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RESUMEN
La Tomografía de Capacitancia Eléctrica (TCE) es una nueva tecnología capaz de lidiar con la complejidad de la medición

de flujos bifásicos de gas-aceite, derivando la distribución de componentes en dos planos adyacentes a lo largo de un ducto. Una
de sus aplicaciones más prometedoras es la visualización de flujos de gas y aceite. TCE ofrece algunas ventajas sobre otras
modalidades tomográficas: no hay radiación, una respuesta rápida, bajo costo, es una técnica no intrusiva y no invasiva, y la
posibilidad de operar con altas temperaturas y altas presiones.  El método denominado “linear back-projection (LBP)” es una de
las técnicas más populares que se emplean en la reconstrucción de imágenes a partir de datos de tomografía de capacitancia
eléctrica. A pesar de su pobre exactitud, es un procedimiento simple y rápido capaz de operar en tiempo real en muchas aplicaciones
y ha permanecido como una opción muy popular. Sin embargo, desde que fue propuesto por vez primera ha carecido de un suporte
formal, en el contexto de esta aplicación. Su única justificación radica en que es una adaptación de un método comúnmente
empleado en la tomografía médica de rayos X, así como en el hecho de que produce imágenes útiles (aunque sólo “cualitativamente”
buenas). En este trabajo se presenta una forma ilustrativa de interpretar el método LBP. Se muestra cómo el método LBP está
basado en la linealización de una forma normalizada del problema directo. Más específicamente, el problema directo normalizado
se aproxima mediante una serie de hiperplanos. La matriz de reconstrucción utilizada en el método LBP resulta ser una transpuesta
“ponderada” del operador lineal (matriz) que define el problema directo normalizado. Los renglones de esta última matriz contienen
la información de los mapas de sensitividades empleados en el método LBP.

PALABRAS CLAVE: Tomografía de capacitancia, reconstrucción de imágenes, visualización de flujos, modelado inverso.

ABSTRACT
Electrical Capacitance Tomography (ECT) is a novel technology that can deal with the complexity of two-phase gas-oil

flow measurement by explicitly deriving the component distributions on two adjacent planes along a pipeline. One of its most
promising applications is the visualization of gas-oil flows. ECT offers some advantages over other tomography modalities, such
as no radiation, rapid response, low-cost, being non-intrusive and non-invasive, and the ability to withstand high temperature and
high pressure. The linear back-projection (LBP) algorithm is one of the most popular methods employed to perform image recon-
struction in ECT. Despite its relatively poor accuracy, it is a simple and fast procedure capable of real-time operation in many
applications, and it has remained a very popular choice. However, since it was first reported it has lacked a clear formal support in
the context of this application. Its only justification has been that it was an adaptation of a method normally used in linear X-ray
medical tomography, and the fact that it actually does produce useful (albeit only 'qualitative') images. In this paper, one illustra-
tive way of interpreting LBP is presented. It is shown how LBP is actually based on the linearisation of a normalised form of the
forward problem. More specifically, the normalised forward problem is approximated by means of a series of hyper-planes. The
reconstruction matrix used in LBP is found to be a ‘weighted’ transpose of the linear operator (matrix) that defines the linearised
normalised forward problem. The rows of this latter matrix contain the information of the sensitivity maps used in LBP.

KEY WORDS: Capacitance tomography, linear back-projection, image reconstruction, flow imaging, inverse modelling.

1. INTRODUCTION

It is important to measure the fluids produced from oil
wells accurately for efficient oil exploitation. Typically, field
wells produce a complex mixture of gas, oil, water and other
components, such as sand, and it is difficult to estimate the
multi-phase flow relative composition. The conventional ap-
proach is to separate the mixture into individual components,
and then measure those separately using single-phase flow
meters, e.g. orifice plates for gas and turbine meters for oil.

There are some problems with the required separators: bulky,
high installation cost and considerable maintenance. There-
fore, it is highly attractive to have relatively simple multi-
phase flow meters, which are capable of measuring the flow
rate of each component directly, without separation.

Electrical capacitance tomography (ECT) is an imag-
ing technique suitable for industrial processes involving non-
conducting mixtures such as gas-oil (Xie et al., 1989; Xie et
al., 1992; Yang et al., 1995). The basic principle of ECT is to
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use a sensor (Figure 1) made of a ring of n adjacent rectan-
gular electrodes (separated by small gaps) placed around a
non-conducting pipe or vessel, which contains the process
fluids or materials. To avoid external interference, the sen-
sor also includes two grounded cylindrical end guards, and
an exterior grounded metallic screen covering the whole as-
sembly. All the inter-electrode mutual capacitances are mea-
sured, corresponding to the 1

2  n (n-1) different electrode pairs.
The values of the self and mutual capacitances are found by
applying known potentials to the sensor electrodes and mea-
suring the electrode charges. In practice, the determination
of the electrode charges is normally done indirectly by mea-
suring the electrode currents, and the excitation potentials
are applied to the electrodes in the form of a periodic signal
of known amplitude. The 12-electrode ECT system employed
for this study makes use of a single-electrode excitation
method. With this method, the mutual capacitances are de-
termined as follows: first an excitation voltage is applied to
electrode 1 while keeping all the others at zero potential and
the charge on electrodes 2 to 12 is measured; next, the exci-
tation voltage is applied to electrode 2 while keeping all the
others at zero and the charge on electrodes 3 to 12 is mea-
sured. This procedure is repeated until voltage is applied to
electrode 11 and the charge of electrode 12 is measured. In
this way, 66 independent mutual capacitance values are de-
termined.

The measured capacitances are non-linear functions of
the unknown relative-electrical-permittivity (henceforth per-
mittivity for short) distribution inside the sensor. From the
measured data and using a suitable reconstruction algorithm,
an image is obtained of the permittivity distribution ε(x, y) at
the cross-section defined by the electrode ring, which reflects
the mixture component distribution.

There are several algorithms for ECT image reconstruc-
tion (Isaksen, 1996; Yang and Peng, 2003; Ortiz-Alemán et

al., 2004), but linear back-projection (LBP) (Xie et al., 1989;
Xie et al., 1992) is the simplest and fastest one. In the fol-
lowing sections, first the LBP algorithm is briefly described
and then an intuitive interpretation is provided regarding how
it actually works (what it does).

2. IMAGE RECONSTRUCTION USING LINEAR
BACK-PROJECTION

The LBP algorithm is a simple procedure for recon-
structing an image of an unknown permittivity distribution
inside the sensor from the capacitance measurements. It was
one of the first algorithms used for this purpose and is still
very commonly employed, despite the development of a num-
ber of other methods (Isaksen, 1996; Yang, 2003; Ortiz-
Alemán et al., 2004). Although its reconstruction accuracy
is not very good, LBP has the advantage of being quite fast,
in practice requiring only the multiplication of a fixed recon-
struction matrix times the vector of measurements. In prin-
ciple, LBP can be viewed as a weighted back-project or
‘smearing’ of each one of the normalised measurements along
its sensing zone, given by the corresponding sensitivity map.
However, since this algorithm was first introduced by Xie et
al. in two papers back in 1989 and 1992, it has lacked any
clear mathematical support. Its only justification has been
that it was an adaptation of a method normally used in linear
X-ray medical tomography, and the fact that it actually does
produce useful (albeit only ‘qualitative’) images.

Let us consider an n-electrode sensor and an image made
of p equal-area regions or pixels located inside the pipe. For
each one of the m= 1

2 n (n-1) possible electrode-pair combi-
nations, a capacitance sensitivity map can be defined by

       s k
c k c

c ci
i i emp

i full i emp

( )
( ) ( )

( ) ( )

=
−

−    for     i = 1, . . , m , (1)

Fig. 1.  ECT sensor: (a) whole assembly and (b) cross-section.
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where k is the pixel number (from 1 to p), c
i
 (k) is the capaci-

tance measured with electrode pair i when the area of pixel k
is full of the higher-permittivity material while the rest of
the sensor is full of the lower-permittivity material, whereas
c

i(full)
 and c

i(emp)
 are the capacitances for electrode pair i when

the sensor is full of high- and low-permittivity material, re-
spectively. These sensitivity maps were calculated by using
a 2D finite volume model of the sensor. The sensitivity maps,
as computed in this work, represent a normalized approxi-
mation to the first order of the partial derivative of the ca-
pacitance data with respect to the parameters (see equations
10, 11, and 12).

Prior to back-projection, the raw capacitance measure-
ments corresponding to each electrode pair i are normalised
according to

λi
i i emp

i full i emp

c c

c c
=

−

−
( )

( ) ( )
 , (2)

where λ
i
 is the normalised capacitance for electrode pair i

and c
i
 is the actual capacitance measured with that electrode

pair.

The basic LBP formula (without thresholding or trun-
cation) calculates a grey level g(k) for each pixel as

   
g k

s k

s k

i i

i

m

i

i

m
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( )
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=

∑

∑

λ
1

1

  for    k = 1, . . , p . (3)

This grey level is supposed to be linearly related to the
permittivity, with g=0 and g=1 corresponding to the
permittivities of the low- and high-permittivity materials,
respectively. The actual back-projection operation occurs in
the numerator of equation (3), while the quantity in the de-
nominator serves as a position-dependent weighting factor
used to compensate for the decrease in sensitivity towards
the centre of the sensor. Note that the mathematical opera-
tion of equation (3) is equivalent to multiplying a reconstruc-
tion matrix R times the vector of normalised capacitance λ,
i.e.

g R= λλ  , (4)

where g is the p × 1 vector of pixel grey levels, R is the p × m
matrix whose columns are the sensitivity maps after their
elements have been weighted by the sum of all maps, and λ
is the m × 1 vector of normalised capacitances.

3. LBP METHOD

3.1 The linearised normalised forward problem

It will be shown how LBP is actually based on the
linearisation of the normalised forward problem, approxi-
mating it by means of a series of hyper-planes. The original
unnormalised forward problem is
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where c is the vector of inter-electrode capacitance measure-
ments, f

i
 are non-linear functions and ε is the vector of

permittivities corresponding to the p pixels or regions in the
sensing area. To normalise the problem, new variables (rep-
resenting the image grey level g and the normalised capaci-
tance measurements λ) must be introduced as follows:
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where ε
max

 and ε
max

 are the upper and lower bounds of the
permittivity (corresponding to the higher- and lower-permit-
tivity materials). c

i (full)
 and c

i (emp)
 (defined in the previous sec-

tion) are formally given as

         c fi full i( ) ( )= εεmax    and   c fi emp i( ) ( )= εεmin  , (7)
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Applying transformation (6), the full variation of g be-
tween g

min
 = 0 and g

max
 = 1 corresponds to a variation of ε

between ε
min

 and ε
max

. The normalised problems is the de-
fined as
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where h
i
 are still non-linear functions.

In (6) and (7) were defined λ
i
 and c

i(emp)
, then it holds

that λ|
g=0

=h(0)=0. Applying Taylor series and neglecting terms
of order 2 and higher, h can be approximated in the vicinity
of the origin (g = 0) as

   λλ = ≈h g Sg( )  , (10)
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where S is the matrix of partial derivatives or Jacobian ma-
trix (of size m × p), evaluated at the origin:

S = [ ] =
∂
∂

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥=

s
h

gij
i

j g j 0
for  i = 1, . . , m  and  j = 1, . . , p

(11)

The elements of this Jacobian matrix can be approxi-
mated using finite differences as

s
h h h h

hij
i i i i

i i=
−

−
=

−

−
= = =
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g g g
gj j j

j g j
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where g
j
 = u

j
 is a unit vector having all its components equal

to zero except the j-th, which is equal to one. This corre-
sponds to a vector ε

j
 having all its components equal to ε

min

except the j-th, which should be equal to ε
max

. Therefore, from
(6) and (12) we have
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In this way, to each function h
i
 corresponds a hyper-

plane in a (p +1)-dimensional space, defined by the origin
and the p points given by (13), with 1 ≤ j ≤ p. Notice that
various approximated rows of S, according to (13), contain
what in LBP is known as the sensitivity maps (see Figure 2).

One problem with using the linear approximation (10)
directly is that, albeit it will produce exact results for the
points that define the hyper-planes (i.e., the unit vectors g

j
),

this will not for the vector g
max

 that corresponds to the sensor
full happen of the high-permittivity material, defined as
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Fig. 2 .  Typical shapes of the sensitivity maps.
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If this is deemed desirable, an additional re-
normalisation can be introduced to ensure that
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In order to achieve this, matrix S is modified to obtain
a new matrix T = [t

ij
], with elements given by

      

t
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The new approximation is then given by λ≈Tg, and it
guarantees that
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The above mentioned concepts are illustrated in Figure
3, for a hypothetical case with one dependent and two inde-
pendent variables, i.e., p = 1 and m = 2. This allows the ap-
proximating hyper-planes to become simple planes in 3-di-
mensional space.

3.2 A simplified interpretation of the inverse problem

The inverse problem consists in estimating g from the
knowledge of λ. Pre-multiplying both sides of equation (10)
by the transpose of S, we have

       S S Sg S S gT T Tλλ ≈ =( ) ( ) (18)

In ECT, STS will roughly resemble a scaled p × p iden-
tity matrix (see Figure 4). Therefore, (STS) g in (18) could be
considered as a scaled linear approximation to g, here de-
noted by g*. Thus we write

g S X* ≈ =T λλ λλ (19)

Fig. 3.  A hypothetical case with c
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. The linearised-normalised version is shown in (c) as a superimposed semi-transparent plane (note that it is not

an exact approximation for g = g
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), and (d) shows the re-normalised form.
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The size of X is p × m. In order to re-gain the correct
scale for g and so obtain a more realistic approximation, an
additional re-normalisation can be introduced, which ensures
that

       

  

g g
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For this, matrix X = [x
ij
] shown in (19) is modified to

obtain matrix R = [r
ij
], with elements given by
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The use of this matrix R guarantees that
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And finally, we arrive to the LBP method

        g R≈ λλ  . (23)

This is exactly the same as (3). Note that in order to use
the LBP method we must know all the f

i
(ε

j
), as well as all the

f
i
(εεεεεmax

) and f
i
(εεεεεmin

), the capacitance measurements for ‘full’
and ‘empty’ sensor, respectively. All these data are required
to determine the matrix S, from which the actual reconstruc-
tion matrix R is eventually obtained.

4. RESULTS

In order to illustrate the application of the LBP method,
we computed the synthetic response for a twelve-electrode
ECT sensor. The capacitance values for all single-electrode
combinations were calculated. We considered a two-compo-
nent distribution with a lower permittivity material of 1.0
(air) and a higher permittivity material of 2.5 (oil). We con-
sidered three typical oil-flow patterns: annular, stratified and
bubbly flows. We added a random noise level of 5% into the
capacitance data. Results are shown in Figure 5, and quality
of the reconstructed images is not quite good, especially in
the case of multiple objects in the image. In general, the re-
constructed images resemble the flow phantoms, particularly

Fig. 4. Image of STS. S was assembled from the sensitivity maps calculated for a 12-electrode ECT sensor (m = 66), with p = 313, ε
min

 = 1
and ε

max
 = 2.1.
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for annular and stratified flow patterns. In all cases, the flow
type can be identified. Image reconstruction by the LBP
method provides low image resolution when small objects
(like bubbles) are in the middle of the pipe cross-section.
This limitation can be overcome by the use of iterative meth-
ods to the cost of much higher computation times.

We also applied the LBP method to real ECT data. We
introduced a perspex bar, with permittivity value of 2.1, in-
side the sensor in two different positions. Location of the
object can be easily identified and the shape of the object
was nicely approximated by the LBP reconstruction algo-
rithm (see Figure 6). The resolution of the reconstructed im-
age is not high, as in the previous case. Depending on the
application, a compromise must be made between the sys-
tem resolution, accuracy, sensitivity and speed of computa-
tion.

As a final part of this work we applied the LBP method
to a real gas-oil two-phase flow. The sets of electrical ca-
pacitance tomography measurements used in this part of the
study were collected in a 3-inch gas-oil two-phase test loop.
As we mentioned above, we used a 12-electrode pressure-
resistant capacitance tomography sensor.

In this work, we tested a number of flow regimes gen-
erated by modifying oil and gas flow rates. We used as a
reference a view trough a transparent window section in-

stalled in the test loop. Stratified flows can be directly seen
through the transparent window but other patterns involving
significant gas flows cannot be observed properly in the in-
ner core of the sensor because the oil phase is reflected by
the sensor walls and the window. The test loop uses nitrogen
gas, Exxol D80 oil and tap water. In this work we only used
air and oil as flow components. We used a sensitivity matrix
computed for a set of 1693 elements or pixels.

Air and oil were injected through the sensor at differ-
ent pressures up to 7 barg and at a temperature around 20°C.
The velocities of each phase were varied through a pressur-
ized valve system. Ten different flow patterns were gener-
ated and sets of measurements, during around 30 seconds,
were collected for each pattern.

In Figure 7 we show a set of results for one of the more
complex patterns we found: a stratified intermittent flow. As
can be seen in this plot, large oscillations of the flow are
observed in the snapshots, forming semi-annular patterns
close to the sensor wall. The liquid flow rate was increased
maintaining the gas flow rate low. An intermittent flow pat-
tern is then observed, with an alternant occurrence of slugs
and stratified flows. Sequence of reconstructed images goes
from top to bottom and from left to right, and delay time
between frames is 50 ms. As the LBP method is a real-time
one step reconstruction approach it can easily deal with this
speed of data acquisition.

Fig. 5. Image reconstructions for typical synthetic oil-pipe flows by using the LBP method.

  Stratified Flow�      Annular Flow��   Bubbly Flow

True Object

LBP Method
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Fig. 6. LBP image reconstructions for real data: a) Perspex bar (ε
r
 = 2.1) in the center; b)  Bar half way between centre and wall.

Fig. 7. Image reconstruction of a real gas-oil two-phase intermittent flow. Red represents high permittivity material (oil) and blue represents
permittivity of air. Intermediate colours (yellow, green and light blue) are associated to presence of oil in progressively lower concentrations.

Sequence goes from top to bottom and from left to right. Delay time between frames is 50 milliseconds.
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Visualizations using LBP are limited because half of the
image contours are not specifically interfaces; however they
give a regular indication of the flow composition. There ex-
ists a resolution trouble in the central zone of the sensor where
some kind of phantom can be seen in some of the snapshots
mainly caused by errors introduced at the normalization stage.

5. CONCLUSIONS

It was shown that LBP is actually based on the
linearisation of a normalised form of the original forward prob-
lem. More specifically, the normalised forward problem is
approximated by means of a series of hyper-planes. The re-
construction matrix used in LBP is a ‘weighted’ transpose of
the linear operator (i.e., matrix S) that defines the linearised-
normalised forward problem. The rows of S contain the in-
formation of the sensitivity maps used in LBP. Note that the
image-reconstruction errors in LBP for ECT arise basically
from (a) the initial linearisation of the forward problem, (b)
the fact that STS actually departs in some degree from a per-
fect scaled identity matrix, and (c) the final re-normalisation
to obtain R (albeit this only really ‘re-distributes’ the errors).
Reconstructions of synthetic and real data were included, in
order to illustrate application of the LBP method to ECT data
inversion. We also applied the LBP method to the reconstruc-
tion of gas-oil flows from measured ECT data by using a state
of the art high-pressure resistant sensor in a test loop facility.
As a consequence of this work, the LBP method can be used
for routine interpretation of ECT data in two-phase gas-oil
flow imaging.
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