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RESUMEN
Rederivamos la solución para el cálculo de la difracción y dispersión de ondas elásticas por una obstrucción esférica. Se

presenta un catálogo para los coeficientes en las expansiones de las series de las ondas difractadas. La solución clásica consiste
en una superposición de los campos incidente y difractado. Se asumen ondas planas P y S. Ellas se expresan como expansiones
de funciones de onda esféricas, las cuales son probadas contra resultados exactos. El campo difractado se calcula a partir de la
imposición analítica de condiciones de frontera en la interfase matriz-difractor. La obstrucción puede ser una cavidad, una
inclusión elástica o una esfera fluida. Se proporciona un conjunto completo de funciones de onda en términos de funciones
radiales esféricas de Bessel y de Hankel. Para las coordenadas angulares se utilizan polinomios de Legendre y funciones
trigonométricas. Se muestran resultados en el dominio del tiempo y la frecuencia. Reportamos espectros de amplitudes del
desplazamiento contra la frecuencia normalizada y patrones de radiación en frecuencias bajas, medias y altas. Se calculan
sismogramas sintéticos para algunos casos relevantes.

PALABRAS CLAVE: Expansión, difracción, obstrucción esférica, ondas elásticas, funciones de Bessel y Hankel, respuesta
sísmica.

ABSTRACT
We re-derive the solution for scattering and diffraction of elastic waves by a single spherical obstacle. A complete catalog

for the coefficients in the series’ expansions of scattered waves is presented. The classical solution is a superposition of incident
and diffracted fields. Plane P- or S-waves are assumed. They are expressed as expansions of spherical wave functions which are
tested against exact results. The diffracted field is calculated from the analytical enforcing of boundary conditions at the scatterer-
matrix interface. The spherical obstacle is a cavity, an elastic inclusion or a fluid-filled zone. A complete set of wave functions
is given in terms of spherical Bessel and Hankel radial functions. Legendre and trigonometric functions are used for the angular
coordinates. Results are shown in time and frequency domains. Diffracted displacement amplitudes versus normalized frequency
and radiation patterns at low, intermediate and high frequencies are reported. Synthetic seismograms for some relevant cases
are computed.

KEY WORDS: Scattering, diffraction, spherical obstacle, elastic waves, Bessel and Hankel functions, seismic response.

1. INTRODUCTION

Scattering of a plane wave by a single spherical obstacle
is the archetype of many scattering problems in physics (i.e.,
acoustics, optics, hydrodynamics) and geophysics (i.e.
vulcanology, seismology). In exploration geophysics,
spherical objects provide a good approximation for real
objects. The analytic formulation of a single sphere could
be used to construct more complicated solutions. In the
petroleum industry, if oil is trapped in cavities, it is
reasonable to accept that seismic energy might get trapped
by fluid resonance. Such resonances are difficult to observe
because of the impedance contras between rock and fluid.

Exact solutions for scattering problems can be very
helpful. Although analytical solutions exist for some types
of obstacles (spheres, cylinders or ellipsoids), the insight

gained is significant. The subject is not new (i.e., Rayleigh,
1872; Wolf, 1945; Morse and Feshbach, 1953; Bouwkamp,
1954). In elasticity, the scattering problem for the sphere
has been studied by Takeuchi (1950), Ying and Truell
(1956), Knopoff (1959a) and Pao and Mow (1963) for P-
wave incidence. Books by Mow and Pao (1971), Pao and
Mow (1973) and Eringen and Suhubi (1975) cover the
subject reasonably well except the case of incoming S-
waves. A classic paper by Einspruch, Witterholt and Truell
(1960) discusses, with some misprints the scattering of a
plane transverse wave by a rigid, elastic, empty or fluid-
filled sphere. The problem was rigorously solved by
Knopoff (1959b). Mow (1965) considered a perfectly rigid
sphere. Chapman and Phinney (1970) considered the
diffraction of P-waves by the core and inhomogeneous
mantle of the Earth. Cormier and Richards (1977) used full
wave theory to study the inner core boundary. The
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amplitudes of backscattered P-waves returned by a spherical
inclusion in elastic solids have been studied by Gaunard
and Uberall (1979a, 1979b, 1980) in terms of the so-called
Resonance Scattering Theory (RST) and by McMechan
(1982) in view of some applications to the core of Mars
and a to magma chamber.

An elegant formulation by Wu and Aki (1985) uses
the equivalent source method and Born approximation (low
contrast between materials properties) for the scattering
characteristics of elastic waves. Diffraction by penny-shaped
cracks uses a variety of analytical techniques (e. g. Bostrom
and Eriksson, 1993). Morochnik (1983a; 1983b) discussed
the vector scattering problem. Asymptotic solutions,
theoretical and numerical results have been reported by
Korneev and Johnson (1993a, 1993b, 1996). Most recent
work includes, echo resonance in magma cavities (Montalto
et al., 1995), elastic wave propagation (Gritto et al., 1995,
1999), acoustic scattering by cylindrical and spherical shells
(Veksler et al., 1999a, 1999b; Veksler et al., 2000). Most
studies are done in the frequency domain and little is
presented in the time domain. The lack of a complete and
revised coefficient catalog for the series’ expansions
activates us to gather the solutions for the scattering and
diffraction of plane P- and S-waves by a spherical obstacle.

In this work, we study the scattering of elastic P- and
S-waves by a single spherical obstacle. We treat low,
intermediate and high frequencies. The solution for this
canonical 3D problem is constructed as the superposition
of both incident and diffracted fields. The incident plane P-
or S-waves are given as expansions of spherical wave
functions. The coefficients for the P-wave incident field are
calculated from the scalar displacement potential. On the
other hand, for S-wave incidence the corresponding
coefficients are quite more complicated. They must be
extracted from a vector potential. We used the coefficients
reported by Knopoff (1959b) and we verify them. The
diffracted field by the obstacle is then obtained from the
expansions of spherical functions. A complete set of radial
functions for the incident and diffracted fields, in terms of
spherical Bessel and Hankel functions, respectively, is
provided. Legendre and trigonometric functions are used
to include the corresponding angular dependences.
Boundary conditions at the scatterer-matrix interface are
defined by continuity of displacements and tractions when
the obstacle is an elastic inclusion. For a cavity, tractions
must be null at the surface while for the fluid-filled sphere,
the conditions are null tangential tractions and continuity
of normal tractions and displacements.

In order to test the formulation presented here some
well known results are reproduced. Spectral amplitudes
versus normalized frequencies are obtained for both P- and
S-waves. Radiation patterns varying the scatterer-matrix

properties for various frequencies are given. Propagation
features and seismic response for different properties are
depicted through synthetic seismograms.

2. FORMULATION OF THE SCATTERING
PROBLEM

2.1 P-wave incidence

Let us consider the problem of a spherical obstacle
(elastic, cavity or fluid-filled) contained in a three-
dimensional, homogeneous, isotropic and infinite elastic
space, subjected to a plane P-wave incident field, as shown
in Figure 1. Let us evaluate the total displacement field at a
given point of the elastic space (region E). According to the
superposition principle, the total displacement field can be
expressed as

      u u u ii
t

i i
d( ) ( ) ; , ,= + =( )0 1 2 3 (1)

where u
i
(t) is the total displacement field, u

i
(0) is the incident

field, and u
i
(d) is the diffracted field by the inclusion (region

R) due to the incident field. From the displacement potential,
φ, it is possible to obtain the incident field for the P-wave

u
xi

i

qz t( ) ;0
0= ∇ =

∂
∂

= −φ
φ

φ φ ωe ei i
(2)

with

φ
ω
α0 = =

i

q
q; = P-wavenumber, ω = angular frequency,

α
λ μ

ρ
=

+E E

E

2
= P-wave velocity, λ

E
, μ

E
 = Lamé

Fig. 1. Spherical diffractor under incidence of elastic plane P-,
SV-, or SH-waves.
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constants, ρ
E
 = mass density of the elastic region E, i =

imaginary unit = −1 , t = time, and x
1
, x

2
, x

3
=x, y, z. In the

following, the time-dependent term eiωt will be omitted. It is
also possible to write in vector notation that u(0) = Δφ = grad
φ. In fact, our interest is to know the incident field calculated
from the gradient of φ in spherical coordinates. This is
obtained as follows.

  

u
( )0 1 1

= = ∇ =
∂

∂
+

∂

∂
+

∂

∂
gra

r
e

r
e

r
erd

sin
φ φ

φ φ

θ θ

φ

φθ φ , (3)

where e
r
, e

θ
 and e

φ
 are unit vectors in the spherical system r,

θ and φ, respectively.

The displacement potential φ of (2) can be expanded
in terms of Bessel and Legendre spherical functions as
(Abramowitz and Stegun, 1964):

φ θ= + −
=

∞

∑( )( ) ( ) (cos ),2 1 0

0

n i j qr Pn
n n

n

(4)

where j
n
(qr) = spherical Bessel function of first kind and

order n, and Pn
0 cosθ( ) = Legendre’s polynomial of order n

and degree m = 0. For the computation of the P-wave incident
displacement field, it is necessary to calculate the first
derivatives with respect to both r and θ. For convenience,
we will adopt the notation proposed by Knopoff (1959a)
and Takeuchi and Saito (1972). Then the incident
displacements are

u n i y r Pr
n p

n

n

( ) ( )( ) (cos ),0
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2 1= + − ( )( )
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∑ θ and
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(cos )0
3

0
0

0

2 1= + − ( )( )

=

∞

∑ ,

(5)

for the radial and tangential directions, respectively. Note

that uφ
0 0( ) =  for construction. y rp

1
0( ) ( )   and y rp

3
0( ) ( )  are

the longitudinal radial functions defined in Appendix A.

We are also interested in the computation of the
tractions for the radial and tangential directions of spherical
surface. Thus, applying Hooke´s law (Mow and Pao, 1971,
Mow and Workman, 1966), we have

      σ θrr
n p

n

nn i y r P( ) ( )( ) (cos )0
2

0

0

02 1= + − ( )( )

=
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∑    and

           σ
θ
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nn i y r
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( ) ( )( )
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4

0

0

0

2 1= + − ( )( )

=
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∑ ,

(6)

where stresses σ rr
0( )  and σ θr

0( )  are the radial and tangential

components of the traction on the surface with radius r (and
obviously, with normal e

r
). The radial spherical functions

y rp
2

0( ) ( )  and y rp
4

0( ) ( )  are obtained from the corresponding

derivatives of displacements (see Appendix A).

Up to here we have only expanded the incident
displacement field in spherical functions using spherical
coordinates. To evaluate the diffracted and refracted fields
(the refracted field is indeed the total field within the sphere
R), we must expand the displacements and the stresses for
each field following the same algebraic formulation used
for the incident field. The unknown coefficients will appear
and they need to be determined from the corresponding
boundary conditions. In Appendix A, we illustrate the
structure for the diffracted and total fields, showing all the
participant waves for both displacements and stresses.

Thus, the continuity conditions at r = a for an elastic
obstacle are

     

σ σ σ

σ σ σθ θ θ

θ θ θ
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d
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d
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d
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, (7)

where the superscripts (d) and (r) stand for diffracted and
refracted fields, respectively. These conditions have to be
enforced for each term, once the solutions have been
developed in terms of expansions in spherical coordinates
for the diffracted and refracted fields as shown in (5) and
(6). Using the expressions in (7) and evaluating in r = a, the
system of equations to solve, for each order n is
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where A
n
, D

n
, E

n
, F

n
 are the unknown coefficients. y ap

1
*( ) ( ) ,

y ap
2

*( ) ( ) , y ap
3

*( ) ( ) , y ap
4

*( ) ( )  are the radial functions at r = a

with the same form as that for the incidence of P-waves.
These functions have been defined in Appendix A. The
superscripts R or E stand for the region where the
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correspondent function is defined (Figure 1). For region R,
spherical Bessel functions are used, while for region E,
spherical Hankel functions need to be applied. On the other

hand, y as
1

*( ) ( ) , y as
2

*( ) ( ) , y as
3

(*) ( ),  y as
4

(*) ( )  are the radial
functions at r = a associated to converted S-waves and they
are also defined in Appendix A. In the same way as for the
P-wave radial functions, these functions have been defined
for region R, using Bessel functions while for region E, they
are given in terms of Hankel functions. In (8), μ

R
 and μ

E
 are

the elastic shear moduli for R and E regions, respectively.
Since the boundary conditions for a cavity (ρ

R
 = 0) are null

tractions acting at the surface of the sphere, the expressions
for stress components in (7) must be set to zero. This is
achieved by omitting coefficients E

n
 and F

n
 in (8). Thus, the

linear system (8) is reduced to two equations.

For the case in which the spherical cavity is filled with
fluid (μ

R
 = 0), it will be necessary to observe the boundary

conditions for pressure and stresses. The equations that
govern the fluid are (Mow and Workman, 1966)

p I j
r

c
PE n n n

n
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=

∞

∑p

r
I

c
j

r

c
PE n n n

n

μ
ω ω

θ0

0

(cos ) ,

(9)

where p is the fluid pressure and p rr
t= − ( )σ , I

n
 is the unknown

coefficient that will be determined when the boundary
conditions are satisfied and c = sound velocity of the filler
fluid. Then, the boundary conditions for the fluid obstacle
at r = a are

σ σrr
d

rrp( ) + = − ( )0 ,

ρ ω ρ ωr r
d

r ru
p

r
u2 2 0( ) ( )( ) − ∂

∂
= − ( ) , (10)

    σ σθ θr
d

r
( ) = − ( )0 ,

with σ θr
t( ) = 0. In this case, it is necessary to consider the

fluid equation in (8). The system will have order three and
will be solved exactly.

2.2 S-wave incidence

Let us consider the case in which an elastic S-wave
arrives at a spherically symmetric obstacle as shown in Fig.
1. In similar way as it was defined for the P-wave incidence,
the total displacement field for an incoming S-wave is given
by the superposition principle represented in (1). To construct
the S-wave incidence in terms of displacement potentials it
will be necessary to calculate

    
  
u

0( ) = ∇ + ∇ ×φ ψ , (11)

where φ is the scalar potential and ψ  is the vector potential.
As we are dealing with a plane S-wave propagating in the
positive direction of z-axis and polarized in the positive
direction of x- axis, we have

φ φ φ φ= ∇ = =0 00 0e-ikz ; ; ,

     ψ ψ ψ ψ ψ ψ= = = = ∇ ⋅ =y
kz

x y0 0 0e-i ; ; , (12)

where k=ω/β is the shear wavenumber, ω is the angular

frequency,  β
μ

ρ
= = is the S-wave velocity, and i = −1  is

the imaginary unit.

Then, calculating the curl of the vector potential (, we
have that the displacement for the x-direction is

u
zx

y( )0 =
∂

∂

ψ
, (13)

with u uy z
0 0 0( ) ( )= = . Doing derivation and considering the

incident wave with unitary amplitude, the displacement field
for the three directions of movement, written in spherical
coordinates, are

u u u u u ur x x x
( ) ( ) ( ) ( ) ( ) ( )cos ; cos cos ;0 0 0 0 0 0= = = −sin sinθ φ θ φ φθ φ

(14)

Now, it is convenient to write the expressions in (14)
as spherical expansions in terms of Bessel and Legendre
functions. Einspruch, Witterholt and Truell (1960) displayed
most of the basic vector solutions for the incident S-wave
displacement field to construct a general expansion in
spherical coordinates. However, the definitions of the vector
spherical harmonics at the first part of their study have
misprints and some inconsistencies in their trigonometric
functions, specially into the so-called Hansen vectors L, M,
and N. The basic vector solutions for the spherical coordinate
system are well given in Morse and Feshbach (1953) and
Knopoff (1959b). Thus, the incident field of S-waves can
be written as a sum of spherical wave functions, as follows
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(15)
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with

B
n

n n k
C Bn

n
n n= −( )
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⎛
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⎠
⎟ =+i i1 2 1
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1
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where ur
0( ) , uθ

0( )  and uφ
0( )  are the incident fields for the radial,

tangential and azimuthal directions, respectively. The radial
functions y rs

1
0( ) ( ) , y rs

3
0( ) ( )  and y rt

1
0( ) ( )  are defined in

Appendix A. Pn
1 cosθ( ) is the Legendre function of order n

and degree m = 1. Since the incident fields are plane waves,
only one azimuthal term appears (for P-waves just m = 0 is
required, while for SV- or SH-waves, m = 1 is enough). Note
that for the incidence of SV- or SH-waves, the azimuthal
terms are given by the upper and lower trigonometric
functions, respectively. The coefficients B

n
 and C

n
 are quite

different from those of the P-wave incidence. On the other
hand, we have tested the coefficients in (16), verifying them
with the plane wave exact solution given by (14) and (13).

To write the part of the incident stress field that
contributes to the tractions in the r, θ, and φ directions, we
adopt the same formulation as that developed for
displacements. Using the B

n
 and C

n
 coefficients defined

above and applying Hooke´s law, we are able to write the
incident stress field as a sum of spherical wave functions as
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where σ rr
0( ) , σ θr

0( )  and σ φr
( )0  are the radial, incident-field stress

tensor components (tractions) for the directions r, θ, and φ,
respectively. Again, the radial functions y rs

2
0( ) ( ), y rs

4
0( ) ( )

and y rt
2

0( ) ( )  are defined in Appendix A. Pn
1 cosθ( )  is the

Legendre function of order n and degree m = 1. The incidence
of SV- or SH-waves is associated to the azimuthal terms
(upper and lower, odd or even, trigonometric functions,
respectively). There are other components of the stress tensor
in spherical coordinates associated to the displacements in
(15), but for convenience we omit further mention in this
work (the reader is referred to Takeuchi and Saito, 1972, for
details). In order to solve a linear system that will be
established from boundary conditions, we only require three
components of the stress tensor.

To evaluate the corresponding diffracted and total
fields, we must expand in spherical wave functions the
displacements and stresses for each of these fields. Therefore

the incidence is given by a plane S-wave polarized in the
positive directions of x- and y- axes as depicted in Figure 1,
the produced diffracted fields are of three types, one from
the diffraction of P-waves and two from diffracted S-waves.
We show in Appendix A the structure of the diffracted and
total fields with all participant waves for both displacements
and stresses.

Once the forms for refracted and diffracted fields have
been established, the unknown coefficients will appear and
they need to be determined from the corresponding boundary
conditions. The continuity conditions for the stresses and
displacements at the elastic sphere interface (r = a) for
incident S-waves are given by

σ σ σ
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, (18)

where the superscripts (d) and (r) stand for diffracted and
refracted fields, respectively.

For instance, if we take a look at the continuity
conditions for P-wave incidence, we can find that the
components in the φ direction are not present as in this case.
Here, we are taking into account the additional terms for
displacements and tractions in the latitudinal and azimuthal
components. Once the solutions have been developed in
terms of the expansions in spherical coordinates for the
incident, diffracted and refracted fields, and including the
continuity conditions in (18), the system of equations can
be constructed. One can recognize that the latitudinal and
azimuthal operators will force the coupling terms for the
calculation of the unknown coefficients following (18). If
we develop and evaluate the solution at r = a, the systems of
equations to solve are
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where A
n
, D

n
, E

n
, F

n
, G

n
, and H

n
 are the unknown coefficients,

B
n
 and C

n
 are the complex coefficients defined in (16), the

radial functions y as
1

(*)( ) , y as
2

(*)( ) , y as
3

(*)( ) , y as
4

(*)( )  are due

to the contribution of all (incident, diffracted and refracted)

S-waves, the radial functions y at
1

(*)( ) , y at
2
(*)( )  are due to

the contribution of toroidal modes. All these groups of radial
functions are defined in the Appendix A.

In a similar manner as that for P-wave incidence, the
superscripts R or E stand for the region in which the
corresponding function is defined (Figure 1). For region R
spherical Bessel functions of first kind and order n are used.
For region E, spherical Hankel functions must be applied. It
is remarkable that only when we deal with the incident field,
the radial functions for the region E are Bessel functions.

Now the radial functions y ap
1

(*)( ) , y ap
2

(*)( ) , y ap
3

(*)( ) , and

y ap
4

(*)( )  are aimed to represent converted P-waves.

In (19) μ
E
 and μ

R
 are shear moduli for E and R regions,

respectively. To obtain the spherical cavity case, the
boundary conditions are null tractions acting at the surface
of the sphere with ρ

R
 = 0. The expressions for stress

components in (18) must be set to zero. Thus, the linear
system is reduced to order two, with a coupling equation
that contains the toroidal contribution. This is achieved by
omitting coefficients E

n
, F

n
, and H

n
 in (19). For the case in

which the spherical cavity is filled with fluid (μ
R
 = 0), as for

the P-wave incidence case, it is necessary to observe the
boundary conditions for pressure and stresses. The
appropriate equations that govern the fluid are

p I j
r

c
PE n n n

n

= ⎛
⎝

⎞
⎠

=

∞

∑μ
ω

θ ϕ1

1

(cos )cos ,

∂
∂

= ⎛
⎝

⎞
⎠

=

∞

∑p

r
I

c
j

r

c
PE n n n

n

μ
ω ω

θ ϕ' (cos )cos1

1
, (20)

where p is the fluid pressure and p rr
t= − ( )σ , I

n
 is the unknown

coefficient that will be determined from boundary conditions,
and c = sound velocity of the filler fluid. Note that the
azimuthal terms and the Legendre functions are defined with
degree m = 1 again, following the azimuthal decomposition
for the S-waves. Then, the boundary conditions for the fluid-
solid interface at r = a are

σ σrr
d

rrp( ) + = − ( )0 ,

ρ ω ρ ωr r
d

r ru
p

r
u2 2 0( ) ( )( )− ∂

∂
= − ( ) ,

σ σθ θr
d

r
( ) = − ( )0 , (21)

with σ θr
t( ) = 0. As we are treating with a fluid inclusion, it is

necessary to consider the fluid conditions (20) in the linear
system (19). As the equations for the region R in (19) are
governed by the shear moduli ratio, these terms must be set
to zero. This is equivalent to omit coefficients D

n
, E

n
, and

F
n
. The systems will have again order three for each n.

3. NUMERICAL RESULTS

In order to illustrate some relevant features of the
analytic formulations reviewed in previous sections, several
computations were performed and relevant results are
presented here. Our aim is to provide useful information to
calibrate and approximate the seismic response for real
objects. The results for a single sphere allow us establishing
the basic solutions to construct more complicated
formulations, and provide good approximations to observe
the scattering behavior for real diffractors in several
seismological problems.

Different kinds of materials inside the spherical
obstacle, including a cavity, have been analyzed. For
example, Figure 2 show the scattering patterns for the
diffracted field in the radial direction u

r
. Calculations for

distance r = 2a, with several values of dimensionless
frequency ka = 0.25, 0.5, 1.0 and 5.0 are depicted in a figure
array. In Figure 2a, the coefficients for the incidence of P-
waves and the corresponding partially diffracted P- and S-
waves (P-P and P-S, respectively) have been calculated
separately. The results correspond to a water-filled sphere
(solid line), a cavity (long dashed line) and an elastic sphere
with μ

R
/μ

E
 = 0.5 (short dashed line). Figure 2b shows the

scattering patterns for the incidence of S-waves and the
partially diffracted S- and P-waves (S-S and S-P),
respectively. In all examples the surrounding medium
(matrix) properties are ρ

E
 = 2.7 g/cm3, α

E
 = 6.42 x 105 cm/s,

β
E
 = 3.04 x 105 cm/s.

The dimensionless frequency η = ka/π  (the relationship
diameter/wavelength η = 2a/λ, where λ = shear wavelength)
allows to establish the various scattering regimes: low-
Rayleigh (ka << 1), intermediate-Mie (ka = 1) and high-ray
(ka >> 1). While the first corresponds to large wavelengths
and allows for equivalent medium approximations, the last
corresponds to ray theory in which relatively simple
geometrical descriptions are adequate. Various interesting
results emerge from the three models involved by each frame
of Figure 2a. First, at low frequencies (ka = 0.25, ka = 0.5)
more energy of the incident P-wave field is converted to
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Fig. 2a. Array of frames for scattering patterns U
r
 given by P-P and P-S coefficients for r = 2a. Vertical frames are given for ka = .25, .5 1.0

and 5.0. Computations are performed for a water-filled sphere (solid line), a cavity (long dashed line) and elastic sphere (short dashed line).
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Fig. 2b. Same as Figure 2a for U
r
 computed with S-S and S-P coefficients.
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scattered S-waves than to P-waves, while at intermediate
and high frequencies (ka = 1.0, ka = 5.0) the scattered P-
wave field is dominant. Second, at low frequencies the
amplitudes of the scattered P-waves in the forward and
backward directions are comparable, whereas most of the
scattered S-wave fields lie in the forward direction. At high
frequencies, the amplitudes of the scattered S-waves are
several times lower than the scattered P-waves. So, we can
accept only generating forward-scattered P-waves. In Figure
2b we observe that at low frequencies (ka = .25, ka = .5)
the energy of the incident S-wave field is preserved into
scattered S-wave fields. Nevertheless, a considerable
amount of scattered energy is converted to P-waves. At high
frequencies (ka = 1.0; ka = 5.0) the same effect is identified.
At low frequencies, the amplitudes of the scattered S- and
P-waves in the forward and backward directions are
comparable, whereas at high frequencies, the amplitudes
of the scattered S-waves are larger in the forward direction.
Note that the amplitude of the scattered S-waves is three to
four times larger than the scattered P-waves. In terms of
shapes and amplitudes of the scattering diagrams, there are
characteristic differences between the fluid-filled, cavity
and the proposed elastic models that must be studied with
detail in further studies. It is remarkable that the diffracted
field distance-dependence behaves very regular, the
attenuation effects are geometrical, even stronger than the
inverse of distance.

In order to validate our computations we have made
several experiments in which elastic, fluid-filled and empty
spheres were considered. Various comparisons with some
results obtained from the Resonant Scattering Theory (RST)
by Gaunard and Uberall (1979a) were performed.
Displacement amplitudes for the diffracted fields are
computed to show back scattering characteristics. Figures
3 and 4 show the modulus of the rotated diffracted field u

z

(see Appendix B) for P-wave incidence, and u
x
 for S-wave

incidence respectively, versus dimensionless frequency η.
The receiver is located at x = 0 and z = -7 (r = 7 and θ = π in
spherical coordinates) and the matrix properties are the same
for both cases (ρ

E
 = 2.7 g/cm3, α

E
 = 6.42 ( 105 cm/s, β

E
 =

3.04 x 105 cm/s). From Figure 3 it is remarkable that adding
twelve terms (n = 12) to the series of non mode-converted
P-wave contribution P-P (top) and mode-converted P-S
(bottom) into the diffracted field suffices to produce an
accurate graph compared with the reported by RST, on the
range 0< η < 7. Note that the solid line represents the
response of a water-filled sphere with ρ

R
 = 1.0 g/cm3, α

R
 =

1.493 x 105 cm/s, the long-dashed line corresponds to an
empty sphere (ρ

R
 = 0), and the short-dashed line to an elastic

sphere with properties μ
R
/μ

E
 = 0.5. The P-S coefficients are

offered in the same range of frequencies as for P-P case.
The similarity of spectral characteristics for both P-P and
P-S plots is remarkable (mode-excitation, periodicity and
amplitudes). For example, the periodicity effect is preserved

on both plots and mainly in the fluid case. We must note
that the energy is well concentrated in recursive patterns of
spectral spikes (resonant modes, adopting the engineering
term). Although the observation point is located over a nodal
axis the behavior of the given frequency responses are
representative of all locations.

In Figure 4 same kind of results were computed for
the incidence of a SV-wave. Corresponding coefficients S-
S and S-P were calculated in order to study the spectral
characteristics of the response. Twelve terms were used (n
= 12) to compute non mode-converted partial S-wave
contributions S-S (top) and mode-converted S-P (bottom)
of the diffracted field. Again, the solid line represents the
water-filled sphere, the long dashed line corresponds to an
empty sphere and the short dashed line to an elastic sphere
with properties given by μ

R
/μ

E
 = 0.5. Remarkably, the fluid

response for the S-S coefficients is very strong and rippled
for all frequencies, as compared with those of the cavity
and elastic cases. The S-P coefficients show the same excited
modes and weak amplitude rapidly attenuated with respect
to frequency. Unfortunately, RST does not consider the case
of an incoming S-wave. Similar results on this matter are
due to Korneev and Johnson (1996) for some deterministic
models. Now it is possible with these results to establish a
comparison for the back-scattered field between non mode-
converted and mode-converted S-waves. Even though the
spectral plots are completely different from those of the P-
wave calculations, the same resonances are excited by an
incident shear wave as by an incident compressional wave.

In order to observe the propagation features and to
continue with the study of incident elastic P- and S-waves
over an empty, fluid-filled and elastic sphere, various
configurations for geophysical applications have been
experimented in time domain. A three-dimensional behavior
is offered with the aim to give a better understanding of the
time-space complexity in the models. Synthetic
seismograms are helpful to observe and understand
diffraction effects and polarization patterns. Traces were
obtained by convolution with a Ricker wavelet followed
by an inverse Fourier transform. In the synthetic
seismograms presented here a Ricker wavelet with
characteristic frequency ω

c
=1/π, t

p
 = 1s and t

s
 = 5s is used

for all examples.

Figure 5 shows synthetic seismograms for two
components of displacement (U

x
 and U

z
). We omit the

displacement along the y-axis, U
y
, for both incidences

because U
y
 = 0. For the SH-wave incidence the results (not

shown here) are identical due to symmetry. Figure 5a depicts
the P-wave incidence upon an elastic ρ

R
/ρ

E
 =1.0, μ

R
/μ

E 
=0.5)

(top), cavity (middle) and water-filled (bottom) sphere
plotted versus time. Matrix properties are ρ

E
 = 2.7 g/cm3,

α
E
 = 6.42 x 105 cm/s, β

E
 = 3.04 x 105 cm/s. To observe the
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propagation and diffraction effects after the interaction
between the incoming wave and the spherical obstacle, there
are 51 receivers at x = ±3a and z = 2a, as illustrated in
configuration (A-A’) of Figure 1. In the elastic case, it is
possible to observe a strong and delayed amplification of

the incident field at U
z
, due to the soft properties of the

sphere. Normal P-wave incidence clearly shows how the
incident field is delayed by the presence of an empty sphere
at the U

z
 component. The diffracted field across the cavity

model is the result of scattered waves generated at the surface

Fig. 3. Modulus of summed (n = 12) back scattered field U
z
. P-P coefficients (top) and P-S coefficients (bottom) versus η. A water-filled

sphere (solid line), a cavity (long dashed line) and elastic sphere (short dashed line) are given. The observation point is at x = 0 and z = -7a.
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of the sphere, see both U
x
 and U

z
. The traces for the water-

filled sphere again show that the diffracted field is mainly
composed of waves scattered by the cavity and the appearing
of resonant fluid P-waves at 8s.

In order to simulate a typical array of seismometers on
surface, Figure 5b shows synthetic seismograms for two

components of displacement U
x
 and U

z
 over the section B-

B’ illustrated in Figure 1. In this result, the time response of
a plane P-wave that arrives over an elastic (top), cavity
(middle), and water-filled (bottom) sphere, is depicted. The
matrix properties are the same as the previous examples.
Along the three cases the direct wave is easily seen. Note
that the diffracted wave in the elastic sphere appears with a

Fig. 4. Same as Fig. 3 calculated for non-mode converted S-S coefficients (top) and mode converted S-P coefficients (bottom). The back
scattered field is U

x
.
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Fig. 5a. Synthetic seismograms recorded at A-A’ array of receivers for U
x
 and U

z
 are shown. P-wave incidence upon an elastic sphere (top),

a cavity (middle) and a water-filled sphere (bottom) are plotted versus time. Source is given by a Ricker wavelet with t
p
 = 1s and t

s
 = 5s.
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very strong attenuation over the first half of receivers. Again
a set of propagating fluid-generated waves appears at 8.5s.
The diffracted wave appears clearly for the cavity and the
water-filled sphere.

Figure 5c shows synthetic seismograms for two
components of displacement U

x
 and U

z
 in the same

configuration of Figure 5a. In this set of results, the time
response of an incident SV-wave over an elastic (top), cavity

Fig. 5b. Same as Fig. 5a recorded at B-B’.
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Fig. 5c. Same as Fig. 5a for a S-wave incidence.
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(middle), and water-filled (bottom) sphere is illustrated. The
SV-wave incident field appears to be delayed for the three
kinds of inclusions. In the elastic case, a large amplification
occurs and a strong scattered wave is generated. The cavity
and elastic cases are very similar, if the amplification effect
by the soft material of the elastic sphere is neglected. In the
water-filled case a considerable attenuation effect at the
central receivers is observed, this is due to the presence of
the fluid. We must note that a strong train of fluid field
generated P-waves propagating around 7s in both
components of movement is clearly appreciated.

Finally the Figure 5d shows synthetic seismograms
for two components of displacement U

x
 and U

z
 over the

section B-B’. The seismic response of an incident SV-wave
over an elastic (top), cavity (middle), and water-filled
(bottom) sphere is displayed. The same properties as those
for Figure 5b were adopted. The difference between the
elastic and cavity responses generated by the diffracted
wave is not so clear in comparison with those of 5b plot.
This may be explained due to the polarization of the incident
field and the position of receivers. However, some diffracted
waves can be followed from the U

z
 component for the three

kinds of inclusions. If we look at the cavity and the fluid-
filled sphere seismograms, we can recognize two sets of
trains of P-waves generated by the diffraction of the incident
field with the edges of the sphere at 4s and 8s. However a
strong reflection of a P-wave generated by the fluid is
observable at 10s. It has been seen clearly that the fluid
effect and resonance on the S-wave propagation it is
detectable.

4. CONCLUSIONS

We have presented a review of the analytic solution
for the scattering of P- and S-waves by a single spherical
obstacle. The expansions of plane P- and S-waves in terms
of spherical Bessel functions and Legendre polynomials
using the relations for the displacements and stresses were
re-derived. We give a complete and revised table of such
coefficients. In order to obtain an accurate approximation
of the harmonic wave solution, we identified that the order
of the series expansions n must be at least the maximum
number of dimensionless frequency in the calculation
(according to Takeuchi and Saito, 1972). We believe that a
reasonable rule of thumb is then n = max(ka). Results from
elastic, fluid-filled and empty spheres were analyzed in
frequency domain. We performed some calculations in
which the radial diffracted field was computed for low-
Rayleigh (ka << 1), intermediate-Mie (ka = 1) and high-
ray (ka >> 1) scattering regimes. A number of interesting
observations were discussed from the calculations of P- and
S-waves scattering patterns. We performed several
computations comparing with some results obtained from
the well-known Resonant Scattering Theory (RST) by

Gaunard and Uberall (1979a). Diagrams for the
displacement amplitudes for the diffracted field showing
back scattering characteristics were computed. In the cases
of fluid-filled sphere and cavity, the comparisons versus
RST show spectral plots very accurate to those sketched
here. From our results it is possible to observe that it is
extremely necessary to compute series of multiple examples
in 3D to establish a complete data set and robust
characterization of the phenomenon. In order to study the
propagation features, various configurations of
seismological interest were computed in time domain. To
observe scattering and diffraction and to simulate standard
arrays of seismometers located on the surface, two
configurations of receivers were analyzed (A-A’ and B-B’).
Such analyses allow us to establish approximate seismic
responses for smooth objects or buried real structures that
might be modeled as spheres.

Results presented in this paper should also be
applicable, in at least an approximate manner, to geophysical
and engineering problems involving scattering from
heterogeneities more complicated than a simple sphere.
Scattering by a sphere serves as a canonical problem for a
general class of objects with relatively simple and smooth
boundaries. The main multiple scattering methods
commonly neglect the high-frequency terms of the basic
solutions in 2- and  3-D. Generally, they adopt low contrast
in the model’s properties ratio or low frequency
approximations. In spite of this, we believe that the analytic
solutions offer a trustworthy path to compute the scattering
and seismic response by single or multiple heterogeneities.
Constructing more complicated formulations or
approximate solutions aimed to understand real problems
should start with this classical solution.
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Fig. 5d. Same as Fig. 5c recorded at B-B’.
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APPENDIX A

Expressions for the incident, diffracted and total
displacement and stress fields in terms of radial functions
and spherical harmonics.

To construct the diffracted and refracted fields, it is
possible to use a complete set of wave functions that solves
the Navier equation. The displacements in spherical
coordinates are given by Takeuchi and Saito (1972) and Aki
and Richards (1980):
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The associated stresses to these components of
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σ θ φ

θ φ

rr nm
p

n
m

m

nm
s

n
m

m

A y r P f

B y r P f

= ( ) ( ) ( )

+ ( ) ( ) ( )

( )

( )

∑

∑

2

2

*

*

cos

cos

  

σ
θ

θ φ

θ
θ φ

θ
θ φ

θr nm
p

n
m

m

nm
s

n
m

m

nm
t

n
m

m

A y r P f

B y r P f

C y r P f

= ( )
∂

∂
( )⎛

⎝
⎜

⎞
⎠
⎟ ( )

+ ( )
∂

∂
( )⎛

⎝
⎜

⎞
⎠
⎟ ( )

+ ( ) ( )⎛
⎝

⎞
⎠

( )

( )

( )

( )

∑

∑

∑

4

4

2
1

*

*

*

cos

cos

cos
sin

  

σ
θ

θ φ

θ
θ φ

θ
θ

φr nm
p

n
m

m

nm
s

n
m

m

nm
t

n
m

A y r P sig m g

B y r P sig m g

C y r P

= ( ) ( )⎛
⎝

⎞
⎠
− ⋅( )⎛

⎝
⎜

⎞
⎠
⎟ ( )

+ ( ) ( )⎛
⎝

⎞
⎠
− ⋅( )⎛

⎝
⎜

⎞
⎠
⎟ ( )

+ − ( )( ) ∂
∂

( )

( )

( )

( )

∑

∑

4

4

2

1

1

*

*

*

cos

cos

cos

sin

sin

⎛⎛
⎝
⎜

⎞
⎠
⎟ ( )∑ gm φ

The radial functions are expressed as:

y r q j qr
r

n qr qr qrp
n n n1 1

1* ' ( ) ( ) ( )( )
+( ) = = −( )ξ ξ

y r
r

n n k r qr qr qrp
n n2 2

2 2
1

2
1

1

2
2* ( ) ( ) ( )( )

+( ) = − −⎛
⎝

⎞
⎠

+
⎛
⎝
⎜

⎞
⎠
⎟

μ
ξ ξ

y r
r

qrp
n3

1*( ) ( ) = ( )ξ

y r
r

n qr qr qrp
n n4 2 1

2
1* ( ) ( ) ( )( )

+( ) = − −( )μ
ξ ξ

y r
r

n n krs
n1

1
1*( ) ( ) = − +( ) ( )( )ξ

y r
r

n n n kr kr krs
n n2 2 1

2
1 1*( )

+( ) = − +( ) −( ) ( )− ( )( )( )μ
ξ ξ

y r i
kr r

r kr
r

n kr kr krs
n n n3 1

1 1
1*( )

+( ) =
∂

∂
( )( ) = − +( ) ( )+ ( )( )ξ ξ ξ

y r
r

n k r kr kr krs
n n4 2

2 2 2
1

2
1

1

2
*( )

+( ) = − − −⎛
⎝

⎞
⎠

( )− ( )⎛
⎝
⎜

⎞
⎠
⎟

μ
ξ ξ

y r
r

n n n kr kr krs
n n5 2 1

2
1*( )

+( ) = +( ) ( )− ( )( )( )μ
ξ ξ

y r
r

n kr kr krs
n n6 2 1

2
1*( )

+( ) = − − +( ) ( )+ ( )( )μ
ξ ξ



R. Ávila-Carrera and F. J. Sánchez-Sesma

20

y r
r

kr krt
n1

1*( ) ( ) = ( )( )ξ

y r
r

kr n kr k r krt
n n2 2

2 2
1

2 1

2
1

1

2
*( )

+( ) = −( ) ( )− ( )⎛
⎝

⎞
⎠

μ
ξ ξ

y r
r

kr krt
n3 2

2*( ) ( ) = ( )( )μ
ξ

where: ξn nj* *( ) = ( )= spherical Bessel function of first kind

and order n (for region R), and ξn nh* *( )( ) = ( )2  = spherical

Hankel function of second kind and order n (for region E).

The calculation of the radial functions is based on
recursive methods. For spherical Bessel functions of the first
kind should be performed in decreasing sense to avoid
rounding errors.

APPENDIX B

Expressions of stresses and displacements for the total
field in spherical coordinates.

The transformations for the displacement and stress
fields in cartesian coordinates, adopting the system proposed
in Figure 1, can be written as follows:

′ =u ui i j jβ ,

for the vector displacement u
i
, and

′ =σ β β σi j i k j l k l ,

for the stress tensor σ
ij
 (Fung, 1965),

with:

  

β

θ φ θ φ θ

θ φ θ φ θ

φ φ
i j =

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

sin sin sin cos

cos cos sin -sin

-sin 0

cos

cos

cos
.
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