métodos de búsqueda para obtener el óptimo global resulta entonces una herramienta de gran utilidad. En este trabajo presentamos
una nueva metodología que consiste en el uso simultáneo de varios métodos de optimización y de tan sólo pocos valores iniciales.
De esta manera se pueden encontrar soluciones al problema inverso de forma  relativamente simple y confiable.

PALABRAS CLAVES: Pruebas de trazadores, problema inverso, optimización no lineal, transporte de fluidos, medios porosos.

ABSTRACT
In the interpretation of inter-well tracer tests to determine reservoir properties in oil and geothermal reservoirs as well as in

aquifers, different non-linear regression methods are used. Analytical flow models are employed to fit tracer breakthrough data in
order to determine the free parameters in the models. Non-linearity can yield multiple solutions for the fitting parameters. Tradi-
tionally, a single optimization method and several initial parameter values are employed. This procedure is often cumbersome and
computer time-consuming. Moreover, an initial point close to the global optimum must be provided, what in many field cases is
not available. We propose an approach which employs several optimization methods simultaneously, using a few initial points.
Thus, different solutions can be found in a relatively simple way, and the reliability of the solutions is improved.

KEY WORD: Tracer tests, inverse problem, non linear optimization methods, fluid transport, porous media.

1. INTRODUCTION

Since the beginning of the last century tracer tests have
been employed in underground porous media to extract in-
formation of flow directions, flow barriers and communica-
tion channels. A tracer test may provide quantitative infor-
mation of reservoir properties. This can be achieved by match-
ing mathematical models for tracer flow to field data. With
this procedure the free parameters of the model are deter-
mined, and some reservoir properties, such as porosity, dis-
persion coefficient, fracture width, block size, etc., can be
calculated. In general, optimization methods yield multiple
solutions because of the inherent non-linearity of the prob-
lem, or when it is ill-posed. Finding these solutions in the
region of interest commonly requires a large amount of com-
puting time. The solution is traditionally obtained from a
single optimization method. Until now, the problem of find-
ing different solution has been only partially discussed, for
example in the determination of groundwater flow direction

(Steinich et al. 1996), or of permeability and oil saturation in
oil reservoirs (Lliassov and Datta-Gupta, 2001), in fractured
reservoirs (Ramírez, et al. 1994), in trapped gas saturation
(Radke and Gillis, 1999), or in residual oil saturation (Tang
and Zhang, 2000). In this paper we examine simultaneously
distinct optimization methods that make use of different
search procedures to reach the optimal value. Therefore, from
a single initial point, several solutions can be obtained. We
find that the procedure reliability is also increased by this
mean.

We analyze two typical mathematical models from the
tracer test literature, each model having two free parameters.
We use ten different optimization methods to match tracer
data. In Section 2, we describe the models, and in Section 3
we present a methodology to perform the optimization. Sec-
tion 4 is devoted to its application on synthetic data, and
Section 5 to its application on real field data. The conclu-
sions are drawn in Section 6.
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2. DESCRIPTION OF THE MODELS

The mathematical models employed in this work de-
scribe the behavior of tracers in one dimensional linear res-
ervoirs subject to convection and dispersion. The first model
corresponds to continuous tracer injection, and the second to
pulse injection. The tracer concentration in continuous in-
jection is given by Coats and Smith (1964) and Bear (1972),
as follows:
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where the dimensionless space and time variables, x
D
= x/L

and t
D 

= tu/L are introduced. Here u is a convective constant
speed and L a characteristic length, which can be set equal to
the distance between the injection and the observation well.
Pe is a Peclet number defined by Pe = uL/D, where D is a
constant dispersion coefficient. In porous media it holds D =
αu +D*, where α is hydrodynamic dispersivity and D* a
molecular dispersion coefficient (Bear, 1972). For typical
reservoir conditions it can be assumed that D*<<αu. C0 is
the tracer concentration at the injection site. The tracer con-
centration at any position xD > 0 is initially zero and increases
monotonically reaching C0 asymptotically at large times. The
tracer breakthrough curve (concentration as a function of
time) obtained from Eq. (1) contains two free parameters, xD

and Pe. From xD the effective transit length could be obtained
using x = xD L, and from Pe the dispersion coefficient can be
calculated as D=uL/Pe.

The model to be employed for a short pulse injection,
known as ‘spike injection’, is (Kreft and Zuber, 1978;
Ramírez, 1988):
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For a given position, xD >0, the breakthrough curve is
zero during an initial time period. Later, it increases abruptly
and reaches a maximum. Finally, it smoothly reduces to zero
at large times. The expression in Eq. (2) contains the non-
linear fitting parameters xD and Pe, and the linear parameter
E, which is a scale factor associated to the production rate
(Kreft and Zuber, 1978).

3. METHODOLOGY

Solving the inverse problem means finding the values
of the fitting parameters in the models of Eq. (1) and Eq. (2)
that minimize the square of the differences for a given data
set. To this purpose an objective function is defined as
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and non-linear regression methods are employed to obtain
the parameter set {β
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…β

k
} that minimizes OF (β
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) in

Eq. (3). Here C(β
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) is the function given by Eq.(1) or

Eq.(2), {c
i
(t

i
)} is a data set, and N is the total data number in

the set. As mentioned before, ten different non-linear opti-
mization methods are to be employed. They can be grouped
in (i) methods that require the evaluations of the objective
function, such as  the Complex method (Nelder and Mead,
1965), (ii) methods that demand the evaluation of its first
derivatives, such as the Gauss-Newton, Levenberg-
Marquardt, (Levenberg, 1944 and Marquardt, 1963),
VARPRO (Golub and Pereyra, 1973) and Rosenbrock (1960)
methods,  (iii) methods that employ Hessian updating such
as the Fletcher (1963), Broyden (1970), Shanno (1970), Gill
(1984), Goldfarb (1970) methods, and (iv) Sequential Qua-
dratic Programming methods, such as the method by Biggs
(1975), which invoke the solution of an auxiliary quadratic
problem.

The Nelder and Mead method is suited for problems
that are highly nonlinear or involve discontinuous functions.
In the Simplex method, the simplex is characterized in a k-
dimensional space by k+1 distinct vertices, and the objective
function is evaluated in each of them. At each step of the
search, a new point in or near the current simplex is gener-
ated. The function value at the new point is compared with
the value at the other vertices and, usually, one of the verti-
ces is replaced by the new point, giving a new simplex. This
step is repeated until the diameter of the simplex is less that
the specific tolerance. The gradient methods use informa-
tion on the function slope to define a search direction, where
the minimum seems to lie. The steepest descent method is
the simplest of this group of methods, here the search is per-
formed in direction  -∇[OF (β

1
,...,β

k
)]. An important issue in

the implementation of the Levenberg-Marquardt method is
the setting of an effective strategy for controlling the regu-
larization parameter at each iteration, in such a way that the
method becomes efficient for a broad spectrum of problems.
The strategy employed here consists in estimating the rela-
tive no linearity of the objective function OF in Eq.(2), by
using a linear predicted sum of squares of the objective func-
tion and a cubicly interpolated estimation of its  minimum
(Optimization Toolbox User’s Guide, 2000). The Gauss
method is obtained when the regularization parameter is set
to zero. In the Rosenbrock algorithm the first variable β

1
 is

set at a distance S
1
 along the gradient of OF,  and the func-

tion is evaluated there. If the resulting value of OF decreases,
the move is considered successful and S

1
 is increased by a

factor larger than the unity. If the value of OF increases, the
move is termed a failure and S

1
 decreased by a positive fac-

tor lower or equal than the unity, and the direction of move-
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ment is reversed. The same procedure is applied to the whole
set of parameters {β

i
}. The methods employing Hessian up-

dating consider the behavior of OF and its gradient in order
to acquire appropriate curvature information. An updating
technique is employed to approximate the Hessian without
calculating it numerically. These methods use a quadratic

model for F0 given by min
β

1
2
β β βT TH c b+ + , where H is

the Hessian matrix, which is symmetric and positive defined,
c a constant vector, and b a constant scalar. A large number
of Hessian update algorithms have been developed, some of
them have been cited above.

To study the characteristics of these methods, two dif-
ferent types of data are analyzed in relation to the models
under consideration. One type corresponds to synthetic data,
and the other type to field results obtained from a tracer test
performed in the Loma Alta Sur field in Argentina (Somaruga,
2003). The first data type results from adding random noise
to deterministic values obtained from the models in Eq. (1)
and Eq. (2). For continuous injection synthetic data are gen-
erated from Eq. (1), with xD = 1, Pe = 1 and C0 = 1 was used,
and noise following a Gaussian distribution with zero mean
and standard deviation σ=C0/10 was added. The effect of
different noise amplitudes will be briefly analyzed below.
For spike injection Eq. (2) was employed with xD = 2, Pe = 4
and E=1, and a standard deviation σ=E/10. Ten different re-
alizations of synthetic data were generated for each model,
and ten different optimization methods were applied in each
case. Several data realizations are used here to analyze vari-
ability and to perform realization averages. For illustration
purposes one of these synthetic data sets is displayed for con-
tinuous injection in Figure 1, and equivalently for spike in-
jection in Figure 2.

4. RESULTS USING SYNTHETIC DATA

In Table 1 the results for the continuous injection model
in Eq.(1) obtained from each of the ten synthetic data sets
after application of the optimization methods mentioned be-
fore are shown. The original parameters used were xD = 1
and Pe = 1. The parameters resulting from the application of
the different optimization methods to a data set are in all
cases the same. The starting values used were xD = 0.6 and
Pe = 1.5. The obtained average value (over the ten data sets)
is Pe = 1.023 and xD= 0.976. For the noise level employed
here, 10%, the minimum and maximum variations from the
original value are 1% and 12% for Pe, and 3% and 26% for
xD, respectively. Thus, the original values were recovered
within a relative small error.

An interesting issue is the sensitivity of the optimiza-
tion methods to different starting value xD and Pe. For this
purpose, initial parameter values were chosen between 0.1
and 10.0. The results are shown in Table 2. The resulting
differences from the original value xD = 1 and Pe = 1 can
become up to 500%. This table shows that the most robust
optimization methods are Nelder-Mead (Complex), Gauss-
Newton and Rosenbrock, since they converge and reach the
correct value even when the initial point is far from the origi-
nal value. On the contrary, the worst method is the Steepest-
Descent method, since it converges only for small deviations
from the original value. Finally, when the initial point is 900%
away from the original value all methods fail.

Table 3 shows the results for spike injection using ten
different synthetic data realizations. Synthetic data were gen-
erated employing xD = 2.0 and Pe = 4.0, and noise is added
in the same way as in the previous case. Iterations for the
optimization methods started with xD = 1.0 and Pe = 10.0,

Fig. 1. Synthetic tracer breakthrough data obtained from the model
for continuous injection (solid line) plus a Gaussian random noise

(circles).
Fig. 2. Synthetic  tracer breakthrough data obtained from the model
for spike injection (solid line) plus a Gaussian random noise (circles).
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i.e., taking a value 100% and 150% away from the original
values.  The average value of xD and Pe, considering the ten
synthetic data sets, are 1.99 and 4.01, respectively. When the
methods converge, they all reach the same result, with a dif-
ference around 0.1%. Within the ten data sets the minimum
and maximum deviations from the real value of Pe are 1%
and 16%. For xD, the minimum and maximum deviations are
0.5% and 3.5%, respectively. Here the same noise amplitude
as in the previous case of Table 1 was used.

In Table 4 spike injection results using different initial
points for parameter values between 0.5 and 10.0 are shown.
The algorithms Complex, Gauss-Newton, Levenberg-
Marquardt and SQP converge even when the initial point for
xD is 500% larger than the original value. The Steepest –
Descent method was again the worst optimization method.

Different noise levels for the continuous and spike in-
jection cases were also treated: {0.10, 0.13, 0.17, 0.20}. It
was found that the values of the fitting parameters are prac-
tically the same when the noise level is lower than 0.17.
However, when it becomes 0.20, the parameters obtained
show an important deviation from the real values. It is to be
mentioned that the typical noise level in tracer tests is lower
than 0.17.

5. RESULTS USING FIELD DATA

Oil field data from a spike injection tracer test performed
in Loma Alta Sur in Argentina (Somaruga 2003) were used
to study the optimization methods performance. There were
analyzed two cases: well A and well B. The average transit
time was calculated from the first moment of the tracer break-
through curve in each case. The ground surface distance be-
tween the injection and the production wells is 142.0 m and
131.0 m for case A and B respectively, and the correspond-
ing average transit time is 19.7 and 6.1 days. Consequently,
the mean velocity is u = 7.2 m/d and 21.6 m/d, respectively.

Since the tracer was injected as a short pulse, then Eq.
(2) is used to model the tracer test in the Loma Alta Sur field

Table 1

Optimized parameter values for ten different realization
sets of synthetic data representing continuous injection.

Continuous Optimized Optimized Objective
Injection x

D
P

e
Function

Data set Value Value Value

data01 0.89 1.01 0.0484
data02 0.97 1.02 0.0499
data03 1.24 0.93 0.0657
data04 0.97 1.02 0.0499
data05 1.09 1.02 0.0563
data06 0.87 1.06 0.0568
data07 0.75 1.12 0.0519
data08 1.13 0.98 0.0880
data09 1.06 0.97 0.0713
data10 0.78 1.10 0.0805

Table 2

Optimization methods convergence for various starting points in the case of continuum injection. The real values are xD = 1
and P

e
 = 1. Here, √ means convergence and no symbol means no convergence

Starting Nelder Gauss Rosen- Broyden Davidon Levenberg- Gill- Sequential Steepest
Point Mead Newton brock Fletcher Fletcher Marquardt Murray Quadratic Descent

Complex Goldfarb Powell Programming
[xD, Pe] Shanno

 [0.1  0.1] √ √ √ √ √ √ √ √
 [1.5  1.5] √ √ √ √ √ √ √ √
 [2.0  2.0] √ √ √ √ √
 [0.1  2.0] √ √ √ √ √ √ √
 [2.0  0.1] √ √ √ √ √ √
 [2.0  0.6] √ √ √ √
 [0.6  2.0] √ √ √ √
 [2.5  2.5] √ √ √ √ √
 [3.0  3.0] √ √ √
 [5.0  5.0] √ √ √
[10.0 10.0]
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for both cases. This equation involves 3 fitting parameters,
Pe, xD and E. The linear parameter E, which is related to the
total amount of tracer per unit of cross section that arrives at
the production well, is found by the application of the linear
least squares method. A similar data fitting treatment was
made by Jensen (1983) using the VARPRO optimization
method. For comparison purposes this method is also in-
cluded in our analysis.

When fitting Eq. (2) to field data, the time should be
changed to the dimensionless time tD=ut/L, this is done by
employing the values of u and L mentioned before. There is
no reservoir information that suggests specifically what ini-
tial value for xD and Pe to take. However, by using various
optimization methods we can obtain several solutions from
a single initial parameter value.

The iteration procedure for well A was started with xD

= 1.0 and Pe = 4.0. No initial value to calculate the param-
eter E is required, since Cs (xD, tD) has a linear dependence
on it. Optimization results are shown in Table 5, where two
sets of parameters can be identified. They are approximately
(xD, Pe) = (0.95, 5.63) and (xD, Pe) = (1.06, 4.01). The pa-
rameter Pe is used to calculate D through D = uL/Pe, and the
parameter xD is employed to estimate the effective travel
length by x = xD/L. One of the parameter sets obtained gives
a dispersion coefficient and a travel length of 2.10x10-3m2/s
and 134.9 m, respectively. The other parameter set yields D
= 2.95x10-3m2/s and x=150.7m (the corresponding initial val-
ues used were x = 142.0 m and D = 2.90x10-3m2/s). The break-
through curves resulting from the two parameter sets are
shown in Figure 3.

For the case of well B the initial parameters chosen are
xD=0.8 and Pe=4.0. Optimization results are shown in Table
6, where three sets of parameters can be identified. They are:
(xD, Pe) = (0.67, 3.99),  (xD, Pe) = (0.69, 3.66), and (xD, Pe) =
(0.71, 3.47) and the corresponding physical properties are
(xD)=(87.8m, 8.20x10-3m2/s), (90.9m, 8.93x10-3m2/s) and
(92.9m,  9.42x10-3m2/s). The breakthrough curves resulting
from the three parameter sets are shown in Figure 4. In the

Table 3

Optimized parameter values for ten sets of synthetic data
representing spike injection.

Spike Optimized Optimized Objetive
Injection x

D
P

e
Function

data set Value Value Value

datap01 2.05 3.67 0.1393

datap02 1.98 3.90 0.1096
datap03 2.02 4.04 0.1310

datap04 2.00 4.22 0.1076

datap05 1.93 4.63 0.1038
datap06 2.03 3.71 0.1417

datap07 2.00 3.55 0.1884

datap08 1.97 4.09 0.2101
datap09 2.03 3.86 0.1918

datap10 1.94 4.48 0.2103

Table 4

Optimization methods convergence for various initial points in the case of spike injection. The real values are x
D
 = 2 and Pe =

4. Here, √ means convergence and no symbol means no convergence

Starting Nelder Gauss Rosen- Broyden Davidon Levenberg- Gill- Sequential Steepest
Point Mead Newton brock Fletcher Fletcher Marquardt Murray Quadratic Descent

Complex Goldfarb Powell Programming
[xD, Pe] Shanno

[0.5  0.5]
[0.6 0.6]
[0.8 0.8] √
[0.9 0.9] √ √ √ √ √ √ √ √
[1.0 1.0] √ √ √ √ √ √ √ √
[1.0 4.0] √ √ √ √ √ √ √ √ √
[1.0 6.0] √ √ √ √ √ √ √ √
[6.0 1.0] √ √ √ √ √ √ √ √
[6.0  6.0] √ √ √ √ √ √
[10.0 10.0] √ √ √ √
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case of well B it is found that the solutions yield dispersion
coefficients with a difference of around 13% between them.
This percentage difference can be compared against the case
of well A, which is 33%.

Additional information would be needed to prefer one
of these curves over the other. In well A, for example, if we
assign more physical relevance to the first 12 data points
than to the last 5 data points (at the curve tail), the solid line
in Figure (3) should be chosen. A procedure using weights in
the field data according to their reliability would be helpful
in this case.

6. CONCLUDING REMARKS

The benefits of using simultaneously several optimiza-
tion methods to analyze inter-well tracer tests in reservoirs
have been described. By employing this procedure to solve
the inverse problem, different local minima in the region of
interest can be obtained in a relatively simple way. This is
especially useful when real field data are analyzed, particu-
larly when no information for the initial parameters is avail-
able. The procedure presented here should be compared
against the standard procedure consisting in finding a solu-
tion for each set of fitting parameters in a multidimensional

Table 5

Results for different optimization algorithms applied to the case of well A using Eq. (2)

Objective Number Optimized Optimized Optimized Resulting Resulting
Function of x

D
P

e
E[fraction] Parameter Parameter                  Method's name

Value Iterations Value Value D[m2/seg] x[m]

9.76E-04 39 0.95 5.63 3.32E-03 2.10E-03 134.9 Nelder-Mead
1.07E-03 3 1.06 4.01 3.60E-03 2.95E-03 150.7 Broyden-Fletcher Goldfarb-Shanno
1.07E-03 3 1.06 4.01 3.60E-03 2.95E-03 150.7 Davidon-Fletcher Powell
1.07E-03 20 1.06 4.04 3.59E-03 2.93E-03 150.3 Steepest-Descent
1.07E-03 3 1.06 4.01 3.60E-03 2.95E-03 150.7 Gill-Murray
9.76E-04 17 0.95 5.63 3.32E-03 2.10E-03 134.9 Sequential Quadratic Programming
9.76E-04 4 0.95 5.63 3.32E-03 2.10E-03 134.9 Levenberg-Marquardt
9.76E-04 4 0.95 5.63 3.32E-03 2.10E-03 134.9 Gauss-Newton
1.08E-03 3 1.07 3.95 3.62E-03 2.99E-03 152.1 Rosenbrock
9.70E-04 8 0.95 5.63 3.32E-03 2.10E-03 134.9 VARPRO

Table 6

Results for different optimization algorithms applied to the case of well B using Eq. (2)

Objective Numbers Optimized Optimized Optimized Resulting Resulting Method's name
Function of x

D
P

e
E[fraction] Parameter Parameter

Value Iterations Value Value D[m2/seg] x[m]

8.47E-03 53 0.69 3.66 5.43E-03 8.93E-03 90.9 Nelder-Mead
8.53E-03 6 0.67 3.99 5.35E-03 8.20E-03 87.8 Broyden-Fletcher Goldfarb-Shanno
8.53E-03 6 0.67 3.99 5.35E-03 8.20E-03 87.8 Davidon-Fletcher Powell
8.53E-03 5 0.67 3.99 5.35E-03 8.20E-03 87.8 Steepest-Descent
8.53E-03 6 0.67 3.99 5.35E-03 8.20E-03 87.8 Gill-Murray
8.53E-03 5 0.67 3.99 5.35E-03 8.20E-03 87.8 Sequential Quadratic Programming
8.49E-03 3 0.71 3.47 5.47E-03 9.42E-03 92.9 Levenberg-Marquardt
8.49E-03 3 0.71 3.47 5.47E-03 9.42E-03 92.9 Gauss-Newton
8.47E-03 3 0.69 3.66 5.43E-03 8.93E-03 90.9 Rosenbrock
8.47E-03 8 0.69 3.66 5.43E-03 8.93E-03 90.9 VARPRO
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parameter grid. In the case when several parameters are in-
volved, the standard procedure becomes cumbersome and
computer time consuming. Further, the procedure discussed
here can provide additional reliability on the solution, when
the same solution appears using different optimization meth-
ods.

The analysis of synthetic data done here has shown that
the best optimization methods are Nelder-Mead (Complex),
Gauss-Newton and Rosenbrock for the case of continuous
injection, and Nelder-Mead, Gauss-Newton, Levenberg-
Marquardt  and SQP  in the spike injection case. However,
none of them can be favored over the others. The worst
method in all the cases was the Steepest-Descent method. It
is to be mentioned that by increasing the noise level above
certain range, the convergence of the different optimization
methods is importantly affected. In the cases analyzed here,
the noise level limit is about 0.17.

The treatment of the data from Loma Alta Sur Field has
illustrated the situation when two or more solutions appear
(several local minima). The same solution is obtained by sev-
eral optimization methods, what is a solid evidence for the
existence of multiple solutions. To prefer one solution over
the others, additional information would be required. Differ-
ent techniques to treat data, such as smoothing abrupt changes
or assigning weights accordingly to data relevance or uncer-
tainty would be useful in analyzing multiple solutions.
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curves obtained.
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