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RESUMEN
Un análisis exhaustivo de la base de datos mexicana de sismos fuertes se llevó a cabo utilizando técnicas de cómputo 

aproximado, SC (soft computing). En particular, una red neuronal, NN, es utilizada para estimar ambos componentes ortogonales 
de la máxima aceleración horizontal del terreno, PGA

h
, y la vertical, PGA

v
, medidas en sitios en roca durante terremotos generados 

en la zona de subducción de la República Mexicana. El trabajo discute el desarrollo, entrenamiento, y prueba de este modelo 
neuronal. El fenómeno de atenuación fue caracterizado en términos de la magnitud, la distancia epicentral y la profundidad focal. 
Aproximaciones neuronales fueron utilizadas en lugar de técnicas de regresión tradicionales por su fl exibilidad para tratar con 
incertidumbre y ruido en los datos. La NN sigue de cerca la respuesta medida exhibiendo capacidades predictivas mejores que 
las mostradas por muchas de las relaciones de atenuación establecidas para la zona de subducción mexicana. Para profundizar la 
evaluación de la NN, ésta fue también aplicada a sismos generados en las zonas de subducción de Japón y América del Norte, y 
para la base de datos usada en este artículo, los residuales de las predicciones de la NN y una regresión obtenida del mejor ajuste 
a los datos son comparados.

PALABRAS CLAVE: Red neuronal, subducción, aceleración máxima, atenuación.

ABSTRACT
An extensive analysis of the strong ground motion Mexican data base was conducted using Soft Computing (SC) techniques. 

A Neural Network NN is used to estimate both orthogonal components of the horizontal (PGA
h
) and vertical (PGA

v
) peak ground 

accelerations measured at rock sites during Mexican subduction zone earthquakes. The work discusses the development, training, 
and testing of this neural model. Attenuation phenomenon was characterized in terms of magnitude, epicentral distance and focal 
depth. Neural approximators were used instead of traditional regression techniques due to their fl exibility to deal with uncertainty 
and noise. NN predictions follow closely measured responses exhibiting forecasting capabilities better than those of most established 
attenuation relations for the Mexican subduction zone. Assessment of the NN, was also applied to subduction zones in Japan and 
North America. For the database used in this paper the NN and the-better-fi tted- regression approach residuals are compared.

KEY WORDS: Neuronal network, subduction, PGA’s, attenuation.

INTRODUCTION

Earthquake ground motions are affected by several 
factors including source, path, and local site response. These 
factors should be considered in engineering design practice 
using seismic hazard analyses that normally use attenuation 
relations derived from strong motion recordings to defi ne 
the occurrence of an earthquake with a specifi c magnitude 
at a particular distance from the site. These relations are 
typically obtained from statistical regression of observed 
ground motion parameters.

Because of the uncertainties inherent in the variables 
describing the source (e.g. magnitude, epicentral distance, 
focal depth and fault rupture dimension), the diffi culty to 
defi ne broad categories to classify the site (e.g. rock or soil) 
and our lack of understanding regarding wave propagation 

processes and the ray path characteristics from source to 
site, commonly the predictions from attenuation regression 
analyses are inaccurate. As an effort to recognize these 
aspects, multiparametric attenuation relations have been 
proposed by several researchers (e.g. Youngs et al., 1997, 
Anderson 1997, Crouse 1991; Singh et al., 1989; Crouse et 
al., 1988; Singh et al., 1987; Sadigh, 1979). However, most 
of these authors have concluded that the governing parameters 
are still source, ray path, and site conditions.

In this paper an empirical neuronal network, NN, 
formulation that uses the minimal information about 
magnitude, epicentral distance, and focal depth for 
subduction-zone earthquakes is developed to predict the three 
components of peak ground acceleration, PGA’s, at rock sites 
consisting of at most a few meters of stiff soil over weathered 
or sound rock. The NN model was obtained from existing 
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information compiled in the Mexican strong motion database. 
Events with poorly defi ned magnitude or focal mechanism, 
as well as recordings for which site-source distances are 
inadequately constrained, or recordings for which problems 
were detected with one or more components were removed 
from the data. It uses earthquake moment magnitude, M

w,
 

epicentral distance, E
D
, and focal depth, F

D
. The obtained 

results indicate that the proposed NN is able to capture the 
overall trend of the recorded PGA´s. This approach seems to 
be a promising alternative to describe earthquake phenomena 
despite of the limited observations and qualitative knowledge 
of the recording stations geotechnical site conditions, which 
leads to a reasoning of a partially defi ned behavior. Although 
this paper is aimed at obtaining PGA’s, similar techniques 
can be applied to estimate also spectral ordinates for any 
particular period. 

FUNDAMENTAL CONCEPTS REGARDING 
NEURAL NETWORKS

Modeling of complex nonlinear systems using fi rst 
principles is often quite cumbersome. In many cases the 
resulting model has to be simplifi ed because handling large 
equations is not feasible or some phenomena (e.g. friction 
between rock blocks) are mathematically diffi cult to describe. 
As the input/output behavior of the system is of interest and 
the physical meaning of the model parameters is not well 
understood, universal approximators such as NN constitute 
a suitable alternative to overcome these problems.

NNs were originated in an attempt to build mathematical 
models of elementary processing units to represent biological 
neurons and the fl ow of signals among them. After a period of 
stagnation, with the discovery of effi cient algorithms capable 
of fi tting data sets, NN models have become more popular. 
Accordingly, NNs have increasingly been applied to build 
models that can approximate nonlinear functions of several 
variables and classify objects. A neural net is nothing more 
than a sophisticated black-box model that allows point to 
point mapping with nonlinear interpolation in between. Its 
domain is the approximation of systems, where the input 
space differs strongly from a linear description.

MATHEMATICAL DESCRIPTION

An Artifi cial Neural Network can be described by 
y(k)=f(ϕ(k),w),  where y (k) is the output of the neural 
network, φ(k) is the input vector and w is the vector containing 
the parameters (weights) w

ij
 that optimize the input-output 

mapping. A number of units (Figure 1) integrates a NN 
layer where the single inputs I

i
 are weighted and summed 

up (from 1 to the total number of inputs, N
j
) to a resulting 

input via the net-function net
j
=∑I

i
w

ij
 . The result is used to 

calculate the activation of the unit. In this investigation, the 

sigmoidal function a
j 
= f (net

j
) =             is chosen. Finally, a 

unit provides an output function to transform the activation 
into the output of the unit. A simple and often applied output 
function is the identity o

j
 = a

j
.

A set of connected units forms a neural network with 
the capability of nonlinear input/output approximations. 
If the units are grouped into layers and all units of a layer 
are connected with the units of the subsequent layer a 
feedforward network is developed (i.e. static process) (Figure 
2). This type of network propagates the input vector x

i 
(k - 1) 

from the input-layer through one or more hidden layers to the 
output-layer, i.e. only in one direction. The dynamic process 
can be carried out by external feedback of delayed outputs 
and this is referred to as external recurrent networks.

If the number of units and the type of network 
connections are known, the weights of all units have to 
be adapted to the given process. This procedure is called 
identifi cation or learning. Basically, in the identifi cation 
procedure, the NN parameters have to be calculated such 
that the error between the measured and the predicted output 
is minimized. Quickprop (Fahlman, 1988) and the Cascade 
Correlation (Fahlman and Lebiere, 1991) learning algorithms 

Fig. 1. Structure of a unit.

Fig. 2. Structure of a feedforward network.
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provide suitable methods to calculate the weights more 
accurately. The results presented in this work were optimized 
using both methodologies. In order to make this paper self-
contained, a brief description of them is presented below.

THE QUICKPROP ALGORITHM, QP

The well known Backpropagation algorithm (Rumelhart, 
1986), and subsequent-related works about calculating the 
partial fi rst derivative of the overall error with respect to 
each weight can be improved through gradient descent 
optimization. If infi nitesimal steps down the gradient are 
taken, reaching a local minimum is guaranteed, and it has 
been empirically determined that for many problems this 
local minimum will be a global minimum or at least a “good 
enough” solution for most purposes (Fahlman, 1988). This 
is the basis of the QP approximation.

Of course, if fi nding a solution in the shortest possible 
time is the objective, it is not recommended to take 
infi nitesimal steps; it is desirable to select the largest steps 
possible without overshooting the solution. Unfortunately, 
a set of partial fi rst derivatives collected at a single point 
tells very little about how large a step can be safely taken in 
weight space.

Fahlman (1988) developed a second-order method based 
loosely on Newton’s method but in spirit more heuristic than 
formal. Everything proceeds as in standard backpropagation, 
but for each weight a copy of the error derivative computed 
during the previous training epoch (step) is kept, along with 
the difference between the current and previous values of this 
weight. The copied value for the current training epoch is also 
available at weight-update time. Then, two assumptions are 
made: i) the error versus weight curve for each weight can be 
approximated by a parabola the arms of which open upward; 
ii) the change in the slope of the error curve,  indicated by 
each weight, is not affected by all the other weights that are 
changing at the same time. For each weight, independently, 
the previous and current error slopes and the weight-change 
between the points at which these slopes were measured to 
determine a parabola are used to fi nd directly the minimum 
point of this parabola. The computation is very simple, 
and it uses only the local information to the weight being 
updated Δw(t) =________ Δw(t-1), where S(t) and S(t-1) are 

the current and previous values of the error derivative. Of 
course, this new value is only a crude approximation to the 
optimum value for the weight, but when applied iteratively 
this method is surprisingly effective.

THE CASCADE CORRELATION ALGORITHM, CC

Cascade Correlation combines two key ideas: The fi rst 
is the cascade architecture, in which hidden units are added 
to the network one at a time and remain unchanged thereafter. 

The second is the CC learning algorithm, which generates 
and installs the new hidden units. For each new hidden unit, 
the objective is to maximize the magnitude of the correlation 
between the new unit’s output and the residual error signal 
that is being eliminated.

The cascade architecture is illustrated in Figure 3. It 
begins with some inputs and one or more output units, but with 
no hidden units. The number of inputs and outputs is dictated 
by the problem and by the Input/Output representation the 
experimenter has chosen. Every input is connected to every 
output unit by a connection with an adjustable weight. There 
is also a bias input, permanently set to +1. The output units 
may just produce a linear sum of their weighted inputs, or 
they may employ some non-linear activation function. In this 
investigation a sigmoidal activation function (output range 
from -1.0 to +1.0) has been used.

Hidden units are added to the network one by one. 
Each new hidden unit receives a connection from each of the 
network’s original inputs and also from every pre-existing 
hidden unit. The hidden unit’s input weights are frozen at the 
time the unit is added to the net; only the output connections 
are trained repeatedly. Each new unit therefore adds a new 
one-unit “layer” to the network, unless some of its incoming 
weights happen to be zero. This leads to the creation of very 
powerful high-order feature detectors; it also may lead to very 
deep networks and high fan-in to the hidden units.

As the learning algorithm begins with no hidden units, 
the direct input-output connections are trained as well as 
possible over the entire training set. To train the outputs 
weights (to back-propagate through hidden units) the QP 
algorithm, described earlier, is used. With no hidden units, 
QP acts essentially like the delta rule (interested readers 
could consult Pomerleau, D., 1987), except that it converges 
much faster. At some point, this training will approach an 
asymptote. When no signifi cant error reduction has occurred 
after a certain number of training cycles controlled by a 
convergence parameter (mean square error is adopted in 
the proposed models), the network is run one last time over 
the entire training set to measure the error. If the network’s 
performance is satisfactory, the training is stopped; if not, 
there must be some residual error that must be reduced 
further. Adding a new hidden unit to the network, using the 
unit-creation algorithm described, minor differences can be 
achieved. The new unit is added to the net, its input weights 
are frozen, and all the output weights are once again trained 
using QP. This cycle repeats until the error is acceptably 
small.

DATA BASE

The database used in this study consists of 1058 records. 
These events were recorded at rock and rock-like sites 

S(t)
S(t-1)-S(t)
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during Mexican subduction earthquakes (Figure 4). Event 
dates range from 1964 to 1999. Events with poorly defi ned 
magnitude or focal mechanism, as well as recordings for 
which site-source distances are inadequately constrained, 
or recordings for which problems were detected with one or 
more components were removed from the data. To test the 
predicting capabilities of the neuronal model, 186 records 
were excluded from the data set used in the learning phase. 
One was the September 19, 1985, M

w
=8.1 earthquake and 

the other 185 events were randomly selected, making sure 
that a broad spectrum of cases were included in the testing 
database.

      

The moment magnitude scale M
w 

is used to describe the 
earthquakes size, resulting in a uniform scale for all intensity 
ranges. If the user has another magnitude scale, the empirical 
relations proposed by Scordilis (2005) can be used.

In this paper the epicentral distance, E
D
, given in the 

database is considered to be the length from the point where 

fault-rupture starts to the recording site, as indicated in Figure 
5. The third input parameter, F

D
, does not express mechanism 

classes; it is declared as a nominal variable which means that 
the NN identifi es the event type through the F

D
 crisp value. 

Some studies have led to consider that subduction-induced-
earthquakes may be classifi ed as interface events (F

D
 < 50 

km) and intraslab events (F
D
 > 50 km) (Tichelaar and Ruff 

1993, Youngs et al., 1997). This is a rough classifi cation 
because crustal and interface earthquakes would be mixed 
(Atkinson and Boore, 2003), therefore it was considered that 
was not relevant for this work.

The dynamic range of variables in the whole database is 
depicted in Figure 6. As can be seen, the interval of M

w
 goes 

from 3 to 8.1 approximately and the events were recorded 
at near (a few km) and far fi eld stations (about 690 km). 
The depth of the zone of energy release ranged from very 
shallow to about 360 km.

NEURONAL ATTENUATION ANALYSIS

NN APPROXIMATION

Modeling of the data base has been performed 
using the QP and the CC learning algorithms. Horizontal 
(mutually orthogonal PGA

h1
,
 
N-S component, and PGA

h2
, 

E-W component) and vertical components (PGA
v
) are 

included as outputs for neural mapping. One fi rst attempt 
was conducted using an average horizontal component 
PGA

h1-h2
 and PGA

v
 as outputs (Figure 7). After trying many 

topologies, the best average-horizontal module yielded large 
differences for some cases between measured and evaluated 
ground accelerations, while the PGA

v 
module behavior was 

quite acceptable using a simple alternative (QP, 2 layers/15 
units or nodes each). In an attempt to improve the forecasting 
capabilities of the NN model, the individual horizontal PGA 
modules shown in Figure 8 were proposed.

Because of the failed attempt to fi nd an effi cient QP 
structure, the modules corresponding to PGA

h1
 and PGA

h2
 

were developed using a CC structure, where nodes were 
added according to the relations discovered between the 
training patterns. The CC procedure is more time consuming 
than QP, but it guarantees an optimal topology. Using a 3.2 
GHz processing speed computer it takes approximately 
10 minutes and 2 hrs to run the QP and CC algorithms, 
respectively. The neural modules that met the convergence 
criterion (mean square error ≤ 10%) have a total of 72 and 
126 hidden nodes for PGA

h1
 and PGA

h2
, respectively. Details 

of the topology-selection process can be found in García et 
al. (2002).

NN RESULTS

The neuronal attenuation model for {M
w
, E

D
, F

D
} → 

{PGA
h1,

 PGA
h2,

 PGA
v
} was evaluated by performing testing 

Fig. 3. The Cascade architecture, initial state and after adding 
two hidden units. The vertical lines sum all incoming activation. 
Boxed connections are frozen, X connections are trained repeatedly 

(modifi ed from Fahlman and Lebeire,1991)
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analyses. The predictive capabilities of the NNs were verifi ed 
by comparing the PGAs estimated to those induced by the 
186 events excluded from the original database that was used 
to develop the NN architectures (training stage). In Figure 9 
are compared the PGA’s computed during the training and 
testing stages to the measured values. The relative correlation 
factors (R2≈0.99), obtained in the training phase, indicate 
that those topologies selected as optimal behave consistently 
within the full range of intensity, distances and focal depths 

depicted by the patterns. Once the networks converge to 
the selected stop criterion, learning is fi nished and each of 
these black-boxes become a nonlinear multidimensional 
functional. Every functional is then assessed (testing stage) 
by comparing their predictions to the unseen PGA (186) 
values of the database. As new conditions of M

w
, E

D
, and F

D 

are presented to the neural functional, R2 decreases, as shown 
in Figure 9 for the prediction of the excluded (unseen) data 
from the original dataset. This drop is more appreciable for 
the horizontal components. Nonetheless, as indicated by the 
upper and lower boundaries included in the fi gures on the 
right, forecasting of all three seismic components are reliable 
enough for practical applications.

Neuronal Attenuation Parameters

A sensitivity study for the input variables was conducted 
for the three neuronal modules. Figure 10 shows the results 
from this revision. The results are strictly valid only for the 
data base utilized. Nevertheless, after several sensitivity 
analyses conducted changing the database composition, it 
was found that the following trend prevails; the M

w
 would 

be the most relevant parameter (presents larger relevance) 
then would follow the epicentral distance, E

D
, and the less 

infl uential parameter was the focal depth, F
D
. However, 

for near site events the epicentral distance could become 
as relevant as the magnitude, particularly, for the vertical 
component.

The selected functional forms incorporate the results of 
analyses into specifi c features of the data, such as the PGA

h
 

Fig. 4. Motion array and events included in the data base.

Fig. 5. Schematic representation of parameters: Focal Depth, F
D
, 

and Epicentral distance, E
D
.
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Fig. 6. Dynamic range of input variable: M
w
, E

D
 and F

D
.

dependence of the geometrical E
D
-F

D
 description. The NN 

for the horizontal components are complex topologies that 
provide almost the same weights to the three input variables. 
In the case of PGA

v
 the functional offers superior attributes 

to M
w
, describing PGA

v
 as more dependent on M

w
 than on 

distances measures and focal depths. Through {M
w
, E

D
, F

D
}→

{PGA
h1,

 PGA
h2,

 PGA
v
} mapping, this neuronal approach 

offers the fl exibility to fi t arbitrarily complex trends in 
magnitude and distance dependence and to recognize and 
select among the tradeoffs that are present in fi tting the 
observed parameters within the range of magnitudes and 
distances present in data.
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Comparison of NN with traditional ground motion 
simulations

At this stage is convenient to note that traditionally 
the PGA’s that are used to develop attenuation relationships 
are defi ned as randomly oriented (e.g. Crouse et al., 1988), 
mean (e.g. Campbell, 1988), and the larger value from the 
two horizontal components (e.g. Sabetta and Pugliese, 1987). 
Accordingly, considering the variety of PGA defi nitions used 
in most existing attenuation relations, it was deemed fairer 
to use the PGA

h1-h2
 prediction module shown in Figure 7 for 

comparison purposes. (It should be recalled that the PGA
h1

 
and PGA

h2
 modules yield more reliable predictions than the 

PGA
h1-h2

 module.)

Figure 11 compares fi ve fi tted relationships to PGA 
data from interface earthquakes recorded on rock and 
rock-like sites. The two case histories correspond to a 
large and a medium size event are: 1) The September 19, 
1985 Michoacán earthquake and 2) The July 4, 1994 event, 
respectively. Table 1 summarizes key information regarding 
these earthquakes. The estimated values obtained for these 
events using the relationships proposed by Gómez, Ordaz y 
Tena (2005), Youngs et al. (1997), Atkinson and Boore (2003) 
–proposed for rock sites– and  Crouse et al. (1991) –proposed 
for stiff soil sites– and the predictions obtained with the 
PGA

h1-h2
 module are shown in Figure 11. It can be seen that 

the estimation obtained with Gómez, Ordaz y Tena (2005) 
seems to underestimate the response for the large magnitude 

Fig. 8. NN for mapping {M
w
, E

D
, F

D
}→PGA

h1
, {M

w
, E

D
, F

D
}→PGA

h2
  and {M

w
, E

D
, F

D
}→PGA

v
.

Fig. 7. NN for mapping {M
w
, E

D
, F

D
}→PGA

h1-h2
  and {M

w
, E

D
, F

D
}→PGA

v
.
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Fig. 9. Comparisons between estimated and recorded Peak Ground Accelerations for each component independently: a) Left: training phase 
and b) Right: testing phase.

event. However, for the lower magnitude event follows 
closely both the measured responses and NN predictions. 
Youngs et al. (1997) attenuation relationship follows closely 
the overall trend but tends to fall sharply for long epicentral 
distances. Although, as mentioned previously, the PGA

h1-h2
 

module yielded important differences in the testing phase, 
its predictions follow closely the trends and yield a better 
behavior, in the full range of epicentral distances included 
in the data base, than traditional attenuation relations applied 

to the Mexican subduction zone. Furthermore, it should be 
stressed the fact that the September 18, 1985 earthquake 
was not included in the database used in the development of 
the neural networks and that this event falls well outside the 
range of values  in such database, hence it is an example of 
the extrapolation capabilities of the networks developed in 
this paper. It is worth to note that while the NN trend follows 
the general behavior of the measure data, the traditional 
functional approaches have predefi ned extreme boundaries. 
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Notice that for short distances the NN is closer to measured 
values than the traditional functional predictions, as indicated 
by Caleta de Campos station (Figure 11). On the other hand, 
when the intensity of the earthquake is moderate, most of 
the PGA’s measured in rock sites are within a narrow band, 
thus generally the NN and traditional functionals follow 
similar patterns. 

The generalization capabilities of the PGA
h1-h2 

module 
can be explored even more by simulating other subduction 
zones events. Measured random horizontal PGA’s taken from 
Youngs et al. (1997) belonging to Japan and North America 
for two magnitude intervals (M

w
: 7.8 - 8.2 and M

w
: 5.8 - 

6.2) were compared to the NN predictions. These results are 
plotted in Figure 12. It can be seen that the NN prediction 
agrees well with the general trend even considering averages 
of both earthquake magnitude and focal depth.

As can be seen in Figures 11 to 12, the NN approach 
allows great fl exibility with respect to the magnitude and 
distances dependencies, as it is demonstrated by the good 
agreement between estimations and data recordings in the 
total dynamic range tested. This neural network module can 
be extrapolated beyond the range of available data, and this 
proves that the model is capturing the physical attenuation 
mechanisms of the Mexican subduction zone and even the 
deep continental earthquakes not related to any specifi c 
geologic structure.

As a fi nal testing of the potential advantages of NN 
over traditional regression procedures, the residuals of both 
methods (log residual = log of the observed value – log of the 
predicted value) for the same database are compared in Figure 
13. The residuals for test patterns (horizontal component, H

I
) 

are presented as a function of magnitude M
w
, distance E

D
 and 

Fig. 10. Sensitivity of input variables observed during modeling.

Table 1

Main data from case histories used in comparisons

Event Moment  Focal Epicentral
 Magnitude  Depth, FD  Distance, ED

  (km) (km)

September 19, 8.1 15 350.08
1985 Michoacán    501.41
Earthquake   120.84
   359.03
   419.94
   127.82
   283.38

July 4,1994 Event 5.9 31 463.13
   539.81
   258.28
   115.78
   546.07
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focal depth F
D
. The residuals were calculated for a multilinear 

regression equation obtained using a similar functional as 
the proposed by Crouse (Crouse et al., 1991), but the data 
base utilized in the training phase of the neuronal network. 
Crouse type functional was used because it yielded the best 
approximation for Mexican Subduction type events. The 
regression equation is presented below.

lnPGA=C
1
+C

2
M

w
+C

3
F

D
+C

4
lnE

D 
, ln σ = 3.432,

where: C
1
=1.2858, C

2
=0.4904, C

3
=0.0035, and C

4
=-

0.4195.

The standard deviation associated to the above 
functional is appreciably large; this is due to the signifi cant 
scatter observed in the database used. The magnitude of the 
standard deviation can be reduced by eliminating further 

seemingly confl icting data. This was not done because the 
main purpose of the paper was to show the fl exibility and 
forecasting capabilities of NN, not to develop an attenuation 
relationship based on traditional techniques. Therefore, the 
same database was used for both methods. As can be seen in 
Figure 13, the average residuals for the NN model are near 
to zero over all magnitudes, distances and depths tested. The 
standard deviation of the residuals for the NN model was 0.20, 
0.23 and 0.28 for the vertical (PGA

v
) and the two horizontal 

components (PGA
h1

 and PGA
h2

) respectively.

CONCLUSIONS

This paper presents the application of two neural 
network models to estimate horizontal and vertical PGA at 
rock sites for Mexican Subduction Earthquakes. The neural 
models were developed from a set of known parameters (i.e. 

Fig. 11. Attenuation relationship obtained with the proposed Neural Attenuation Model PGA
h1-h2 

for two Subduction-related Events: a) 
September 19, 1985 Earthquake and b) July 4, 1994 Event.

Fig. 12. Comparison of NN model PGA
h1-h2

 with data published by Youngs et al. (1997).             
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M
w
, E

D
 and F

D
). Comparisons shown that NN is capable of 

predicting the recorded values collected from the Mexican 
subduction zone. Furthermore, the experimental knowledge-
based method is able to forecast the peak ground acceleration 

of events not even included in the database and registered in 
other world subduction zones. It is worthwhile to notice the 
powerful prediction capabilities of neural models developed 
in this paper. This work was aimed at developing neural 

Fig. 13. Comparison of residuals computed with the NN-h
1
 model and those obtained using a multilinear regression equation for predicting 

PGA.
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network modules for practical applications that with a limited 
number of parameters would be able to describe the trends 
observed in measured peak ground accelerations. Ongoing 
research oriented to include both soil site conditions and 
seismogenic zone type using a neurofuzzy or neurogenetic 
systems is being conducted. This research is also oriented 
to obtain pseudo-spectral accelerations, PSA, and synthetic 
time histories.
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