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RESUMEN
Los Himalayas entre los 20 y 38 grados de latitud N y los 70 a 98 grados de longitud E están entre las regiones más activas y 

vulnerables a los temblores en el mundo. Se examina la evolución de la sismicidad en el tiempo (M>4) en los Himalayas centrales, 
occidentales y del Noreste para el intervalo de 1960-2003 utilizando el método de redes neuronales artifi ciales (ANN). El modelo 
de capas múltiples sirve para simular la frecuencia de sismos con una resolución mensual. Para el entrenamiento del ANN se utiliza 
un algoritmo de propagación en reversa con optimización de gradiente, y se generaliza el resultado con validación cruzada. Se 
concluye que las tres regiones se caracterizan por procesos que evolucionan en un plano multidimensional caótico similar a una 
dinámica auto-organizada. El sector central posee un coefi ciernte de correlación más bajo que las otras dos regiones, que parecen 
estar mejor “organizadas”, lo que es consistente con la información geológica y tectónica disponible.

PALABRAS CLAVE: Himalayas, redes neuronales, auto organización, sismicidad.

ABSTRACT
The Himalaya covering 20-38° N latitude and 70-98° E longitude, is one of the most seismo-tectonically active and vulnerable 

regions of the world. Visual inspection of the temporal earthquake frequency pattern of the Himalayas indicates the nature of the 
tectonic activity prevailing in this region. However, the quantifi cation of this dynamical pattern is essential for constraining a 
model and characterizing the nature of earthquake dynamics in this region. We examine the temporal evolution of seismicity (M 
≥ 4) of the Central Himalaya (CH), Western Himalaya (WH) and Northeast Himalaya (NEH), for the period of 1960-2003 using 
artifi cial neural network (ANN) technique. We use a multilayer feedforward artifi cial neural network (ANN) model to simulate 
monthly resolution earthquake frequency time series for all three regions. The ANN is trained using a standard back-propagation 
algorithm with gradient decent optimization technique and then generalized through cross-validation. The results suggest that 
earthquake processes in all three regions evolved on a high dimensional chaotic plane akin to “self-organized” dynamical pattern. 
Earthquake processes of NEH and WH show a higher predictive correlation coeffi cient (50-55%) compared to the CH (30%), 
implying that the earthquake dynamics in the NEH and WH are better “organized” than in the CH region. The available tectono-
geological observations support the model predictions.

KEY WORDS: Himalaya, neural networks, self-organisation, seismicity.

INTRODUCTION

The Himalayas are seismo-teectonically one of the most 
active regions of the world. Visual inspection of changes in 
the monthly earthquake frequency pattern indicate thath the 
earthquake dynamics in this region are complex and chaotic 
in nature possibly due to the prevailing tectonic activities. 
The available historical data and their appropriate analysis 
by using the modern powerful signal processing techniques 
are vital to dissect the nature of earthquake dynamics in 
these regions.

Some earlier studies of Himalayas and Northeast India 
(NEI) earthquake data have provided contrasting evidence 

for the presence of randomness and a low dimensional 
“strange attractor”. Dasgupta et al., (1998) studied the 
temporal occurrence of earthaquakes for magnitude greater 
than or equal to 5.5 and 6.0 (for two different data sets) for 
NEI using the Poisson probability density function analyses. 
The analysis indicates that the temporal pattern in this region 
follow Poisson distribution. Srivastava et al. (1996) applied 
the G-P algorithm (Grassberger and Procaccia, 1983) to the 
NEI earthquake time series and suggested that the earthquake 
dynamics in this region are governed by low dimensional 
chaos.

In the present paper, we have applied the artifi cial neural 
network (ANN) technique for the Himalayan major tectonics 
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units, Northeast Himalayas (NEH), western Himalayas 
(WH) and central Himalayas (CH). Artifi cial neural network 
(ANN) is a powerful method, which is being invariably used 
for modeling different types of data. The major advantage 
of ANN is its ability to represent the underlying nonlinear 
dynamics of a system modeled without any prior assumption 
information and regarding the processes involved. In the 
geophysical domain, neural networks have been applied 
in various fi elds (Chakraborthy et al., 1992; Tao & Du, 
1992; Feng et al., 1997; Arora and Sharma, 1998; Bodri, 
2001; Manoj and Nagarajan, 2003). The application and 
comparisons of theses results with earlier results of nonlinear 
analysis will reduce bias and also provide better confi dence 
for understanding the underlying physical processes that are 
responsible for the dynamical nature. 

2. TECTONICS AND SEISMICITY OF HIMALAYAS

2.1 Tectonic Features of Himalayas

The tectonics and seismicity of the Himalayas have 
been studied and discussed by many researchers during the 
past few years (Molnar et al., 1973; Seeber et al., 1981; Ni 
and Barazangi, 1984; Molnar, 1990). The main tectonic 
features of the Himalaya and the adjoining regions are shown 

in Figure 1 (Gansser, 1964). The major faults from north 
to south in the Himalayas are: the Trans-Himalayan Fault 
(THF), the Main Central thrust (MCT), the Main Boundary 
Thrust (MBT) and the Himalayan Frontal Fault (Gansser 
1964; Kayal, 2001).

Most of the earthquake events occurring in this region 
are concentrated along the thrust zones. The occurrence of 
earthquakes is confi ned to crustal depths of about 20 kms 
(Ni and Barazangi, 1984). Global Positioning System (GPS) 
measurements show that India and Southern Tibet converge 
at 20 ± 3 mm/yr (Larson et al., 1999). Evidence also shows 
localized vertical movement in this region (Jackson sand 
Bilham, 1994) and small earthquakes are most common 
(Pandey et al., 1995). 

The seismicity associated in this region is mainly 
underthrusting of plates (Molnar et al., 1973; Ni and 
Barazangi, 1984). The sections of the plate boundary 
that have not been ruptured during the past 100 years 
are called as the seismic gaps and are estimated to be the 
main candidate locations of the occurrence of future great 
earthquakes. The section west of the 1905 Kangra earthquake 
is referred as the Kashmir gap; the section between the 1905 
Kangra earthquake and the 1934 Bihar earthquakes is the 

Fig. 1. Tectonic map of Himalayas and its adjoining regions showing the major fault zones and lithotectonic provinces (Gansser, 1964; 
modifi ed). 
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Central gap; the section between the 1934 and 1950 Assam 
earthquakes is referred as the Assam gap. The westernmost 
gap is mainly called location of complex earthquakes (Khattri 
et al., 1983; Khattri, 1987).

 
2.2 Great Earthquakes in the Himalayas

Many major earthquakes of differing size that have 
occurred during the past centuries dominate the seismicity 
of the Himalayan region. The major ones among them are: 
1897 earthquake associated with the rupture in the south of 
Himalaya beneath the Shillong plateau (and the formation of 
the Shillong plateau, M=8.7); the 1905 Kangra earthquake 
(M=8.6);  the 1934 Bihar-Nepal earthquake (M=8.4) and the 
1950 Assam earthquake (M=8.7) (Richter, 1958). In addition 
to these, a few more earthquakes of magnitude M ≥ 7 have 
occurred during the years 1916 (M=7.5), 1936 (M=7.0) and 
1947 (Molnar, 1990). During the last decade, three signifi cant 
and damaging earthquakes with M > 6.5 have occurred in 
Himalayas in 1988 (M=6.6), 1991 (M=6.6) , 1991 (M=6.6) 
and 1999 (M=6.3) (Kayal, 2001; Tiwari, 2000). 

Table 1

Showing major earthquakes occurred in the Himalayan 
Frontal Arc (Tiwari, 2002)

Place Year Magnitude

Kangra valley April 4, 1905 8.6
Bihar-Nepal Border January 1, 1934 8.4
Quetta May 30, 1935 7.6
North Bihar August 20, 1988 6.5
Uttarkashi 
(Garhwal Himalaya) 20th October, 1991 6.6
Chamoli March 29, 1999 6.8
Hindukush November 11, 1999 6.2

3. EARTHQUAKE DATA CHARACTERISTICS AND 
CONSTRUCTION OF EARTHQUAKE FREQUENCY 

TIME SERIES

The whole of Himalayas covering 20-38° N and 70-
98° E (Teotia et al., 1997) is divided approximately into 
three zones: (i) Central Himalayas (28-38° N latitude and 
78-98° E longitude) (ii) Northeast Himalayas (20-28° N 
latitude and 88-98° E longitude) (Gupta et al., 1986) and 
(iii) Western Himalayas (30-38° N latitude and 70-78° E 
longitude). The data used here are mainly from the NOAA 
and USGS earthquake catalogues complied for the period 
of 1960 to 2003 for magnitude M ≥ 4 events. The monthly 
frequency data has been prepared for these three regions i.e. 
the number of events per month has been prepared from 1960 
to 2003 (i. e. 44 years X 12 (as 1 year = 12 months) = 528 

months or events. Figure 2 shows the spatial distribution of 
the earthquake events in the Himalayas in the three zones 
CH, NEH and WH respectively.

4. CHARACTERIZATION OF DYNAMICAL NATURE 
OF THE HIMALAYAN EARTHQUAKE TIME 

SERIES:

4.1 Artifi cial neural networks (ANN)

The techniques of artifi cial neural networks (ANN) 
are promising solutions to various complex problems that 
work on the principle of structure of brains and nerve 
systems (Poulton, 2002). Among the different algorithms, 
the Back-propagation is most commonly used (Werbos, 
1974; Rumelhart and McClelland, 1986; Lippmann, 1987) 
and has been applied successfully to a broad range of fi elds 
such as speech recognition, pattern recognition, and image 
classifi cation. 

4.1.1 Appropriate Architecture design of ANN for the present 
problem: 

An ANN usually has an input layer, one or more 
intermediate or hidden layers and one output layer which 
produces the output response of the network. When a network 
is cycled, the activations of the input units are propagated 
forward to the output layer through the connecting weights. 
Inputs could be connected to many nodes with various 
weights, resulting in a series of outputs, one per node. The 
connections correspond roughly to the axons and synapses in 
a biological system, and they provide a signal transmission 
pathway between the nodes. The layer that receives the 
inputs is called the input layer. It typically performs no 
function other than the buffering of the input signal. The 
network outputs are generated from the output layer. Any 
other layers are called hidden layers because they are internal 
to the network and have no direct contact with the external 
environment. There may be zero, to several hidden layers. The 
connections are multiplied by the weights associated with that 
particular interconnect. The architecture of the multilayered 
ANN neural network is shown in Figure 3. 

4.1.2 Backpropagation Algorithm: 

The network used in this paper is the most popularly 
used back propagation-learning algorithm or the Generalized 
Delta Rule (Pao, 1989). Like the perceptron, the net input to 
a unit is determined by the weighted sum of its inputs
 

  net
j
 = ∑

j
 W

ji
X

i
 (1)

where X
i
 is the input activation from unit i and W

ji
 is the weight 

connecting unit i to unit j. However, instead of calculating a 
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binary output, the net input is added to the unit’s bias θ and 
the resulting value is passed through a sigmoid function 

   F(net
j
) = 1   (1+e-netj + θ

j 
) (2)

Learning in a backpropagation network occurs in two 
steps: First each pattern Ip is presented to the network and 
propagated forward to the output. Second, a method called 
gradient descent is used to minimize the total error on the 
patterns in the training set. In gradient descent, weights are 
changed in proportion to the negative of an error derivative 
with respect to each weight 

  ΔW
ij
 = - ∈ [ δ E / δ W

ji
] (3)

Weights move in the direction of steepest descent on the 
error surface defi ned by the total error (summed across 
patterns) i. e.

            E = 1/2 ∑
p 
∑

j
 (t

pj
 = o

pj
)2 ( 4)

where o
pj
 be the activation of output unit u

j
 in response to 

pattern p and t
pj
 is the target output value for unit u

j
. After the 

error on each pattern is computed, each weight is adjusted in 
proportion to the calculated error gradient backpropagated 

from the outputs to the inputs. The changes in the weights 
reduce the overall error in the network.

4.1.3 Selection of parameters used for training: 

Here the earthquake monthly frequency data has been 
taken as the input values for the neural network modeling. 
The data is split into three sets i.e., one-fourth for the 
validation set, one fourth for the test set and the remaining 
one half for the training set. There is no unique criterion or 
method that provides rules for the optimal division of the 
underlying data sets. The occurrence of the earthquake of a 
given year or month is dependent on the previous years or 
months (1, 2, 3, 4, …….). Here time-delay neural network 
input is used, i.e., the input data to the network is selected as 
a temporal sequence of the previous monthly frequency data. 
The output is the frequency value for the next month. 

The notation i-j-k will be used to label an ANN with 
input (i), hidden (j), and output (k) neurons. The input 
layer is chosen to contain 5 neurons and one output neuron 
representing the modeling result. The number of hidden-layer 
neurons was altered to optimize the results achievable with 
this type of network by changing them in between 2 and 
20 neurons. Hence fi nally 10 hidden nodes are selected for 
the training process. The optimal neural network topology 
was obtained and denoted as 5-10-1: A sigmoid transfer 
function was used for the hidden layer, and a linear function 

Fig. 2. Spatial distribution of the events selected from the NOAA catalogue for Himalayan region covering latitude: 20-38°N and longitude: 
70-98°E. Marked regions 1, 2 & 3 shows the three tectonic zones: Central, Northeast and Western Himalayas respectively for magnitudes 

M° 4 for a period 1960-2003.
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was used for the output layer. All weights were initialized 
to random values between –0.1 and 0.1. The learning rate 
and momentum relate the variation of the weights to the 
gradient of the error function. They were set to 0.5 before 
training and then optimized on a trial basis during the training 
procedure. Thus the learning rate and momentum are 0.01 
and 0.9 respectively. 

4.2 Training the network: 

The performance of the ANN was tested on a testing 
data set (a subset of the data set) and monitored during the 
learning procedure to determine when the learning process 
had to be stopped. An early stopping strategy was adopted 
in this work to avoid overtraining i.e., when the descending 
rate of training error was small enough and the testing error 
began to increase, the learning procedure stopped. The data 

is presented and error is calculated for each input then it is 
summed and compared with desired error. If it does not match 
with the desired error, it is fed back (back propagated) to 
the neural network by modifying the weights, until the error 
decreases with each iteration and the neural model gets closer 
and closer to producing the desired output. This process is 
known as “training” or “learning”. 

The training data set is used to select and identify an 
optimal set of connection weights, the testing set for choosing 
the best network confi guration. Once the optimal network 
has been identifi ed, the validation set is required to test the 
true generalization ability of the model. The validation data 
should not be used in training but instead is reticent for the 
quality check of the obtained work. Training is stopped when 
there is unsatisfactory misfi t between the training set and 
the testing set. There are two phases in the training cycle, 

Fig. 3. Architecture for 3-layer neural network showing different neurons in each layer.
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one to propagate the input pattern and the other to adapt 
the output. It is the errors that are backward propagated 
in the network iteration to the hidden layer (s). During the 
neural network training each hidden and output neurons 
process the inputs by multiplying them with their weights. 
The products are thereby summed and processed using an 
activation function like sigmoid, tan sigmoid etc. The network 
is trained by using the generalized Delta Rule. This method 
is used to fi nd a suitable solution for a global minimum in 
the mismatch between the desired and the actual value. The 
degree of error is calculated and then the error is propagated 
backwards through the network by adjusting the parameters 
between the hidden and the input layer, i. e. the errors are 
backward propagated in the network iteration to the hidden 
layer (Rumelhart and McClelland, 1986).

4.3 Model Characterization and evaluation of model 
performance

4.3.1 Test on some simple theoretical models: 

The predictability of a system or time series is related to 
the number of degrees of freedom in generating the dynamics. 
This can be studied clearly with reference to the results of 
some non-linear models like stochastic, chaotic or logistic 
and random models. The concept of determinism plays a 
central role in the evolution of physics, which suggests the 
possibility of predicting a future evolution on the basis of its 
initial conditions. 

Stochastic model: The stochastic models are generally used to 
describe all the systems that are governed by a large number 
of degrees of freedom. The autoregressive (AR) model is one 
of examples of such a processes. A fi rst order autoregressive 
(AR) model or random walk model (Fuller, 1976) can be 
given in the form

        X
i
 = αX

i=1
+ β

i
 (5)

where i = 1,2,3,4.........N, denotes the discrete time increment, 
α is lag-one autocorrelation coeffi cient and describes the 
degree of signal correlation in the noise and is calculated 
from the data which has value ~ 0.5, and βi is (stationary) 
purely random process (normal independent random variables 
uniformly distributed in the interval (0,1)). X

i
 depends partly 

on X
i-1

 and partly on the random disturbance β
i
. 

Chaotic model: A “logistic model” (May, 1976) represents 
the chaotic dynamics. The mathematical form of the logistic 
model can be given as:

  X
n+1

 = μX
n
 (1-X

n
), 0 ≤ μ ≤ 4 (6)

where X
n
, control parameter is the relative values ranging 

from 0 to 1, and μ, is the coeffi cient (the control parameter) 
between 0 and 4 (May, 1976). 

Random model: Random noise is uncorrelated, has zero mean, 
and is not predictable due its uncorrelated nature. Time series 
of random numbers have oscillations ranging from different 
amplitudes and thus produce a fl at continuum.

4.3.2 Application of ANN on mathematical models and their 
comparison: 

The effi ciency of the ANN network is fi rst tested on the 
theoretical models (chaotic, stochastic and random models) 
and then to the original time series. After the training has been 
completed, the correlation coeffi cients between the observed 
(original time series) and predicted values were calculated for 
the three models e.g. chaotic, stochastic and random. Figure 
4 shows plots of predicted values against observed values 
for chaotic, stochastic and random processes, respectively. 
From the Figure 4, it is visible that among the three models, 
the chaotic model shows better predictability for limited 
data than the stochastic model and the random model. In fact 
random model shows random scatter with zero correlation. 
The stochastic model predicts only 45% of the data. This is 
obviously an inherent quality of these models. The value of 
the correlation coeffi cient between the observed and predicted 
values for the three models using ANN approach is shown 
in Table 2.

Table 2 

Correlation coeffi cient values for the theoretical models 
obtained by nonlinear forecasting analyses (Tiwari and 

SriLakshmi, 2005) and artifi cial neural networks

Theoretical models Correlation coeffi cient (R-value)

 Nonlinear  Artifi cial
 forecasting  neural
 analyses  networks

Chaotic model 1.000  0.987
Stochastic model 0.2-0.5  0.455

Random value 0.000  0.0132

4.4 Comparison of the correlation coeffi cient values for the 
three tectonic zones of the Himalayas

The earthquake monthly frequency data sets of the three 
tectonic units of the Himalayas i.e. WH, NEH and CH were 
trained using 5 input neurons. The best-fi tted network models 
are calculated. Examining errors on the training, validation 
and testing data sets can test the performance of a trained 
network, but it is often useful to investigate the network 
response in much more detail. One option to do so is to 
perform a regression analysis between the network response 
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Fig. 4. Regression plots for (a) chaotic model (b) stochastic model and (c) random model respectively.
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and the corresponding targets. The comparison between the 
observed and predicted values for the three tectonic units is 
shown in Figure 5. The results are plotted with the actual 
(observed) values on the X-axis and the predicted (calculated) 
values on the Y-axis for all the three tectonic zones. The 
network outputs are plotted versus the targets as dots. A 
dashed line indicates the best linear fi t. The solid line indicates 
perfect fi t (output equal to targets).  If a perfect fi t is observed 
(outputs exactly equal to targets), the slope would be 1, and 
the y-intercept would be zero. The correlation coeffi cient (R-
value) between the outputs and targets is a measure of how 
well the variation in the output is explained by the targets. 
If this number is equal to 1, then there is perfect correlation 
between targets and outputs. For all the earthquake data, we 
fi nd the value of correlation coeffi cient between the observed 
and predicted values by using the ANN approach for the three 
zones to range from is 0.3 to 0.52 (Table 3). 

Table 3

Correlation coeffi cient values for the different tectonic units of 
Himalayas obtained by nonlinear forecasting analyses (Tiwari 

and SriLakshmi, 2005) and artifi cial neural networks

Different Tectonic  Correlation coeffi cient (R-value)
regions of Himalaya Nonlinear  Artifi cial neural
 forecasting  networks
 analyses 

Northeast India 0.35-0.45 0.519
Western Himalaya 0.35-0.45 0.538
Central Himalaya 0.3-0.4 0.361

Correlation coefficient values for NEH (R=0.519) 
and WH (R=0.538) are almost the same suggesting that the 
earthquake generating processes in these regions is almost 
similar. In order to quantify the differences between the actual 
and predicted values, the sum-squared errors are calculated 
for all the three tectonic units. The sum-squared error here 
is the sum of the squared differences between the network 
targets and the actual outputs for a given set of values. It is 
a diagnostic tool to plot the training, validation and testing 
errors to check the progress of training. Figure 6 shows the 
sum-squared error for the WH, CH and NEH respectively. 
The sum-squared error should reach constant values when 
the network converges. From the Figure 6 it is observed that 
the training stopped after 15 to 20 iterations for all the three 
tectonic regions because the validation error increased. The 
result obtained is valid and reasonable as the test set errors 
and the validation set errors have similar characteristics, and 
do not shown any signifi cant overfi tting in the plot. Thus the 
ANN model obtained provides a reasonably good fi t between 
the observed and predicted values indicating the feasibility 
of the ANN method for such analyses.   

Fig. 5. Linear Regression plots for the (a) NEH (b) Western 
Himalaya and (c) Central Himalayas respectively.
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5. DISCUSSIONS AND CONCLUSIONS

In this paper, the modern technique of artifi cial neural 
networks (ANN) is employed to study the dynamical 
behavior of the earthquake time series of the Himalayas 
and its contiguous regions. It is a good strategy to make use 
of distinct diagnostic methods to characterize complexities 
in observational time series. The above technique has been 
applied to the monthly frequency earthquake time series data 
in an attempt to assess the predictive behavior of earthquake 
occurrences in these regions (WH, CH and NEH) and thereby 
characterizing the nature of the system’s dynamics (e.g. 
random/stochastic/chaotic). Present analyses of monthly 
earthquake frequency time series using ANN emphasize the 
presence of high dimensional chaos in the entire tectonic 
units of Himalayas e.g. NEH, WH and CH because the 
correlation coeffi cients calculated between predicted and 
actual earthquake frequency values are in the range of 30 
to 55% in almost all the cases. Obviously, if the correlation 
coeffi cients (McCloskey, 1993) are signifi cantly greater than 
50%, one may consider the underlying processes to obey low  
dimensional chaotic dynamics, otherwise high dimensional 
chaos. The present results rather suggest that earthquake-
generating mechanism in these regions are dominated by 
stochastic and/or high dimensional chaos. These results 
correlate well with the results obtained by the nonlinear 
forecasting (Tiwari et al., 2003; Tiwari and Srilakshmi, 2005). 
(see also Tables 2 and 3)

Both the methods exhibit almost the same range of 
values of predictive correlation coeffi cient ranging between 
0.3-0.55, indicating that both the methods reveal the presence 
of high dimensional chaos in this region (Tiwari et al., 2003, 
2004; Tiwari and Sri Lakshmi, 2005). The slight deviations in 
the correlation coeffi cient values obtained by the ANN might 
be due to the better training performance of the network. 
Note that, despite the different approaches of analysis, the 
predictive correlation coeffi cient is almost similar suggesting 
that the result is stable. 

Another interesting observation of the present study, 
which is also geo-tectonically important, is that the present 
ANN technique shows better determinism for NEH and 
WH earthquake data (high correlation coefficient) as 
compared to CH. The reason for this finding can be a 
geological one as it may be closely linked to the underlying 
seismo-tectonic processes invoking the dynamics of the 
system. The three tectonic regions display distinct tectonic 
activities and features: NEH and WH appear to high strain 
rate) characteristics that have been affected by Cretaceous 
magmatism plume activity (Tiwari and Srilakshmi, 2005). In 
contrast, the CH due to under thrusting of the Bundelkhand 
craton is likely to be a region of comparatively low stress 
rates. The strain rates in NEH and WH are almost 1-2 times 
larger than the strain rates in CH. It may also be signifi cant 
that the CH arc (a region intersecting between the eastern 

Fig. 6. Sum squared error plot versus the number of epochs for 
(a) the Western Himalayas, (b) the Central Himalayas and (c) the 

Northeast Himalayas, respectivey.
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Himalayan arc and western Himalayan arc i.e around 80°–
86°E) has remained comparatively quiescent or there have 
been less earthquake activities. Hence, the relative seismic 
quiescence of the central Himalayas has widely been termed 
as seismic gap (Khattri et al., 1983, Khattri, 1987) implying 
that, even though, the stress is continuously building up 
falling the ongoing convergence between India and Eurasia 
it is not getting released in this zones. 

These results may have important implications for 
the study of dynamical behavior of earthquake generating 
mechanism in the Himalayas. The Himalayan time series of 
earthquakes of size with magnitude 4 and higher is modeled 
by high number of variables i.e., better modeled by the 
stochastic or a high-dimensional process. The application of 
the (ANN) is helpful for the study of nonlinear dynamical 
system in the earthquake time series. 

We can summarize our results as follows:

(1)  The available earthquake data in the WH, CH and NEH 
show evidence for high dimensional deterministic chaos 
suggesting that the earthquake dynamics in these regions 
are highly unpredictable. It is therefore somewhat 
diffi cult, at this stage, to conclude specifi c reasons 
responsible for the complex occurrences of earthquake 
dynamics in these regions.

(2)  ANN analysis suggests that the earthquake dynamics in 
NEH and WH are better organized than in CH region.

(3)  The study might provide useful insight for constraining 
the models of crustal dynamics (using available 
multi-parametric geophysical and geological data for 
Himalayan earthquakes in this region) and seismic 
hazard study.
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