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RESUMEN
El algoritmo de modulación seudoespectral es mejorado y aplicado a la simulación de sismogramas generados por sismos

oceánicos y continentales, como atención a la atenuación y a la modelación explícita de condiciones a la frontera en el fondo
oceánico y a la simulación de la ventana de Rayleigh y la propagación en interfases. El algoritmo se basa en los operadores
diferenciales de Fourier y de Chebyshev con una técnica de decomposición de dominios, una malla para el fluido y otra para el
sólido. Para la propagación se usa una relación de esfuerzo-deformación basada en variables de memoria. Entre los fenómenos
modelados se incluyen las ondas de Scholte, las ondas evanescentes de Rayleigh y los modos dispersivos, así como la ventana de
Rayleigh, un mínimo del coeficiente de reflexión en el fondo oceánico que nunca ha sido simulado con métodos directos. Hemos
modelado los modos de Rayleigh (principalmente M

11
) y las ondas acopladas Rayleigh-Scholte, resolviendo la relación de dispersión

para casos simples. Se modeló también efectos de inhomogeneidades aleatorias en la corteza y manto mediante una función de
autocovarianza tipo von Kármán que simula los efectos de dispersión de ondas.

El programa bidimensional permite una variación material general y una caracterización completa y exacta de la respuesta
para sismos oceánicos y continentales. Se desarrolla un ejemplo para un sismograma originado en la región del Atlántico Sur.

PALABRAS CLAVE: Sismograma, sismo, atenuación, modelado, ondas de Rayleigh, ondas de Scholte, ventana de Rayleigh.

ABSTRACT
Using an improved global pseudospectral modeling algorithm we synthesize seismograms generated by oceanic and conti-

nental earthquakes. Attention is given to attenuation, to explicit modeling of boundary conditions at the ocean-bottom interface,
simulation of the Rayleigh window and interface-wave propagation. The algorithm is based on Fourier and Chebyshev differential
operators and a domain-decomposition technique - one grid for the fluid and another grid for the solid. Wave propagation in the
oceanic and continent crusts and mantle is modeled by using a viscoelastic stress-strain relation based on memory variables.

The main physical phenomena associated with an ocean-crust system are modeled, including Scholte waves, leaking Rayleigh
waves, dispersive modes, and the Rayleigh-window phenomenon due to a minimum in the reflection coefficient of the ocean
bottom, which has not been simulated with direct methods. In particular, we model Rayleigh modes (mainly the M

11
 mode), and

coupled Rayleigh-Scholte waves, for which the dispersion relation is solved in simple cases. Also, we model the effects of random
inhomogeneities in the crust and mantle by using a von Kármán autocovariance probability function, which simulates scattering-
Q-effects.

The 2-D modeling code allows general material variability, and a complete and accurate characterization of the seismic
response of oceanic and continental earthquakes. A synthetic seismogram for an earthquake in the South Atlantic region is pro-
vided.

KEY WORDS: Seismogram, earthquake, attenuation, modeling, Rayleigh waves, Scholte waves, Rayleigh window.

INTRODUCTION

Understanding the physics of wave propagation of
earthquakes is essential for a proper interpretation of the seis-
mic properties and geometrical features of the continental
and oceanic crusts. The dispersion equation of simple sys-
tems, such as an oceanic layer overlying an elastic lossless
half-space, can be solved using analytical methods (Biot,
1952; Ewing et al., 1957, p. 156). More complicated situa-

tions, involving arbitrary velocity variations, fluid-solid in-
terfaces and attenuation with complex mode coupling (e.g.,
Ben-Menahem, 1965; Butler and Lomnitz, 2002; Lomnitz et
al., 2002), require an accurate numerical modeling algorithm
using direct grid methods, so that general variability of the
seismic properties can be modeled (see Carcione, 2001, Chap-
ter 8; and Carcione et al., 2002 for a review). Normal-mode
coupling (Capdeville et al., 2000), Galerkin methods
(Takeuchi et al., 2000), finite differences (Thomas et al.,
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2000), and global pseudospectral methods (Coutel and Mora,
1998; Igel, 1999) have been used to treat this problem. Re-
cently, Komatitsch and Tromp (2002a,b) developed a three-
dimensional spectral-element approach for the simulation of
global seismic propagation throughout the globe. Their al-
gorithm includes anisotropy, attenuation based on memory
variables (Emmerich and Korn, 1987; Carcione, 2001, p.
110), the effects of 3-D mantle and crustal models, the oceans,
the Earth’s ellipticity, topographic features, bathymetry, ro-
tation and self-gravitation. The effect of the ocean is based
upon an equivalent surface load integral, which does not re-
quire meshing, but this approximation breaks down for short
periods, typically below 5 s. (The oceans are assumed to be
incompressible.) Komatitsch and Tromp use Legendre-basis
functions in contrast to Priolo et al. (1994), Seriani (1998)
and Priolo (1999), who use Chebyshev-basis functions.

For wave propagation in the oceanic crust, in particu-
lar, for modeling interface waves and the Rayleigh-window
effect, we explicitly model the slip boundary condition at
the ocean-bottom interface by using a domain-decomposi-
tion technique and pseudospectral methods. One mesh is used
to discretize the ocean and another the crust. For each mesh,
a method developed by Carcione (1992) is used. It involves
a Fourier method along the interface direction and Chebyshev
along the direction perpendicular to the surface, or the ocean-
bottom interface. Thus, the grid points are equally spaced in
the horizontal direction and are given by the Gauss-Lobatto
collocation points in the vertical direction (denser at the edges
of the mesh). The domain-decomposition approach for vis-
coelastic waves is illustrated in Carcione (1991, 1994a).
Modeling examples are given in Kessler and Kosloff (1991)
and Tessmer et al. (1992) for elastic media, and in Carcione
(1996) for viscoelastic media. We consider a flat interface,
but the algorithm can be extended to model topographic fea-
tures of the ocean bottom by using a mapping transforma-
tion (e.g., Carcione, 1994b).

We first verify the domain decomposition by compar-
ing the numerical and analytical solutions in a lossless model.
A test of the anelastic model simulates the Rayleigh-win-
dow phenomenon. This is a viscoelastic effect, implying that
the energy incident on the boundary at angles within that
window is substantially transmitted. Borcherdt et al. (1986)
present theoretical and experimental results for a water-stain-
less steel interface (e.g., Carcione, 2001, p. 214). To our
knowledge, the Rayleigh window has not previously been
simulated with direct grid methods.

The modeling is then used to model propagation in the
oceanic and continental crusts. The physics is first illustrated
for a homogeneous ocean bottom (Biot, 1952). Interface
waves are dispersive and several modes can propagate. The
fundamental mode is a Scholte wave at short wavelengths in
terms of the water depth, and becomes a Rayleigh wave at

long wavelengths. We model the propagation of the funda-
mental Rayleigh mode in the continental crust, the M

11
 mode.

As a final example we show a synthetic seismograms gener-
ated by an earthquake in the South Atlantic; lateral varia-
tions in seismic velocity are modeled. Since the coherency
of the wave field can be degraded by the heterogeneous na-
ture of the crust at small scales, we use a spatially isotropic
von Kármán autocovariance probability function of high
fractal dimension to simulate scattering-Q effects (Holliger,
1997). We consider correlation lengths of the order of a few
km and a standard deviation of the velocity fluctuations of a
few percent.

EQUATION OF MOTION

The time-domain equations for propagation in a het-
erogeneous viscoelastic medium can be found in Carcione
(2001, p. 110). The anelasticity is described by the standard
linear solid, also called the Zener model, that gives relax-
ation and creep functions in agreement with experimental
results (Zener, 1948).

The two-dimensional velocity-stress equations for
anelastic propagation in the (x, z)-plane, assigning one re-
laxation mechanism to dilatational anelastic deformations (ν
= 1) and one relaxation mechanism to shear anelastic defor-
mations (ν = 2), can be expressed by

i) Euler-Newton’s equations:

       ˙ ( ) ,, ,υ
ρ

σ σx xx x xz z xf= + +1
(1)

and

        ˙ ( ) ,, ,υ
ρ

σ σz xz x zz z zf= + +1
(2)

where υ
x
 and υ

z
 are the particle velocities, σ

xx
, σ

zz
 and σ

xz
 are

the stress components, ρ is the density and f
x
 and f

z
 are single

body forces. A dot above a variable denotes time differentia-
tion.

ii) Constitutive equations:

   ˙ ( ) ( ) ,, , , ,σ υ υ µ υ υxx x x z z x x z z xxk e e M= + + + − + +1 2 (3)

   ˙ ( ) ( ) ,, , , ,σ υ υ µ υ υzz x x z z x x z z zzk e e M= + + − − + +1 2 (4)

and

      ˙ ( ) ,, ,σ µ υ υxz x z z x xze M= + + +3 (5)

where e
1
, e

2
 and e

3
 are memory variables, M

xx
, M

zz
 and M

xz

are moment tensor components defining the radiation pat-
terns of the source mechanism, and k and µ are the unrelaxed
(high-frequency) bulk and shear moduli, respectively.
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iii) Memory variable equations:

˙ ( )
( ) ( ) , , ( )

e
e

x x z z1 1 1
1
1

1 1= −








 + −

∈τ τ
υ υ

τσ σ
(6)

˙ ( )
( ) ( ) , , ( )

e
e

x x z z2 2 2
2
2

1 1= −








 + −

∈τ τ
υ υ

τσ σ
(7)

and

˙ ( )
( ) ( ) , , ( )

e
e

x z z x3 2 2
3
2

1 1= −








 + −

∈τ τ
υ υ

τσ σ
(8)

where τσ
υ( )  and τ υ

∈
( )  are material relaxation times, corre-

sponding to dilatational (ν = 1) and shear (ν = 2) deforma-

tions. We recall that in a two-dimensional world, µ ρ= VS
2

and k V VP S= −ρ( )2 2 , where V
P
 an V

S
 are the compressional-

and shear-wave unrelaxed velocities.

The equations for the viscoacoustic medium are ob-
tained from (1) - (8) by setting σ

xx
=σ

zz
≡ -p, σ

xz
 = 0 and µ=0.

Then, the equations of motion are

     ˙
,

,υ
σ
ρx

x
xf= + (9)

and

     ˙
,

,υ
σ
ρz

z
zf= + (10)

where
˙ ( ),, ,σ υ υ= + +k ex x z z 1 (11)

together with the memory-variable equation (6). The intro-
duction of additional differential equations for the memory
variables avoids numerical computation of the convolution
integrals involved in the viscoelastic stress-strain relation.
Physically, the stress at time t depends on past values of the
strain field, and this information is contained in the memory
(hidden) variables. The extension of the theory to many dis-
sipation mechanisms is straightforward (Carcione, 2001, p.
210). Using many mechanisms whose peak relaxation fre-
quencies are equally spaced on the log-frequency axis, it is
possible to model a constant Q stress-strain relation.

Complex velocities

The complex velocities of body waves, υ
P
 and υ

S
, are

the key quantities to obtain the phase velocities and attenua-
tion factors. They are defined by

ρυ ω ω µ ω ρυ ω µ ωP SkM M M2
1 2

2
2( ) ( ) ( ), ( ) ( )= + =   and  

(12)

(Carcione, 2001, p. 65, 85), where ω is the angular frequency,
and

M
i

i
υ

σ
υ

υ

υ

σ
υ

τ

τ

ωτ

ωτ
ν=

+

+











∈

∈
( )

( )

( )

( )
,

1

1
    =1,2 (13)

are the Zener complex moduli.

The relaxation times can be expressed as

      τ
τ

τ τυ

υ
υ σ

υ υ τ

υ
∈ ∈= + +







= −( ) ( ) ( ), ,0

0
0
2

0
1 1

2
0

Q
Q

Q
   (14)

where τ
0
 is a relaxation time such that 1/τ

0
 is the center angu-

lar frequency of the relaxation peak and Q
0υ

 are the mini-
mum quality factors at this center frequency.

The quality factor, Q
01

, associated with the bulk modu-
lus, is obtained from the relation

      
1 3 1 2 1 2 2

2 201 0 02

2 2

2 2
+ = − − − −

−
σ σ σ σ

Q Q Q
V V

V VP

P S

P S

( ) ( )

( )
,    = (15)

(Winkler and Nur, 1979), where Q
0P

 is a parameter related to
the P-wave quality factor and σ is Poisson's ratio.

Similarly, the complex velocity for the viscoacoustic
medium is

ρυ ω ωP kM2
1( ) ( )=  . (16)

PROPAGATION CHARACTERISTICS

A general plane wave solution for the particle velocity
field v = (υ

x
, υ

z
) is

   v = iωUexp [iω(t - s
x
x - s

z
z)], (17)

where s
x
 and s

z
 are the components of the complex slowness

vector, t is the time variable and U is a complex vector. For
homogeneous viscoelastic waves, the directions of propaga-
tion and attenuation coincide and

           s
x
 = sin θ/υ;     s

z
 = cos θ/υ, (18)

where θ is the propagation angle, measured with respect to
the z-axis, and υ = 1/s is the complex velocity.

For homogeneous waves in isotropic media, the phase
velocity and attenuation factors are given by

υ
υp = ( )




−

Re ,1
1

(19)
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α ω
υ

= − ( )Im ,1 (20)

the group velocity is

υ υ ω
υ

υ
ωg p

p

pd

d
= −










−

1
1

, (21)

and the quality factor is given by

       Q = Re( )

Im( )

υ
υ

2

2 (22)

(e.g., Carcione, 2001), where υ for body waves is given in
the previous section (equations (12)-(16)), and υ for inter-
face waves is given in the next section. The concept of group
velocity must be used with caution, since it loses physical
meaning for highly anelastic media (Carcione, 2001, p. 145).

DISPERSION EQUATIONS

Ocean overlying the crust

Press and Ewing (1950) and Biot (1952) obtained the
dispersion equation for the phase velocity as a function of
wavelength (see Ewing et al., 1957, p. 156).

Solution of the problem implies traction-free boundary
conditions at the sea surface and continuity of normal stress
(pressure in the fluid) and normal displacement at the ocean
bottom. The dispersion equation can be expressed as

tan
/

/

ω
υ

υ
υ

ρ υ υ υ

ρ υ υ υ

υ
υ

υ
υ

υ
υ

H

P

S P

P P S S

2

2

2
4 2 2

1
4 2 2

2

2

2

2

2

2

2

1

2 1

2 2 2 2

1
1

1
4 1 1 2−















=
−

−
− − − −






























,

(23)

where 1 denotes the fluid and 2 the solid, υ is the complex
velocity of the interface wave, and H is the water depth. The
wave system described by equation (23) will be attenuated
for complex υ. In the absence of viscoelastic dissipation, the
energy loss is associated with refraction of waves from the
liquid layer into the solid bottom. For the lossless case and
VP2

 > VS2
 > VP1

, which is considered in this work, undamped
propagation occurs for

I   VP2
 > VS2

 ≥ υ ≥ VP1

II   VP2
 > VS2

 > VP1
 ≥ υ .

The branch of lowest velocity shows a continuous tran-
sition between Scholte waves at the ocean bottom and free
Rayleigh waves at the crust when going from short wave-
lengths to long wavelengths (compared to the water depth).

Sediment layer overlying the crust

We solve the dispersion equation in the form obtained
by Ewing et al. (1957, p. 190). For completeness the disper-
sion equation is given in the appendix. The difference with
Ewing et al.’s analysis resides in the inclusion of anelastic-
ity, and therefore, the velocities involved in the dispersion
equation are complex and frequency-dependent. The phase
velocity of the first mode of the M

1
 branch (M

11
) tends to the

velocity of the Rayleigh wave of the half space at long wave-
lengths, and approaches the velocity of the Rayleigh wave
of the layer at short wavelengths. This is the relevant branch
regarding the propagation of earthquake Rayleigh waves
(Ewing et al., 1957, p. 195). The Stoneley modes at the in-
terfaces are related to the M

2
 branch.

MODELING METHOD AND DOMAIN
DECOMPOSITION

Wave propagation in the continental crust (and mantle)
is modeled using the heterogeneous formulation of the vis-
coelastic wave equation used by Carcione (1992) to simu-
late Rayleigh waves for seismic exploration applications. The
transition continent-ocean is modeled by using the same for-
mulation and setting the shear modulus of the ocean equal to
zero. A domain-decomposition technique is developed and
tested to model wave propagation at the ocean bottom. The
algorithm is given in detail in the following subsection.

Domain decomposition

We implement a domain-decomposition technique and
use the viscoacoustic wave equation to model propagation
in the ocean. Two grids model the fluid and the solid
subdomains (labeled 1 and 2, respectively). The boundary
conditions between subdomains require continuity of

  υ
z
, σ

zz
, and σ

xz
(= 0). (24)

The solution on each of the two grids is obtained by
using the Runge-Kutta method for time stepping and the
Fourier and Chebyshev differential operators to compute the
spatial derivatives in the horizontal and vertical directions,
respectively (Carcione, 1992, 1994a, 2001). Chebyshev trans-
forms are computed with the FFT, with a length twice of that
used by the Fourier method (Gottlieb and Orszag, 1977).
Since the sampling points are very dense at the edges of the
mesh, the Chebyshev method requires a one-dimensional
stretching transformation to avoid very small time steps
(Kosloff and Tal-Ezer, 1993). To combine the two grids, the
wave field is decomposed into incoming and outgoing wave
modes at the interface between the solid and the fluid. The
inward propagating waves depend on the solution exterior
to the sub-domains and therefore are computed from the
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boundary conditions (24), while the behavior of the outward-
propagating waves is determined by the solution inside the
subdomain. The approach, given in Carcione (1991), and
adapted here for equations (1)-(11), involves the following
equations for updating the field variables at the grid points
defining the fluid-solid interface:

υ υx
new

x
old( ) ( )( ) ( ),1 1=

υ υ υ σ σz
new

P P P z
old

P z
old old

zz
oldZ Z Z Z( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )= +[ ] + + −[ ]−

1 2 2 2 1 1 2
1

σ υ υ υ σ σ( ) ( ) ( ) ( )
( ) ( )( ) ( )

( ) ( )
( ) ( ) ( )

( )
( )

( )
,new

zz
new P P

P P
z
old

z
old

old

P

zz
old

P

Z Z
Z Z Z Z

= =
+

− + +












1 2
1 2

1 2 1
1

2
2

e e knew old new old
1 1 11 1 1 1 1( ) ( ) ( ) ( )( ) ( ) ( ) / ( ) ( ) ,= + [ ] −[ ]φ σ σ

υ υ σx
new

x
old

xz
old

SZ( ) ( ) ( )( ) ( ) ( ) / ( ),2 2 2 2= −

σ xz
new( ) ( ) ,2 0=

σ σ µ
µ

σ σxx
new

xx
old

zz
new

zz
oldk

k
( ) ( ) ( ) ( )( ) ( )

( ) ( )
( ) ( )

( ) ,2 2
2 2
2 2

2= +
−
+

−[ ]
e e knew old

zz
new

zz
old

1 1 12 2 2 2 2 2( ) ( ) ( ) ( )( ) ( ) ( ) / ( ) ( ) ( ) ,= + +[ ] −[ ]φ µ σ σ

e e knew old
zz
new

zz
old

2 2 22 2 2 2 2 2( ) ( ) ( ) ( )( ) ( ) ( ) / ( ) ( ) ( ) ,= − +[ ] −[ ]φ µ σ σ

e enew old
xx
old

3 3 22 2 2 2 2( ) ( ) ( )( ) ( ) ( ) / ( ) ( ) ,= − [ ][ ]φ µ σ

(25)

where φ
υ
 = 1/τ

σ
(ν) - 1/τ

∈
(ν), Z

P
 (1) = ρ

1
V

P1
, Z

P
 (2) = ρ

2
V

P2
, and

Z
S 
(2) = ρV

S2
. The update is performed at each time step.

The upper boundary of subdomain 1 may satisfy free-
surface or non-reflecting boundary conditions (Carcione,
1992: 1994a,b). The free-surface boundary equations are

υ υx
new

x
old( ) ( ) ,=

υ υ σz
new

z
old old

PZ( ) ( ) ( ) / ,= −

σ ( ) ,new = 0

e e knew old old
1 1 1
( ) ( ) ( )/ .= − [ ]φ σ (26)

The non-reflecting boundary equations are

υ υ σz
new

z
old old

PZ( ) ( ) ( ) / ,= −( )1
2

σ σ υ( ) ( ) ( ) ,new old
P z

oldZ= −( )1
2

e e k Znew old old
P z

old
1 1 1 2( ) ( ) ( ) ( )/( ) .= − [ ] +( )φ σ υ  (27)

The lower boundary of subdomain 2 satisfies non-re-
flecting boundary conditions (Carcione, 1992, 1994a-b):

υ υ σx
new

x
old

xz
old

SZ( ) ( ) ( ) / ,= +( )1
2

υ υ σz
new

z
old

zz
old

PZ( ) ( ) ( ) / ,= +( )1
2

σ σ
µ

µ
σ υxx

new
xx
old

zz
old

P z
oldk

k
Z( ) ( ) ( ) ( )( ) ( )

( ) ( )
,= −

−[ ]
+[ ]

−( )2 2

2 2 2

σ σ υzz
new

zz
old

P z
oldZ( ) ( ) ( ) ,= +( )1

2

σ σ υxz
new

xz
old

S x
oldZ( ) ( ) ( ) ,= +( )1

2

e e k Znew old
zz
old

P z
old

1 1 1 2( ) ( ) ( ) ( )/( ( )) ,= − +[ ] −( )φ µ σ υ

e e k Znew old
zz
old

P z
old

2 2 2 2( ) ( ) ( ) ( )/( ( )) ,= + +[ ] −( )φ µ σ υ

e e Znew old
xz
old

S x
old

3 3 2 2( ) ( ) ( ) ( )/( ) .= − [ ] −( )φ µ σ υ (28)

(Note that to obtain the boundary equations for the opposite
boundary, say, horizontal boundaries, the method requires
the following substitutions: z → - z, which implies υ

z
 → - υ

z
,

→ - σ
xz
, and e

3
 → - e

3
.) In addition to the non-reflecting con-

ditions, absorbing strips are used to further attenuate the wave
field at non-physical boundaries (Carcione, 1992). The damp-
ing function is a hyperbolic cosine and the performance is
quite acceptable. A better approach would be the perfectly-
matched layer method used in electromagnetism (Berenger,
1994). This method is based on a non-physical modification
of the wave equation inside the absorbing strips, such that
the reflection coefficient at the strip/model boundary is zero.

Scattering

Scattering caused by heterogeneities in the crust and
mantle is modeled as variations in the unrelaxed wave ve-
locities. Let ∆V

0
 be the maximum deviation of the velocity

field from the background value V
0
 (P- or S-wave). The ve-

locity field at (x, z) is first subjected to the variations (∆V)r,
such that

-∆V
0
 ≤ (∆V)r ≤ ∆V

0
,  (29)

where (∆V)r is obtained from a 2-D random generator, and
the superscript “r” denotes random. (Random numbers be-
tween 0 and 1 are generated and then scaled to the interval
[-1, 1]∆V

0
).

Wave velocity variations in the lithosphere are well de-
scribed by the von Kármán autocovariance function (Frankel
and Clayton, 1986; Holliger, 1997). The corresponding
wavenumber-domain power spectrum is

    P(k
x
, k

z
) = K(1 + k2a2)-(ν+N/2), (30)

where k k kx z= +2 2  is the wavenumber, a is the correlation

length, ν(0 < ν < 1) is a self-similarity coefficient, K is a
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normalization constant, and N is the Euclidean dimension.
The von Kármán correlation function describes self-affine,
fractal processes of fractal dimension N + 1 - υ at a scale
smaller than a.

The velocity is then calculated as

V (x, z) = V
0
 ± ∆V (x, z), (31)

where

∆ ∆V k k V k k P k kx z
r

x z x z( , ) ( ) ( , ) ( , ),= (32)

with ( ) ( , )∆V k kr
x z  being the Fourier transform of (∆V)r

(x, z). (The bar denotes the space Fourier transform.)

To compute consistent random variations of the S-wave
velocity (with respect to the P-wave velocity), we use the
relation

( ) ( , ) ( ) ( , ).∆
∆
∆

∆V x z
V
V

V x zS
r S

P
P

r=








0

0

EXAMPLES

In this section, we test the modeling algorithm with an
analytical solution, model the Rayleigh-window phenom-
enon, show examples of wave propagation in the oceanic
and continental crusts, and simulate a real earthquake. The
properties of water used are VP1

 = 1500 m/s, ρ
1
 = 1000 kg/

m3, and Q01
1−  = 0.0001.

Comparison with analytical solution

We test the domain-decomposition method by compar-
ing numerical and analytical solutions, with special atten-
tion to the simulation of Scholte and leaky Rayleigh waves.

The analytical solution for the fluid-solid plane inter-
face in lossless media is obtained by the method of Cagniard-
de Hoop (de Hoop and van der Hijden, 1983; Berg et al.,
1994). The two grids, corresponding to the fluid and solid
phases, each have 405 × 81 points with a grid spacing of 1.5
km in the horizontal direction and a vertical size of 90 km
(the locations of the closest grid point to the interface are
225 and 115 m for the fluid and solid meshes, respectively).
The source is a vertical force applied to the surface of the
solid bottom, and has a Ricker wavelet with a dominant fre-
quency of 0.1 Hz. The receiver is located at 300 km from the
source and at 115 m below the interface. We consider a hard
ocean bottom, which implies a high material contrast at the
interface and the presence of a strong leaky Rayleigh wave.
The properties of the ocean bottom are VP2

 = 5712 m/s, VS2
 =

3356 m/s, and ρ
2
 = 2500 kg/m3. Solution of the Scholte-wave

dispersion equation (e.g., Brekhovskikh and Lysanov, 1991,
p. 67) yields a velocity of 1496 m/s for the Scholte wave and
3091 m/s for the leaky Rayleigh wave. The Runge-Kutta al-
gorithm requires a time step of 0.04 s for stability and accu-
racy. The numerical and analytical solutions are compared
in Figure 1, where it is clear that the agreement is very good.

Figure 2 shows the numerical solutions of the υ
z
-com-

ponent for the elastic (a) and viscoelastic (b) cases (dashed
and solid lines, respectively). The viscoelastic ocean bottom
has the parameters Q

01
 = 200 and Q

02
 = 100 at 0.1 Hz. Anelas-

ticity affects the leaky Rayleigh wave more than the other
events.

The Rayleigh window

The Rayleigh-window phenomenon has been investi-
gated by Borcherdt et al. (1986), who found that the window
should be observable in appropriate sets of wide-angle re-
flection data and that it can be useful in estimating attenua-
tion for various ocean bottom reflectors.

Modeling the Rayleigh window serves to evaluate the
performance of the domain-decomposition method in vis-
coelastic media. We perform a numerical evaluation of the
reflection coeficient versus incidence angle from synthetic
data generated by the modeling algorithm. The technique has
been used by Kindelan et al. (1989) for lossless media. Fig-
ure 3 shows the comparison of the numerical and analytical
P-wave reflection coeficient (a) and phase angle (b) for the
oceanic crust defined by VP2

 = 4850 m/s, VS2
 = 2800 m/s, ρ =

2600 kg/m3, Q
01

 = 1000 and Q
02

 = 10. The modeling algo-
rithm correctly simulates the Rayleigh-window phenomenon,
i.e., the magnitude of the reflection coeficient and phase-
change slope. The mismatch between theory (e.g., Carcione,
2001) and numerical experiments is due to the fact that the
receivers are located at h = 1.2739 m above the interface.
Then, there is a phase shift between the incident wave and
the reflected wave. At normal incidence, the correction is
arctan (2hω /  VP1

). For a frequency of f = 20 Hz and VP1
 =

1480 m/s, we obtain 12° of phase shift, which coincides with
the mismatch observed in Figure 3.

It is difficult to observe the Rayleigh-window phenom-
enon in the space-time domain, since the reflected pulse is
masked by the head wave, because the window is located
beyond the S-wave critical angle. The results of Figure 3
constitute a further confirmation of the correctness of the
modeling method. To our knowledge, this is the first simula-
tion of this phenomenon by using direct grid methods.

Propagation in the oceanic crust

The physics of wave propagation in the ocean is char-
acterized by the propagation of infinite modes, showing ve-
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locity dispersion (Biot, 1952). We consider the ocean over-
lying a solid half space to model the physics illustrated in
the previous section. The properties of the ocean bottom used
are VP2

 = 5712 m/s, VS2
 = 3356 m/s, and ρ

2
 = 2500 kg/m3.

Figure 4 shows the normalized phase (a) and group (b)
velocities of the fundamental mode R

0
 (lowest branch) and

the next three higher modes R
1
, R

2
 and R

3
 versus the normal-

ized frequency γ = fH/VP1
 = H/λ, where f = ω/2π and λ is the

wavelength. In the long-wavelength limit (γ→0), the phase

and group velocities of R
0
 tend towards an asymptotic value

equal to 3078 m/s = 0.917VS2
 which is the velocity of the

Rayleigh wave traveling along the free surface of the solid
half space. The continuous transition between the fundamen-
tal mode R

0
 and the Scholte wave takes place at γ = 2.162

where υ
p
 = VP1

. The Scholte wave velocity is slightly lower
than the speed of sound in water, tending towards an asymp-
totic value υ

p
 = 0.997 VP1

 for high frequencies. The higher
modes display their characteristic features, starting at υ

p
 =

VS2
 for the limiting values of γ, corresponding to the onset

Fig. 1. Numerical and analytical solutions (dots and solid line, respectively) of the υ
x
-component (a) and υ

z
-component (b), corresponding to

the ocean-bottom interface. The source is a compressional force applied to the solid at 115 m below the interface. The receiver is located at the
same horizontal position and at 300 km from the source. The different waves are indicated.
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frequency of the individual mode, and approaching VP1
 in

the short-wavelength limit (γ → ∞). Their group velocity
maxima (the Airy phase), on the other hand, gradually de-
crease with increasing order, which is a common feature
observed in real seismograms (e.g. Chapman and Staal, 1991;
Forsyth, 2000).

The viscoelastic ocean bottom (dashed lines) has the
parameters Q

01
 = 200 and Q

02
 = 100, and the center of the

relaxation peaks at 1/τ0 = 0.166 Hz (see equations (13) and
(14)), corresponding to γ = 10 as shown in Figure 4c. The
corresponding relaxation peaks for the Rayleigh waves are
located at lower frequencies, with their location and value
increasing with increasing mode number. Notice that the lo-
cation of the relaxation peaks (c) coincide with points of maxi-
mum curvature of the phase velocity υ

p
 (a), or maximum

slope of the group velocity υ
g
 (b). The location of a small

peak in the Scholte wave attenuation coincides with that of
the body waves.

Consider a comparison of the model predictions with
real data. Attenuation of dispersed surface waves traveling
along an oceanic path has been analyzed by Ben-Menahem
and Singh (1981). Their results show that the attenuation
coefficient for the fundamental mode Rayleigh wave, defined
by

     Γ = π
υgQT  , (34)

where T = 1/f is the wave period, reveals some striking fea-
tures; a monotonic increase in attenuation is apparent, from
T = 100 s to a broad maximum centered around T = 45 s.
Then, a minimum in attenuation at T = 23 s is followed by a
steep increase towards the short-period range.

Fig. 2. Numerical solutions of the υ
z
-component for the elastic and viscoelastic cases (dashed and solid lines, respectively). The source is a

compressional force applied to the solid at 115 m below the interface. The receiver is located at the same horizontal position and at 300 km
from the source. The different waves are indicated.

Fig. 3. The Rayleigh window at the ocean-crust interface. P-wave
reflection coefficient (a) and phase angle (b) versus incidence angle.
The solid line corresponds to the analytical reflection coefficient
and the symbols to the numerical evaluation at 18, 19 and 20 Hz.
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Using their data for the fundamental-mode Rayleigh
wave traveling across the Atlantic, from Toledo (Spain) to
Trinidad island, we have solved for the corresponding roots
of the dispersion equation (23) for the simple two-layer
model. Figure 5 shows the attenuation (34), and phase and
group velocities obtained for models with ocean depths H =
5, 10 and 15 km, respectively. The data of Ben-Menahem
and Singh (1981) are shown for comparison. The main fea-

tures from all their observations covering an extended pe-
riod range, as summarized in their Figure 10.18, are well
reproduced in the modeling shown in Figure 5a, using real-
istic material properties for the solid half-space to match the
observed velocities in Figure 5b (V

S2
 = V

R0
/0.9, V

P2
=V

S2
 =

1.65 and ρ
2
/ρ

1
 = 2.8). However, to match their attenuation

data, in particular the locations of the attenuation minimum
and maximum at 23 and 45 seconds, an unrealistic value of

Fig. 4. Normalized phase velocity (a), group velocity (b) and dissipation factor (c) of the fundamental-mode Rayleigh wave R
0
 and the three

higher modes R
1
-R

3
 for an elastic (solid line) and anelastic crust (dashed line). The transition (indicated by a triangle) between the fundamental

mode R
0
 to a Scholte wave is shown in detail in (a). Notice the shift to lower frequencies of the Rayleigh-wave attenuation peaks compared to

those of the body waves and Scholte wave (c).
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the ocean depth of 15 km has to be applied, indicating that
the two-layer model is an over-simplification of reality.

Sensitivity to H is also seen in the phase and group
velocities in Figure 5b. As in Figure 4, υ

R0
 → υ

Scholte
 for small

values of T, with the transition point depending on the value
of H(T = 0.7, 1.4 and 2.2 sec for H = 5,10 and 15 km, respec-
tively). When T→∞, for all values of H, the velocities tend
to the velocity of R

0
 for the elastic half-space.

Let us now perform the simulation of seismograms us-
ing the domain-decomposition modeling method. In the first
model, the wavelength of the pulse is much smaller than the
water depth (the long-wavelength limit). We consider that
the two meshes have 405 × 81 grid points. The horizontal
grid spacing is 1.5 km and the vertical size of each mesh is
90 km. (The locations of the closest grid point to the inter-
face are 225 and 115 m for the fluid and solid meshes, re-
spectively). The source location is 2.7 km below the ocean

Fig. 5. Theoretical and estimated attenuation coefficient Γ (a) and phase and group velocities (b) for the fundamental-mode Rayleigh wave R
0

using a two-layer model of the wave path across the Atlantic Ocean (Ben-Menahem and Singh, 1981). Results for alternative values of the
ocean depth H are shown. Γ

P
 and Γ

S
 are the attenuation coefficients for P- and S-waves, respectively, based on the standard linear solid model

for viscoelasticity.
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bottom (sixth grid point), and has a dominant frequency of
0.166 Hz. The water depth to wavelength ratio is 10 (the
dominant wavelength in the ocean is 9 km). The traction-
free boundary conditions (26) are satisfied at the upper bound-
ary (the sea surface). Forty grid points are used as absorbing
boundary at the sides of both meshes and bottom of the lower
mesh (in addition to the non-reflecting conditions (27)). The
time step of the Runge-Kutta algorithm is 0.06 s. Figure 6
shows a synthetic seismogram of the vertical particle-veloc-
ity component, recorded at the ocean bottom, for the lossless
case (a), and a comparison between traces at 180 km from

the source for the lossless (dashed line) and lossy (solid line)
media (b). The viscoelastic ocean bottom has the parameters
Q

01
 = 200 and Q

02
 = 100. The leaky Rayleigh wave and the

shear body wave can hardly be separated in the synthetic
traces. The energy of the leaky Rayleigh wave is radiated
into the ocean as a head P wave, under the Rayleigh angle
(64° with respect to the ocean-bottom interface). This is the
reason for the amplitude attenuation with increasing distance.
On the contrary, the Scholte wave, being a real root of the
dispersion equation, shows no attenuation with increasing
distance.

Fig. 6. Synthetic seismogram of the vertical particle-velocity component at the ocean bottom for the lossless case (a), and comparison between
traces at 180 km from the source for the lossless (dashed line) and lossy (solid line) simulations. The experiment corresponds to the classical
problem solved by Biot (1952) for short-wavelengths. The labeled events are the P wave in the crust (P wave), the S wave in the crust (S wave),
the leaky Rayleigh wave (leaky R wave), the Scholte wave, the reflection of the P wave at the ocean surface, and the reflection at the surface

of the head wave connecting the P wave in the ocean with the P(S) wave in the crust (PPH-P (PSH-P)).
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The existence of the leaky wave is subject to the condi-
tion that the sound velocity in the liquid must be less than
the shear velocity in the solid (this a necessary but not a suf-
ficient condition). The leaky Rayleigh wave approaches the
Rayleigh wave as the density of the liquid tends to zero.
Hence, the Rayleigh wave in a vacuum solid interface is not
a Scholte wave when the density of the liquid goes to zero.

While the free Rayleigh wave always exists, the leaky
Rayleigh wave does not (Brower et al., 1979). Most quasi-
surface waves, corresponding to roots lying on lower Rie-
mann sheets, are not always physically separable on experi-
mental or numerical simulations because of their close asso-
ciation with body-wave phases. For instance, Phinney (1961)
predicts a pseudo-P pulse coupled to the P wave.

Fig. 7. Synthetic seismograms of the vertical particle-velocity component at the ocean bottom for the lossless (a) and lossy (b) cases. The
experiment corresponds to the classical problem solved by Biot (1952) for the long-wavelength limit.
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For a hard fluid-solid interface, the leaky wave has a
velocity slightly lower than the body-wave shear velocity,
and the Scholte wave velocity is lower than the liquid sound
velocity. As the solid becomes stiffer, the Scholte wave ve-
locity approaches that of the liquid. For soft solids (body-
wave shear velocity lower than the sound velocity of the liq-
uid), the leaky Rayleigh-type root is not a physical solution.
For the long-wavelength limit, the vertical size of the ocean
mesh is 4 km (water depth). The location of the second and

penultimate grid points of the upper mesh are 33 and 65 m,
respectively, while the location of the second grid point of
the lower mesh is 128 m. In this case, the water depth to
wavelength ratio is equal to 0.44 (the dominant wavelength
in the ocean is 9 km). Figure 7 shows synthetic seismograms
of the vertical particle-velocity component recorded at the
ocean bottom for the lossless (a) and lossy (b) cases. The
first train of events is a cluster of superimposed wave pack-
ets, composed of R

i
, i = 1,..., n, with the higher frequencies

(higher modes) at the tail of the train. These events are Airy
phases related to the group velocity maxima (see Figure 4b).
The last, low frequency, train of events is related to the Airy-
phase minimum of the fundamental mode R

0
 (γ = 0.31) (Fig-

ure 4b). This interpretation is also justified by the low at-
tenuation of the latter train compared to the higher attenua-
tion of the first wave train (Figure 4c).

Propagation in the continental crust

To model wave propagation in the continental crust,
we consider a sediment layer overlying the crust, modeled
as a solid layer overlying a solid half-space. The dispersion
equation is given in the appendix. The sediment layer has a
thickness of 5.6 km and the following properties: VP1

 = 2500
m/s, VS1

 = 1200 m/s, ρ
1
 = 2100 kg/m3, Q

01
 = 200 and Q

02
 =

100. The properties of the crust are VP2
 = 5712 m/s, VS2

 =
3356 m/s, ρ

2
 = 2500 kg/m3, Q

01
 = 400 and Q

02
 = 500. Figure

8 shows the normalized phase (a) and group (b) velocities of
the fundamental-mode surface wave M

11
 and the three higher

modes for an elastic (solid line) and anelastic (dashed line)
model. At the low-frequency limit, the velocity of the funda-
mental mode M

11
 tends to the velocity of Rayleigh waves in

the substratum. The other modes tend to the velocity of the
shear wave in the substratum. At the high-frequency limit,
the velocity of the fundamental mode approaches the
Rayleigh-wave velocity in the sediment layer, and the other
modes tend to the shear-wave velocity of that layer.

We perform a simulation of an earthquake, where the
mesh has 405 × 101 points with a grid spacing of 1.5 km in
the horizontal direction and a vertical size of 106 km. The
source is a horizontal force at 7.15 km depth (below the sedi-
ment-crust interface), with a central frequency of 0.166 Hz
(γ = fH/VS1

 = 0.77). The modeling method developed by
Carcione (1992) is used for the simulation and the time step
of the algorithm is 0.04 s. Figure 9 shows synthetic seismo-
grams of the horizontal (a) and vertical (b) particle-velocity
components, recorded at the surface. A single trace at 300
km from the epicenter is shown in Figure 10. Three wave
trains can be distinguished, particularly in the horizontal com-
ponent. In Figure 10, the first arrival (50 s) is the compres-
sional body wave. Then follows the M

12
 mode (100 s) and

the fundamental mode (250 s). The indicated arrival times
correspond to the onset of the stronger events. The band-like

Fig. 8. Normalized phase velocity (a), group velocity (b) and dissi-
pation factor (c) velocities of the fundamental-mode surface wave
M

11
 and the three higher modes for an elastic (solid line) and anelastic

(dashed line) model of the continental crust. The broken and dotted
lines in (c) are the dissipation factors of the P and S body waves,

respectively.
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frequency content of the source implies that the different
modes cannot be identified with confidence in the seismo-
grams.

Simulation of an earthquake in the South Atlantic

The modeling algorithm allows us to investigate cases
of complex geology, which apply to the propagation of earth-

quake surface waves across the ocean-continent transition
and regions of lateral velocity variations. The algorithm de-
veloped by Carcione (1992) is used for the following simu-
lation, where the S-wave velocity of water is set to a very
small number to preclude the propagation of shear waves in
the ocean. The free surface conditions are singular for V

S
 = 0

[see Carcione (1992)]. We simulate the January 7, 2000 earth-
quake (Mω = 5.5) recorded at Ushuaia seismograph station

Fig. 9. Synthetic seismograms of the horizontal (a) vertical (b) particle-velocity components corresponding to the continental-crust model.
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(USHU) (Figure 11). The location of the epicenter is indi-
cated by a star, and the source has a depth of 15 km below
the sea level (this event is indicated as 010700A in the Harvard
CMT Catalog). The real seismograms are shown in Figure
12. Figure 13 shows the two-dimensional model, where the
numbers indicate the different layers, whose properties are
given in Table 1. The main features of the model have been
obtained from lithosphere CRUST 5.1 (Mooney et al., 1998)
and tomography results published by Vuan et al. (2000).

The mesh has 729 × 101 points with a grid spacing of
1.5 km in the horizontal direction and a vertical size of 106.5
km (the location of the closest grid point to the surface is
174 m). The source is a dip-slip moment tensor with compo-
nents M

xx
 = -M

0
 sin 2δ, M

zz
 = M

0
 sin 2δ and M

xz
 = -M

0
 cos 2δ,

where M
0
 is the moment and δ is the dip angle. The rake and

strike angles are both equal to π/2 (e.g., Aki and Richards,
1980, p. 117). Here, we consider M

0
 = 1 and δ = 40°. The

source has a frequency-domain Gaussian function with a peak
at 0.2 Hz, and Ushuaia station (the receiver) is located at 870
km from the epicenter. The Runge-Kutta algorithm requires
a time step of 0.04 s. Figure 14 shows the simulated horizon-
tal (radial) and vertical components of the wave field. The
qualitative aspects of real seismograms are modeled success-
fully, namely body waves and the fundamental Rayleigh
mode. The differences are due to the fact that the numerical

modeling is two dimensional and that the model is not well
defined in the study area. We do not intend to obtain a per-
fect fit between the real and synthetic data, because it is not
the aim of this work, and because the 2-D nature of the mod-
eling and the low resolution of the CRUST 5.1 velocity model
do not allow such a detailed comparison. Extension of the
algorithm to three dimensions, which can be done by using
the Fourier pseudospectral method in the y direction (Tessmer,
1995), and incorporation of anisotropy, are necessary to im-
prove the simulation. In this sense, the algorithm developed
by Tessmer should be generalized to include the effects of
wave dissipation.

CONCLUSIONS

We have applied and improved the viscoelastic global
pseudospectral modeling algorithm to simulate wave propa-
gation generated by earthquakes, with particular attention to
anelastic phenomena. The high accuracy of the modeling has
been verified with the analytical solution for a fluid-elastic
solid plane boundary, and modeling Scholte waves, leaky
Rayleigh waves, and the Rayleigh-window (this constitutes
the first simulation of this phenomenon with a direct grid
method). The modeling allows for the presence of the sea
surface and general material variability along the vertical and
horizontal directions.

Fig. 10. Vertical and horizontal seismograms corresponding to the continental-crust model. The distance to the epicenter is 300 km.
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Fig. 11. Location of the epicenter of the January 7 (2000)
earthquake (star), and Ushuaia seismograph station (USHU).

Fig. 12. Vertical and radial seismograms of the January 7 (2000) earthquake recorded at Ushuaia station.

Table 1

Properties of the crustal model. (Unrelaxed P- and S-wave
velocities, density, P-wave, dilatational and S-wave quality
factors, correlation length, maximum P- and S-wave

velocity variations and fractal number.)

Layer VP VS ρρρρρ QP Q01 QS(Q02) a ∆∆∆∆∆VP0 ∆∆∆∆∆VS0 ννννν
(km/s) (km/s) (g/cm3) (km) (km/s) (km/s)

1 1.5 0 1 104 104 - - - -
2 2.5 1.2 2.1 150 193 100 - - -
3 3.2 1.6 2.3 200 240 150 - - -
4 6 3.4 2.7 400 533 300 4 0.5 0.3 0.15
5 6.6 3.65 2.9 450 636 320 6 0.6 0.4 0.2
6 7.2 4 3.05 500 606 400 8 0.5 0.3 0.18
7 8.1 4.5 3.2 500 606 400 8 0.5 0.3 0.18

This work is a first step towards a complete realistic
wave simulation. Ongoing research includes the extension
of the modeling algorithm to the three-dimensional anelastic
case and anisotropic media, since anisotropy can be impor-
tant in the upper mantle. The 3-D extension of the algorithm
is required to model Love waves (including coupling to
Rayleigh waves), and the complete characterization of the
earthquake source by the moment-tensor components.
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Fig. 13. Geological model at the Scotia Plate to simulate the January 7 (2000) earthquake recorded at Ushuaia station. Layer numbers (1-7)
correspond to those of Table 1.

Fig. 14. Simulation of the vertical and radial seismograms of the January 7 (2000) earthquake recorded at Ushuaia station. The labels P, S
and R indicate the compressional, shear and Rayleigh waves.
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APPENDIX

DISPERSION EQUATION FOR A SOLID LAYER
OVER A SOLID HALF-SPACE

Consider a layer of thickness H over a half-space, and
define the wavenumbers

k k k k k k iPi
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Si
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i P i Si i
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where υ is the complex velocity of the interface wave, and 1
and 2 refer to the layer and half-space, respectively. The
dispersion equation results from the boundary condi-
tions, i.e., stress-free conditions at the surface and con-
tinuity of stress and displacements at the interface. It is given
by
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In compact analytical form, this determinant is given by
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