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An equation of state for more than two phases, with an 
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Resumen
Se deriva una ecuación general de estado para fluidos de cualquier número de fases. La ecuación contiene a las principales 

ecuaciones de estado experimentales como casos especiales. Las energías no-aditivas de 3,4,... partículas deben también de 
ser consideradas, además de las energías binarias aditivas. Para derivar la isoterma en la vecindad de un punto crítico, se 
encuentra que la ecuación de estado debe contener al menos tres parámetros, incluyendo la energía potencial no-aditiva de 
tres cuerpos. Mostramos como obtener el espectro de interacciones de una ecuación de estado para el manto terrestre.

Palabras clave: Ecuación de estado, fases, energías no aditivas, energias binarias, isotermas.

Abstract
A general equation of state for fluids of any number of phases is derived. The equation contains the principal experimental 

state equations as special cases. The non-additive  energies of 3, 4, … particles must also be considered, plus the additive binary 
energies. In order to derive the isotherm in the vicinity of a critical point, it is found that the equation of state must contain at 
least three parameters, including the non-additive three-body potential energy. We show how to obtain the interaction spectra 
of an equation of state for the earth’s mantle. 

Key words: Equation of state, phases, non-additive energies, additive binary energies, isotherms.

In 1930, Ursell and Mayer found that the expansion 
converged only for weak binary molecular interactions. 
The discrepancies found when one attempts to apply the 
Ursell-Mayer theory to both solids and fluids may be due 
to their introducing a small perturbation in the behavior 
of an ideal gas.  

Another approach is functional analysis, where any 
function may be expressed as an expansion consisting in an 
infinite series of independent terms, such as an experimental 
isotherm of several phases. Such an isotherm would never 
be obtained by an Ursell-Mayer expansion. In order to 
obtain the missing terms in the van der Waals equation 
we shall consider the non-additive tertiary, quaternary,..., 
forces in the Helmholz free energy, i.e., all forces that are 
not included in the binary forces. A similar situation applies 
to the potential energies.  

This is achieved in statistical mechanics by using the 
mean field. Any multiphase isothermal may be obtained 
directly by expansion in negative powers of the molar 
volume. The second term is associated to binary potentials, 
the third term with tertiary non-additive potentials, 
and so on. Note that the molar volume must exceed a 

Introduction

Recent experimental evidence suggests the presence 
of an infinity of new forces acting in the electromagnetic 
field. Three-body forces are also beginning to be considered 
in nuclear physics (Mermod et al., 2005; Amir-Ahmadi et 
al. (2007). It seems reasonable to expect that non-additive 
forces may exist in other fields of physics as well.  

Single-component fluids feature isotherms belonging to 
several phases (Figure 1). In 1873 van der Waals published 
an empirical equation of state which assumes that the free 
Helmholtz energy contains up to binary potentials only. He 
assumed short-range repelling potentials and long-range 
attracting potentials. His equation contains two terms, and 
the two phases of the isotherms agree qualitatively but not 
quantitatively with experiment. 

In 1901, Kamerlingh Onnes proposed an improved 
equation of state which contains an infinite series of 
negative powers of the molar specific volume v*, known as 
a virial expansion. While he did not evaluate the coefficients 
of the expansion, the two first terms are virtually identical 
with van der Waals’ expression.  
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thermodynamically compatible minimum molar volume for 
a given system, as otherwise the integrals will diverge.

   
Equations of state may be either empirical or theoretical. 

Empirical equations include the equations due to van der 
Waals or Berthelot. Theoretical equations of state, such as 
the Yang-Lee equation (Thompson, 1972), are mostly based 
on statistical mechanics. These equations do not address 
problems involving three or more different phases.

Some equations of state are obtained by fitting various 
functions to the experimental isotherms. An early example 
is Sugie and Lu (1971). This approach can successfully 
replicate the behavior of three-phase systems in specific 
ranges of thermodynamic space. It does not consider energy 
potentials, however; and the terms do not always have a 
physical meaning. In this paper we propose an equation 
of state derived from first principles, which attempts to 
overcome these shortcomings.

The model

Consider a system of N identical particles interacting 
by means of additive binary energy potentials, and non-

additive energy potentials involving 3, 4, ... particles. The 
particles are contained in a variable volume V which is 
weakly coupled to a large heat reservoir at a temperature 
T.

The total additive binary potential energy between 
N particles is defined as the sum of all binary potential 
energies between pairs of particles. The total non-additive 
3-particle potential energy that exists between N particles 
(N ≥ 3) is defined as the sum of all triads of particles. It 
is called non-additive because these energies cannot be 
included in the sum of binaries. The other non-additive 
potential energies are defined in a similar way.

In this paper it will be shown, from experiment, that the 
non-additive potential energies are both real and necessary 
for consideration in a thermodynamic system composed 
of liquids and solids.  The system may be described by a 
canonical partition function QN(T, V) defined as follows 
(Uhlenbeck and Ford, 1963):

                	 (1)

Fig. 1. pv* diagram of real non-polar fluid with its isotherms.
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where h  is Planck’s constant, Γ stands for integration over 
phase space, β=(kT)-1, k is Boltzmann’s constant, and E is 
the total energy of the system from classical mechanics, 
i.e.

		         	 (2)

where K is the total kinetic energy, U2 is the total additive 
binary potential energy from binary energy potentials 
between pairs of particles, U3 is the total non-additive 3-
particle energy potential, and so on. 

We integrate over the moments. The volume V is 
partitioned into cells in such a manner that all energy 
potentials remain approximately constant within any given 
cell. If Ni >> 1 is the number of molecules in the i-th cell 
we have

          

(3)

where λ = h/(2πmkT), m is the mass of a particle, γ(Nl) 
contains the short-range energy potentials and the 
summation is over all possible configurations, i.e., all 
distributions of N particles in all cells. Further, Ulm is the 
long-range contribution of the binary energy potential, 
Ulmn is the long-range contribution of three-particle energy 
potentials and so on. Every configuration must also obey 
the constraint

		            	 (4)

over the number of cells. Equation (3) may be rewritten 
as:

	            	 (5)

where

 	

(6)

and γ(Νl) is the volume Δ of a cell minus the volume of 
molecules in the cell. The volume of cells is assumed 
constant.

Let δ be the volume of a molecule. Ornstein (in van 
Kampen, 1964) assumed that the molecules are tightly 
packed as spheres in each cell so that

		  .	 (7)

Substituting (7) into (6) and using Stirling’s approximation 
we find

    .	 (8)

The restriction associated with equation (4) was 
considered by employing a Lagrange multiplier. In equation 
(8), all terms except for the term corresponding to the most 
probable configuration vanish. This term is the maximum in 
equation (8) which turns out to be for a uniform distribution 
of particles in V, i.e.

		       	 (9)

for all l. Thus, the partition function is practically the same 
as the one obtained when introducing (9) into (8), or

(10)

where  ω2 =  , ω3 = and so on.

Now, the pressure p in an isothermal system may 
be written as p=-∂F/∂V, where F=-InQN(T,V)/β is the 
Helmholtz energy. Using the specific volume per mole 
ν*, we obtain

,  q = 2, 3, . . .(11)

where , n is the number of moles, , r1 = 1, 

,  and so on; the specific molar 

volume ν* is obviously larger than the molar volume of 
all particles. Let ν*

0 be the minimum value of ν* which is 
characteristic of any given gas. The integration limits of 
ν* are ν*

0 and ∞, thus the integrals will not diverge. As for 
ωq(T), q≥2, it can be shown than ω2(T) is the mean field 
produced by additive binary forces, ω3(T) is the mean field 
produced by non-additive tertiary forces, etc.
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By functional analysis (Kolmogorov and Fomin, 1970; 
Morse and Feshbach, 1953) the functions ωq(T), q=2, 
3,..., may be expressed on a base of linear independent 
functions

	       ,	 (12)

And, substituting eq.(12) into (11):

  (13)

where , , etc.

Another possible form of equation (13) is

	          (14)

where: Dqj = Ru Cqj, or

	  p	 (15)

where E1 = r1RuT, .

Equations (11), (13), (14) and (15) are expressions for a 
new equation of state which employs mean field potential 
energies—both additive and non-additive—between 
particles. As a result we have a base of linear independent 
functions (for ν* ≥ ν*

0) from functional analysis, being the 
spectra of interaction of the system. The parameters Cqj 
may be obtained from experimental data for any particular 
gas. In conclusion, equation (13) reproduces exactly and 
completely all experimental properties, e.g. the values of 
the critical indices, the specific heat at constant volume, the 
isothermal compressibility near the critical point, etc. 

On the other hand, the experimental critical indices α, β, 
γ,… (Reichl, 1977) may be obtained from the experimental 
equation of state (for example: , δ = 4.2). As equation 

(13) reproduces exactly the experimental equation we 
can also obtain the values of these experimental critical 
indices.

3. Comparison with other equations

1.- Equation (13) reduces to the ideal gas equation if b* = 
0, rq = 0  for q ≥ 2:

2.- Equation (13) reduces to the van der Waals equation if 
r1=1, , for q=2 and Cqj=0 for q>2:

3.-  The virial equation Kamerlingh Onnes and equation 
(11) are equal if b*=0:

             

Note the formal analogy between the virial equation 
and equation (13), the main difference being that eq (13) 
contains in its first two terms, all the terms of the virial 
equation while the other terms of equation (13) are all 
non-additive interactions among 3, 4,…particles.  This is 
restricted to additive binary potential energies, which does 
not permit a liquid state.

Discussion

Equation (13) is obtained from statistical mechanics. 
The base of the space of equations of state for simple fluids 
is formed by an infinite number of linear independent 
functions (where ν* ≥ ν*

0). From functional analysis, all 
equations of state can be expressed as linear combinations 
of the elements of this base.

For this functional space we may use an infinity of 
different bases but the one used in this paper for equation 
(13) is important because it expresses the equation of state 
as a convergent series which is a spectrum of mean field 
interactions. Thus the second term contains the binary 
(additive) mean field, the third contains the tertiary (non-
additive) mean field, the fourth contains the quaternary 
(non-additive) mean field, and so on.

At a critical point an equation of state is restricted by 
three conditions:

		   	 (16)

Equation (11) can be used to obtain approximately the 
isotherm in the vicinity of the critical point, considering 
Cqj=0 for q>3, r1=1, and defining a and c so that  
for q=2 and  for q=3. In this case the system 

of equations to be solved is
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               (17)
where the subscript c denotes the critical values. We may 
rewrite this system as

(18)

from which the parameters bc
*, r2c and r3c can be determined 

for a given gas.

Van der Waals attempted to solve the same problem. 
However, his equation of state failed to provide a solution 
for the critical point, because it contains only two 
unknowns. When substituting the van der Waals equation 
into (16) the system of equations  has no solution, because 
van der Waals failed to consider non-additive forces.

As a simple example, in the case of water 
pc=2.209×107Pa, Tc=647.3K and ν*

c=0.0558m3/kmol. 
Introducing these values into (18) we find:

These values define the isotherm in the vicinity of the 
critical point. Inserting into (15) and solving this system of 
equations for pc, Tc, and ν*

c, we obviously obtain the values 
pc=2.209×107Pa, Tc=647.3K and ν*

c=0.0558m3/kmol. Thus 
we have shown that the isotherm in the vicinity of the 
critical point is obtained by necessarily considering non-
additive forces of three particles at the very least.

Fig. 2. pv* diagram of real non-polar fluid with its isotherms and the isotherm of the general equation of state considering only five terms.
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In the case of the isotherm of a triple point in a single-
component gas (Figure 1), the curve acb represents 
coexistence of liquid and gas, and P3 is the pressure at 
the triple state. If we introduce the pressure at the triple 
point into equation (13) and we neglect the terms higher 
than the sixth order the result is a fifth-degree equation 
in ν* as shown in Figure 2. This means that at the triple 
point there are contributions of non-additive potentials of 
2,3,4,5 particles at least. Also it is necessary to employ 
two Maxwell constructions in order to fit the experimental 
curve.

5. An application to geophysics

The mantle of the Earth may be treated as a highly 
viscous convecting fluid. Birch (1947) proposed the 
following equation of state for the mantle:

                 	 (19)

where κ is the compressibility, r is the density, and the 
zero subscript indicates evaluation at atmospheric pressure. 
Equation (17) in terms of specific volume ν* per mole may 
be written

	    .	 (20)

This equation can be expressed in the form of equations 
(11), (13), (14) or (15). As Birch’s expression does not 
include temperature explicitly it is more convenient 
to use equation (15) expressed in the base of linear 
independent functions ( , l = 2, 3,...).  However, 

the coefficients are more easily obtained by using the 
orthonormal base after Gram-Schmidt (see Dennery and 
Krzywicki, 1995), as follows.

In the bracket notation of functional analysis (Dennery 
and Krzywicky, 1995) the functions, also called vectors, 
being elements of base of linear independent functions in 
equation (11) yield  or, more simply, ⎥fi〉. For example, 

 Thus elements of the 

new base will be orthonormal and may be written ⎥gi(ν*)〉 
or simply ⎥gi〉 for .

The inner product between two vectors  
is defined as follows:

	     .	 (21)

Two vectors are orthonormal if

		    	 (22) 

for i, j ∈ (1, ∞).

In the case of the vectors of the new base, these vectors 
must form an orthonormal set

		  .	 (23)

Thus any equation of state given by an empirical 
equation or by means of experimental data can be expressed 
as

          (24)

both bases are new in functional analysis in the domain 
considered.

If the equation of the Mantle is denoted by  h  and we 
use the orthonormal base the result is:

		  	 (25)

or by reorganizing the terms in the non-orthonormal; 
base

       (26)

where: c1=a1b1+a1b2a2a3, etc.

In conclusion, the Mantle has 1, 2, 3, 4,…phases and 
there is at least one critical point and one triple point.

where

where
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Conclusions

We derive an equation of state which predicts several 
phases. Equations (11), (13), (14) or (15) can explicitly 
generate 1, 2, 3,... phases depending on the experimental 
data, by using non-additive many-body energy potentials.
A treatment based on statistical mechanics will agree with 
the experimental data, for systems of 1, 2,…phases, if 
and only if it considers non-additive many-body energy 
potentials plus binary additive energy potentials. The fact 
that the non-additive many-body energy potentials are 
absolutely indispensable to explain the experimental data 
means that they really exist. Thus we find that the earth’s 
mantle is composed of many phases and has at least one 
critical point and one triple point. Independent linear and 
orthonormal bases are not used in functional analysis in 
the domain considered.
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