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RESUMEN
En este trabajo un algoritmo de tipo recocido simulado (SA) altamente optimizado es aplicado a la reconstrucción de imágenes

de permitividades a partir de datos de flujos difásicos reales cruzando una sección de un tubo cilíndrico usando tomografía de
capacitancia eléctrica (ECT). La ECT proporciona imágenes de baja precisión comparando con otros procesos de tomografía, pero
es robusta, barata y mucho más rápida. Este método no-intrusivo mide esencialmente distribuciones de permitividades en sistemas
no-conductivos y se aplica en varios procesos de la industria petrolera como recipientes de mezclado, reactores de lechos fluidizados,
tanques de separación o ductos transportando flujos multifásicos.

Para reconstruir las imágenes de flujos multifásicos a través de la sección de un contenedor cilíndrico, se determinaron las
distribuciones de permitividad por medio de la tomografía de capacitancia eléctrica (ECT). Para este fin, un problema directo es
resuelto en cada iteración de algoritmos de inversión de tipo recocido simulado “simulated annealing” (SA) y Landweber Proyectado.
Pero se necesita todavía reducir el costo computacional de la resolución del problema directo a cada iteración de SA. Los métodos
de Elementos Finitos o de Diferencias Finitas son generalmente escogidos para resolver el problema directo y los resolvedores de
sistemas lineales introducen técnicas de diagonalización o de gradiante conjugado. En este artículo se introduce una discretización
espacial por volúmenes finitos con refinamientos locales en una configuración cilíndrica con el fin de aumentar la resolución cerca
de los electrodos, mejorar el cálculo de las capacitancias, y evitar problemas de resolución en el centro del sensor. Esta discretización
tiene la ventaja de ofrecer una formulación conservativa usada en elemento finito y la flexibilidad para refinamiento de malla
alrededor de los electrodos. De este modo se obtiene una mejor precisión local sin incrementar exageradamente el número de
puntos de la malla. Los desempeños de la resolución del problema directo son analizados a la luz de los resultados obtenidos con
métodos de elemento finito y datos experimentales. Se demuestra que la versión nonlineal de SA reconstruye mejor los flujos
trifásicos que el método de Landweber.

PALABRAS CLAVE: Tomografía de capacitancia, recocido simulado, reconstrucción de imágenes, métodos de volúmenes finitos.

ABSTRACT
A highly optimized simulated annealing (SA) algorithm is applied to reconstruct permittivity images of real two-phase gas-

oil flows through a cylindrical vessel using electrical capacitance tomography (ECT). ECT yields low-accuracy images but is
robust, inexpensive and much faster than many other tomography processes. This non-intrusive method essentially measures non-
conductive system distributions and is applied in oil industry processes such as mixing or stirring vessels, fluidized bed reactors,
separator tanks and pipelines carrying multiphase flows.

A forward problem is solved at each step of an iterative algorithm to solve the inverse problem using simulated annealing
(SA). Comparisons with linear methods like The Projected Landweber technique are discussed. In this paper we introduce a finite
volume discretization with local mesh refinements in a cylindrical configuration close to the electrodes in order to improve
resolution in the calculation of capacitances, and to avoid problems with resolution at the centre of cylindrical container when
finite differences are used. This discretization has the advantage of a conservative formulation as used in finite element methods
and features the flexibility of mesh refinement close to the electrodes. Thus, improvement of local accuracy is achieved without
increasing prohibitively the number of mesh points. Performance of the forward problem resolution is compared with finite
element based methods and experimental data. We show that the non linear version of SA provides better reconstructions of three-
phase flows than the Landweber method.

KEY WORDS: Capacitance tomography, very fast simulated annealing, image reconstruction, finite volume method.

1. INTRODUCTION

Electrical Capacitance Tomography (ECT) is widely
used in non intrusive tomography. ECT has been preferred
over other tomography methods such as ultrasound, optical,
X- and Gamma ray processes to obtain reconstructed im-

ages of multiphase flows in the inner core or region of a non
conductive body. A review of the ECT systems was provided
by Dickin et al. (1992). The first real-time ECT system was
performed at the University of Manchester Institute of Sci-
ence and Technology to visualize two-phase flow systems in
pipelines (Huang et al., 1992, Xie et al., 1992). Hardware
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process systems based on similar concepts have since been
developed using four to sixteen electrodes (Isaksen et al.,
1993; Isaksen, 1996). Since 1995, process applications have
increased and there has been significant improvement of de-
sign and operation of equipment (Beck et al., 1997). This
non-intrusive technique is used to determine the permittivity
distribution and composition of two-phase mixtures, like gas-
solid or gas-oil systems. It has many useful applications in
measurement of multiphase flows for the oil industry and
more specifically in the study of oil-gas pipe flows, gas-solid
distributions in pneumatic conveyors and fluidized beds,
flame combustion processes, water oil-gas separators and
trickle bed reactors for water content measurements (Yang,
1995a; Yang, 1995b; Yang, 2003).

As shown in Figure 1, an ECT multisensor is an insu-
lating pipe surrounded by a circular array of electrodes in its
outer boundary and by an external metallic screen which pro-
vides mechanical resistance to the whole sensor. By using
cylindrical guards with a sufficient length, the sensor can
model, by using a finite element method in the linearized
forward problem solution, a two dimensional problem and
visualize 2D averaged images (Xie et al., 1989). In this study
n=12 fixed electrodes are considered around the sensor.
Twelve successive excitations of the inner core of the sensor
are performed with one (source) excited electrode and eleven
non-excited (receiver) electrodes. The electrode 1 is excited
and sends a positive potential field into the sensor and the
induced capacitances received by the other eleven electrodes
2 to 12 are measured. Then the electrode 2 is excited and
sends the electrical signal into the sensor while the other elec-
trodes are not excited and are receivers, and the induced ca-
pacitances are measured at electrodes 1 and 3 to 12. This
process is performed successively until the last electrode 12
sends the electrical signal and the induced capacitances are
measured at the other non excited electrodes (receivers) 1 to
11. Thus, m=n(n-1)/2=132 capacitances have been measured.
These mutual capacitances between every possible pair of

electrodes, collected by the sensor, are measured by a con-
nected electronic device. For n electrodes distributed around
the cross-section to be studied, m=n(n-1)/2 electrode-elec-
trode combinations are possible and m relevant mutual ca-
pacitance values are determined. These data are inverted by
a suitable reconstruction algorithm which involves the resolu-
tion of a forward problem for each electrode problem. An
image of the physical distribution of the different compo-
nents of the mixture is provided into the sensor.

The main problem encountered by the commonly used
image reconstruction algorithms has been their lack of reli-
ability and accuracy. Simple direct methods like linear back-
projection (LBP) only provide qualitative indications of the
permittivity distribution inside the sensor. LBP is based on
making a linear approximation to a problem that is essen-
tially non-linear (Ortiz et al., 2003). Therefore, this image
reconstruction method causes considerable errors, which are
significant particularly if there are large permittivity differ-
ences in the image. A more accurate but much slower recon-
struction technique is the use of iterative methods to mini-
mize some objective function, employing local optimization
techniques like the regularized Newton-Raphson method or
other similar approaches (basically a Newton-type method
with Tikhonov regularization) (Yang and Peng, 2003). These
methods are based on minimizing, with respect to the per-
mittivity distribution ε, a L2 functional

|| C
meas

 – C
calc

 || 2  +  α2 || M ε|| 2 (1)

involving the misfit function between computed and mea-
sured mutual capacitances and a regularization matrix func-
tion M ε containing some type of a priori smoothness infor-
mation about permittivities. C

calc
 = g(ε) is the vector of m

computed mutual capacitances for a given vector ε.

Such iterative local optimization techniques generally
require one or more regularization parameters whose opti-
mal value depends precisely on the unknown image to be
reconstructed. They smooth the whole image over some con-
figurations where sharp permittivity contrasts are present,
and sometimes they do not converge. This is mainly due to
the fact that they perform local searches of the real solution
around an initial guess which may be poor, particularly when
flows moving with time are considered. Newton-Raphson
methods (Hansen et al., 1998), Landweber techniques (Yang
et al., 1999, Liu et al. 1999), steepest descent methods as
well as the Algebraic Reconstruction Technique, the Simul-
taneous Iterative Reconstruction Technique (Reinecke and
Mewes, 1996; Su et al., 2000), and iterative algorithms
(Isaksen and Nordtvedt 1993) are often used. However, these
methods may introduce undesired smoothing effects and in-
stabilities in the reconstructed images. Regularization param-
eters depend on the image to be reconstructed. Thus the so-
lution must be known beforehand. For a too strong regular-Fig. 1. Sensor cross section.
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ization smoothing effects will appear, and for a too slight
one the technique becomes unstable and hardly converges.
This is due to the fact that the reconstruction is non-linear
and the linear algorithms previously mentioned are suitable
tools for two phase flows but hardly apply for complex flows
like bubbly or three phase flows (Peng and Yang, 2003).
For more than two phases, the solutions converge towards
the lowest and the highest boundary values allowable and
then the other possible values are not well defined. This
introduces bad contour definition and bad object dimensions
because permittivities are adjusted to fit the objective func-
tion with only two possible values of the permittivities. These
non-optimal solutions are computed because the global so-
lution optima of the objective function are generally never
reached.

According to Peng and Yang (2003), a compromise
must be reached between fast algorithms and other algo-
rithms much slower but more accurate, such as global non-
linear methods. With local optimization, only a small set of
solutions in the neighborhood of the initial solution is ex-
plored (Sambridge, 1992). A minimum of the objective func-
tion is searched during the iterative process and the lowest
minimum is assumed to be the best model. But several local
minima may be detected, and the optimal solution could be
trapped and fail to converge. Least square linear methods
are generally used and they introduce the objective func-
tion gradient in steepest descent or conjugate gradient algo-
rithms.

On the other hand, a global optimization technique ex-
plores the full set of solutions during the iterative process.
The objective function gradient is not needed because the
problem does not need to be linearized. Stochastic criteria
are introduced to explore simultaneously the space of solu-
tions and find the optimal model. In particular, simulated
annealing (SA) algorithms have proved to be efficient for
many problems of interest in geophysics (exploration, mag-
netometry, gravimetry). These optimization systems take into
account the previously evaluated models for each new
model. They are based on Monte Carlo methods. Conver-
gence of SA is achieved by means of a regularization pro-
cedure using cubic spline or median interpolations at each
iteration of the inversion process. By this mean, the permit-
tivity distribution is smoothed and numerical artifacts are
avoided. Temperatures decrease also exponentially accord-
ing to Very Fast Simulated Annealing versions proposed by
M. Sen (Sen and Stoffa, 1995) instead of decreasing lin-
early. This acceleration allows a drastic decrease of the num-
ber of iterations of SA.

In this study we have chosen simulated annealing al-
gorithm (SA) in order to obtain an accurate image of com-
plex flows. The convergence of SA is highly dependent on
the resolution technique employed in the forward (or di-

rect) problem. SA can be identified as a non-linear multi-
parameter optimization method and a stochastic search tech-
nique which suites adequately to solve non linear problems
like capacitance tomography. SA is also a generalization of
Monte Carlo methods for examining the equations of state
and frozen states of n-body systems (Metropolis 1953).

At each iteration of the SA algorithm, a forward prob-
lem is solved and fastened by using a finite volume method
(FVM) and an Incomplete LU (ILU) preconditioned Bi-con-
jugate gradient (BiCG) solver. Here, different test cases show-
ing representative permittivity patterns are presented. Here,
the present study focuses essentially on the reconstruction
of synthetic data. In the case of three different components
(three different permittivities), we show that SA is able to
reconstruct the three phases.

2. SIMULATED ANNEALING INVERSE METHOD

SA can be identified as a non-linear multiparameter op-
timization method. Such procedure is a stochastic search tech-
nique. SA is a powerful tool for locating an optimal model
by rapidly exploring model space, it makes use of a stochas-
tic search through model space employing a transition prob-
ability rule to improve the solution. The concept is based on
the way liquids freeze or metals recrystalize in the process
of annealing. In this process, an initially high temperature
melt is slowly cooled down allowing the system to stay in
thermodynamic equilibrium. As the process continues the
molecules of the system tend to organize themselves towards
a completely ordered arrangement which approaches to a
frozen ground state.

The generalized extension of this approach to optimi-
zation problems can be easily formalized (Kirkpatrick 1983).
To make use of the Metropolis algorithm, we followed the
general procedure depicted in the layout of Figure 2. The
atoms of each molecular configuration are equivalent to the
model parameter in the inverse problem (i.e., the permittiv-
ity of the various image pixels). The energy of the system
for such configuration is related to the cost function associ-
ated with the set of parameters involved in the model. In our
case, the system energy is associated to the L2 norm
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where C(j)
calc

 are the m measured capacitances and C(j)
meas

are the ones calculated by solving the forward problem for a
given permittivity distribution ε. From an initial permittivity
distribution, the method generates a range of configurations
or parameter combinations considering a certain tempera-
ture T for the process. For this purpose the Metropolis crite-
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Fig. 2. Schematic diagram of the SA method.

rion is employed, which consists in changing a parameter, at
each iteration, by a small random amount. This shift causes
a change ΔE in the system's total energy. If ΔE is less than or
equal to zero, the change in the parameter is accepted and
the obtained configuration is considered as the new current
configuration. When there is an increase in the system en-
ergy (ΔE is greater than zero), the probability of acceptance
or rejection for the parameter change is determined as

    P E e E T( )Δ Δ= − . (3)

In order to decide whether or not a change that pro-
duces an increase in the system energy is accepted, a ran-
dom number between zero and one is chosen such that it is
compared with the value of the probability corresponding to
ΔE. If the mentioned random number is smaller, the param-
eter shift is accepted and the new configuration is consid-
ered as an update. If the random number is greater, the pa-
rameter shift is not accepted and the configuration is unal-
tered. Repeating this procedure continuously, the thermal
movement of the atoms of a system in thermal equilibrium
(at a fixed temperature T) is simulated. In order to reach the
system's base state, that is to say, the state of lowest energy
and lowest disorder, the temperature must be reduced slowly,
simulating a quasi-static process. This means that, along the

cooling, the system must experience a series of states infini-
tesimally separated from the state of thermal equilibrium.

The process consists of three nested cycles. Figure 3
shows a diagram that illustrates how the method works. The
external cycle regulates the system temperature. Every time
a cycle is completed, the temperature decreases as it is mul-
tiplied by a factor RT that is normally very close to one (0 <
RT <1). In this way the desired slow and gradual cooling is
carried out. The intermediate cycle updates the values, inde-
pendent of each other, of a series of constants K

i
 associated

with each parameter. Such constants determine the maximum
change that each parameter may experience when it is per-
turbed in the innermost cycle. The value of the above men-
tioned constants depends on the number of times that the
current model has been accepted (according to the Metropo-
lis criterion) at the end of every sequence of internal cycles.
In the internal cycle the parameter values are perturbed us-
ing the factors K

i
, defined in the intermediate cycle. The per-

turbation is done multiplying each parameter by the product
of its corresponding K

i
 times a randomly chosen number

between minus one and one. After this, the synthetic response
of the current model is calculated and the change in the
system's energy associated with the new parameter configu-
ration is evaluated. The energy change corresponds to the
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misfit between the synthetic data curve and the observed or
measured one. If the misfit decreases, then the new configu-
ration will be accepted as the current one and in turn per-
turbed in the same way. If, on the contrary, the random per-
turbation causes an increase in the misfit, associated with an
increment in the energy E, then a slow probability of accep-
tance according to the Metropolis criterion is assigned to
that configuration.

All three cycles are repeated, while the temperature of
the process decreases progressively. As the temperature di-
minishes, the parameter variations are smaller. In this way,
the search in the solutions domain tends to confine itself
towards the models associated with the absolute minimum
of the misfit function E. The final result is a set of values for
the parameters (i.e., the permittivity in the various pixels
that make an image) whose synthetic response reproduces
the observed (capacitance) data, with a sufficiently small
error.

The whole algorithm has been accelerated by using an
exponentially decreasing temperature instead of a linear de-
crease in order to reach quickly an ideal temperature lying
commonly between 10-8 and 10-9 for all the simulations. This
version of SA is also called VFSA (very fast simulated an-
nealing) and is inspired by the work of M. Sen and co-work-
ers (Sen and Stoffa, 1995). Another optimization of the al-
gorithm has been made by applying a smoothing of the pa-
rameters using bi-cubic spline or 6-point median interpola-
tions every five external cycles of SA.

3. RESULTS

During the procedure for reconstructing a permittivity
image using SA, it is necessary to solve the forward prob-
lem and find the electric potential repeatedly for relatively
similar successive permittivity distributions, while the
method converges towards the final solution. Since the po-
tential corresponding to such successive distributions changes
slightly, an iterative solver of the forward problem, like the
bi-conjugate gradient linear solver, can be accelerated using
the solution of the forward problem calculated at the previ-
ous iteration. The twelve potentials computed at the previ-
ous iteration of the inversion problem are set as first guess
of the twelve new forward problems of the present new in-
verse problem iteration. The number of iterations per each
forward problem is then quite random but always remains
lower than the number of iterations at the first step of the
whole inversion process.

Common finite element solvers like algorithm OPERA
(Xie et al., 1992) use matrix diagonalization and
triangularization of the matrix system to be solved. The al-
gorithm is not iterative and then three matrices are stored at
each iteration of the inversion process. The algorithm is of
order N3 while the BiCG solver used here is of order N2. The
solutions obtained with the FE method are comparable to
those of our FVM for a non-dimensional configuration. We
have compared different profiles of the potentials using our
FVM and the FEM along the radial direction for a given
angle and two different grids (120 by 60 and 240 by 120 grid
points). The finest grid gives us better results and the error
between this grid and the FEM is relatively low and lies
around 2%.

The errors between measured and calculated data can
be really high with variations as important as 30% for the
capacitances related to the receiver electrodes adjacent to
the source electrode. This problem can be circumvented at
the expense of a small loss of accuracy of the FVM and with-
out increasing the number of mesh points. For this purpose,
a multiplicative factor is applied to the calculated capaci-
tances. This factor is directly related to an amount of error
coming from well known measured and computed data in
the case of an empty sensor (filled with air only). Without
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Fig. 3. A possible implementation of the SA method.
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changing the accuracy of the potential solutions in the sen-
sor and without increasing the number of mesh points, the
calculation of the capacitances is also improved by refining
the mesh close to the electrodes and by increasing the radial
spacing inside the sensor as shown in Figure 4. In order to
show the accuracy of FVM, we plot in Figure 5, in a loga-
rithmic scale, the errors between the FVM computed capaci-
tances and the true data for an empty sensor configuration.
Only one problem among twelve can be considered here be-
cause the other 11 problems are equivalent in this particular
case. It is observed, as expected, that the worst errors be-
tween computed and measured capacitances are related to
the electrodes (here electrodes 1 and 11) adjacent to the source
electrode (here the electrode 12). The non-adjacent capaci-
tances are really better computed.

In order to have a better resolution of the permittivity
distribution, each parameter is chosen such that, in the inner
core of the sensor, the patches related to each parameter have
nearly the same size. Consequently, the impact of the differ-
ent parameters is equivalent and the efficiency of the inver-
sion process is improved because the intensity of changes in
one parameter value is nearly the same for all the parameters
during the iterative inversion process.

In order to test the feasibility of our SA inversion
method, we computed sets of ECT synthetic data for four
typical permittivity distributions by solving the forward prob-
lem. We simulated a twelve-electrode ECT sensor and com-
puted the capacitance values for all single electrode combi-
nations. For all the test cases, we considered two-compo-
nent distributions with a lower permittivity material of 1.0
(air) and a higher permittivity material of 2.5 (oil). We re-

stricted our numerical test to the reconstruction of noise free
ECT data in the three first cases and we included random
noise in the data for the fourth case. SA algorithm is imple-
mented in Fortran 90 on a Pentium IV personal computer
with a 1.7 MHz CPU and 512 Mbytes memory. We experi-
mented with a 120 by 60 grid to reduce inversion times but
results are valid for any larger dimensions.

After an adequate parameterization, SA produces sat-
isfactory results for all four study cases. In Figure 6, we
present image reconstructions for simple patterns as a strati-
fied, an annular and a bubble flow 30 000 iterations of the
SA process. The images are compared with those obtained
with a Projected Landweber Method which gives us images
after 500 iterations. We observe that SA gives better patterns,
particularly in the stratified and the bubbly flow cases. The
SA inversion of synthetic ECT data provides us very prom-
ising results but one of the drawbacks of the method is its
relatively high computation time.

In the fourth case (three layer flow with permittivities
of 1, 1.8 and 2.5), a model of our experimental sensor has
been performed. The permittivities and the dimensions of
each part of the sensor model as well as the electrode lengths
(10 cm) are taken as realistic as possible. The insulated pipe
of the sensor has a permittivity of 2.8 (acrylic). We compute
the 132 synthetic capacitances C

ij
 for the 12 problems. By

the theorem of reciprocity, half of the capacities are repeated
twice so there are only 66 synthetic data to reproduce. These
data are perturbed with a 10% random noise function in or-
der to simulate a real case. The data with noise are inverted
using the permittivity arrangement process described before
with 240 patches. The images are very close to the image of

Fig. 4. Mesh with equal radial spacing (left) and mesh with different radial spacing used in this paper (right).
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reference as can be seen in the snapshot of Figure 7. It is
important to emphasize here that SA has been able to repro-
duce three different permittivities in the last case instead of
two in the three previous cases. In Figure 7, the Landweber
reconstruction gives a too much high permittivity in the top
layer which is distorted. It is known that the linear local al-

gorithms like LBP or Landweber do not give results with a
good quality for three phases, as it is argued in the introduc-
tion of this paper. This is an advantage of SA upon
Landweber. The SA algorithm converges towards an equiva-
lent permittivity distribution and proves to be a good candi-
date for image reconstruction with random noise.

For all cases, the imaging process using SA is stopped
at 30 000 forward problem calculations. In a previous paper
(Ortiz, 2003), we have shown that, during the 10 000 first
iterations, the algorithm converges very fast then crosses a
slow phase till 30 000 steps and accelerates until the pro-
cess ends for a misfit function of approximately 10-6. Here
the Landweber’s solution is combined with SA process so
that the number of iterations of SA is drastically reduced to
30 000.

CONCLUSION

Applying SA to the inversion of synthetic data has
given us promising results. The solutions are more accurate
than those obtained with linear methods like LBP or
Landweber. By introducing at each iteration of SA bi-cubic

Fig. 5. Comparison between measured (MEAS) and calculated (us-
ing FEM and FVM) capacitance data between electrode 1 and each
one of the eleven others for an empty 12 electrode realistic sensor.

Fig. 6. Image reconstruction of synthetic ECT data for three typical test patterns assuming static fluids. Reconstructions after 1000 iterations
of projected Landweber and 30 000 iterations of SA methods. White represents the permittivity of air and black the permittivity of oil.
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spline or median interpolations of the parameters, the bound-
aries of the objects are better described by natural regular-
ization. Of course SA using splines is a suitable alternative
when better accuracy in image reconstruction is desired.
However, the methods like SA are slower than less accurate
methods like LBP. This iterative method does not need a good
initial model to converge but it can be accelerated taking as a
first guess the solution obtained by less accurate inversion
methods. For instance, SA can be used as a post-processing
procedure combined with LBP or different Landweber type
algorithms.

Another way to accelerate the computational process,
even in a high performance supercomputer, is to implement
a linearized version of the forward problem. The capacitances
at each iteration of SA could be calculated more easily by
making the product of the new parameter change by the cor-
responding row of a sensivity matrix calculated at the begin-
ning of the process. For real flows moving in time, the method
can be fastened further by taking the previous solution as a
first guess of the new solution to be calculated at a given
instant. An exponential decrease of the temperature can be
also introduced (Sen and Stoffa 1995) in order to reach rap-
idly ideal temperatures, allowing then quicker estimations
of the solutions.

In order to compute real time flows, the linearized and
non linear versions of the SA solver can be computed on a
massively parallel computer like PC-cluster platform by solv-
ing in each processor one part of the sensor.
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APPENDIX

THE FORWARD PROBLEM SOLUTION

The forward problem consists in calculating the mu-
tual capacitances C

ij
, i ≠ j, that result from the presence of a

permittivity distribution e inside the sensor. The SA method
requires the repeated solution of the forward problem. Be-
cause of that, it is important to have a suitable method to
solve said problem, that achieves a reasonable balance be-
tween accuracy (or precision) and speed. In this paper, the
forward problem was solved using an optimized routine
based on the finite-volume method (FVM), which will be
described briefly. This routine is very efficient and compa-
rable in its precision with implementations based on the fi-
nite-element method (FEM) using meshes with 9000 trian-
gular elements. The routine is written in Fortran 90 and is
highly portable.

The use of the cylindrical axial end guards in the sen-
sor, and the assumption that the phase (and thus the permit-
tivity) distribution does not change too much in the axial
direction, allow the sensor to be represented by a two-di-
mensional (2-D) model (Xie, 1989). The forward problem
is solved using the finite-volume method in a cylindrical con-
figuration. In this way, the undetermined solutions in the
center of the disc (which are a problem in the finite differ-
ence method) are eliminated and the mesh refinement be-
comes more flexible as compared to finite-element meth-
ods. The following 12 2D-equations, describing the 12 dif-
ferent forward problems, are solved independently:

  ∇ ⋅ ∇ =ε φ( , )x y j 0 j=1,….,12 , (5)

where ε is the permittivity and φ j is the electrostatic poten-
tial distribution generated when electrode j is the source (or
excitation) and the others are receivers (and not excited).
Each equation j is subject to the boundary conditions
(a)φ j = V volts on the source electrode and (b)φ j = 0 on the
detection electrodes and on the outer screen.

Fig. 7. Reconstruction of  a three-layer flow with 10% noise in the data at 30 000 iterations. Reference model (left), linear Landweber
reconstruction (middle), SA reconstructed image (right).
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Defining the radial and angular coordinates as r and θ,
and using the finite-volume method, the discrete equation is
formulated in conservative form for each cell Ω

αβ
 as

∇⋅ ∇ =∫ ( )ε φ αβ
αβ

j dΩ
Ω

0 for α = 1,.., N
r
  and β = 1,..,N

θ

(6)

where the indexes α and β refer to the discretization in r and
θ, respectively, and N

r
 and N

θ
 are the number of sections into

which the radius and the circumference are divided, respec-
tively.

Applying Gauss’s theorem in polar coordinates, the
discrete equations can be written as

              ε φ αβ
αβ

∇ ⋅ =∫ j dΓΓ 0
Γ  , (8)

where Γ
αβ

 is the boundary of the finite volume cell Ω
αβ

. The
boundary Γ

αβ
 is defined by Γ

W
 and Γ

E
 along the radial coor-

dinates, and by Γ
N
 and Γ

S
 along the angular coordinates. Equa-

tion (8) can be expressed as the sum of the fluxes through
the faces Γ

N
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(9)

From equation (9), the term corresponding to the fluxes
at zero radius vanishes and the problem is equivalent to solv-
ing the equations in the proximity of the center on triangles
that have a vertex on the center. Then, the discrete system of
equations for the forward problem is well posed. The com-
plete system is similar to a Laplacian system of equations,
and a diagonal banded system that includes the periodic
boundary conditions imposed by the problem geometry must
be solved. The corresponding matrix is positive definite and
non-symmetric, characteristics that were exploited when se-
lecting the biconjugate gradient method for its solution.

Finally, the mutual capacitances were calculated by in-
tegrating the potential gradients along a curve surrounding
the electrodes, the following equation

      C
Q

V V
d

V n
dlij

i

j

o

o

j o

o

j

i i

__
( )= =− ∇ ⋅ =−

∂
∂∫ ∫ε

ε φ
ε

ε
φ

l
Γ Γ

 , (10)

where n is the normal to the electrode contour, C ij

__

 is the
capacitance per unit length between electrodes i and j, Q

i
 is

the electric charge per unit length induced on electrode j (the
detection electrode), V

j
 is the voltage applied to electrode j

(the source electrode), ε
o
 is the vacuum permittivity (8.854 ×

10-12 farads per meter), Γ
i
 is a closed curve surrounding elec-

trode i, dl is a normal vector representing an element of the
curve Γ

i
, dl is an elementary element of length of that curve

and φj is the electrostatic potential distribution created in the
sensor when applying a voltage V (volts) to electrode j
(source) and 0 volts to all others (detection electrodes). The
integration is performed using a trapezoidal rule and the po-
tential gradients were calculated to the fourth order. The to-

tal capacitances C
ij 
are obtained multiplying C ij

__
 by the elec-

trode length, 0.1 meters in our case.

To accelerate the biconjugate gradient, we apply here
an ILU precontionner to our non symmetric matrix solver.
For this purpose, the matrix Ak describing each problem
Akφφφφφk=bk is split into Ak=M-R where the precontionner M is
invertible and mimics the behavior of Ak. The ILU factoriza-
tion is as sparse as the lower triangular part of A. It can be
easily computed without much additional storage require-
ment because non-diagonal elements are the same as those
of A. Of course all the diagonal elements which intervene in
the ILU factorization must be larger than zero, but in our
finite volume approximation this is always verified, condi-
tion that is not verified for finite element methods (Wu, 2003).
The number of iterations of the precontionned BICG code is
less than the original and classical BICG version by a factor
3 (128 iterations instead of 450) for a solution error of 10-6

and the number of points chosen here.
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