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Resumen
Se calculan echados aparentes de reflectores 3-D maximizando la coherencia basada en la semblanza (C2) mediante 

técnicas de optimización numérica. Esta maximización fue hecha por medio de una búsqueda en una partición del dominio de 
los echados aparentes, y por medio de algoritmos de optimización. Se aplicaron los algoritmos simplex y Levenberg-Marquardt, 
cuyos desempeños fueron comparados con aquellos  de las técnicas directas. De acuerdo a  experimentos numéricos con datos 
reales, el algoritmo simplex permite no solamente importante ahorros en tiempos de cómputo, sino que proporciona también 
los valores más altos de la función objetivo en toda las circunstancias. Este resultado implica que el simplex  realiza el proceso 
de maximización más eficientemente, en tanto que las otras técnicas analizadas convergen hacia la región de la  solución, pero 
no alcanzan el máximo. Este resultado se traduce en un mejor contraste entre características coherentes y no coherentes, lo cual 
implica una mayor resolución. El algoritmo Levenberg-Marquardt  proporciona para la coherencia los valores más pequeños. 
Los resultados de este estudio también encuentran aplicación en el cálculo  de la coherencia normal C3 (eigenstructure). 
Para ello se realiza un  apilamiento sesgado de las trazas de acuerdo a los echados aparentes, obtenidos previamente con la 
optimización de la semblanza  con apilamiento sesgado C2 con la técnica simplex. La coherencia corregida por echado que 
se obtiene proporciona parcialmente una mejora en la resolución.

Palabras clave: Atributos sísmicos, coherencia, echados aparentes, optimización numérica

Abstract
Apparent dips from 3-D reflectors are calculated by maximizing the semblance-based coherency (C2) by numerical 

optimization techniques. This maximization was done by means of searching through a tessellation of the apparent dips domain, 
and by optimization algorithms. We applied the simplex and Levenberg-Marquardt, whose performance was compared with 
those from the direct search techniques. According to numerical experiments with real data, the simplex algorithm enables not 
just important computing time savings, but provides the highest values from the objective function under all circumstances. This 
result implies that simplex achieves the maximization process more efficiently, while the other analyzed techniques converge 
towards the solution region but fail attaining the maxima. This result translates into a better contrast bettween coherent and 
non coherent features which implies higher resolution. The Levenberg-Marquardt algorithm provides the lowest values for the 
coherency. These results also found application to the calculation from normal C3 coherency (eigenstructure). This is achieved 
by slanting the traces with the apparent dips, previously obtained by optimizing the C2 slanted semblance with the simplex 
technique. The obtained dip corrected coherency show partially an enhanced resolution.

Key words: Seismic attributes, coherency, apparent dips, numerical optimization

Introduction

Coherency is an example of complex multi trace 
seismic attributes. It is a measure of the similarity of traces 
(Neidell and Taner, 1971) and has been used in delineation 
of lateral changes in the seismic response due to changes in 
structure, stratigraphy, lithology, porosity, and the presence 
of hydrocarbons. An early measure of coherency was the 
correlation coefficient (Neidell and Taner, 1971) used to 
calculate seismic velocities. 

The 3-D seismic coherency cube (Bahorich and Farmer, 
1995, 1996) showed the potentials from the correlation-
based coherency, as a seismic attribute by itself, in seismic 

interpretation. In particular it enabled the calculation of dip 
and azimuth of seismic reflectors. 

The 3-D coherency cube represented an innovation at 
the time it was proposed. It is quite useful in delineating 
seismic faults and delineating subtle changes in stratigraphy 
(i.e., meandering distributary channels, point bars, canyons, 
slumps, and tidal drainage patterns). However, it was soon 
realized after its introduction that applied to data with low 
signal to noise ratio, the coherence cube was not robust. 

Because of this, Marfurt et al. (1998) used the 
semblance as a generalized measure of coherency based 
in the idea of shifting in time the traces in proportion to 
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the estimated apparent dips (slant stack). This process has been also known as Radon transform. Because of its improved 
robustness, the scope of its application has been widened. Marfurt et al. (1998) lists advantages of 3-D seismic coherency 
cubes over hand-picked horizon dip/azimuth and shaded relief maps. 

The slanted semblance is estimated by:

							        

(1)

Where (t, p, q) represents a planar event at time t 
with p and q apparent dips in the inline and crossline 
directions respectively; the superscript H denotes the 
Hilbert transform or quadrature component of the real 
seismic trace u, Dx and Dy the spacing of traces in inline 
and crossline directions, and Dt is the temporal sampling. 
The vertical analysis window has a height 2w or a half-
height with K=w/Dt samples. The numerator of equation 
(1) is the 3-D transform U (t, p, q) of the data and is related 
closely to the Radon transform for 3-D dip filtering and 
trace interpolation:

 	 (2)
 
The C2 coherency, as it has been known (Marfurt et 

al., 1998), corresponds to the maximum value of equation 
(1). 

Marfurt et al. (1998) proposed to discretize the domain 
of equation (1) and to look for those value of the variables p 
and q for which the slanted semblance attains its maximum. 
By direct search strategies we mean different ways to 
achieve this discretization. With the objective of testing 
if these strategies can be improved, we compare them 
to numerical algorithms, in particular to the simplex and 
Levenberg-Marquardt techniques. 

Eigenstructure based and dip corrected coherency

The next generation of seismic coherency measure was 
based on the covariance matrix (Gerztenkorn and Marfurt, 
1999). In a straightforward way, with J neigbouring traces 
comprised in, for example, a rectangular neighborhood 
and a time gate [-K, K] of 2K + 1 samples, we can build 
data vectors of dimension J by taking the amplitude of 
each trace at the same time level t. The jth component of 
this vectors is:

 

Where D represents a datum in a seismic cube at time t 
at a corresponding inline and crossline position (xj, yj).

The covariance matrix of the data vectors is the average 
of their outer product:

 

The eigenvalues of matrix C are always greater than or 
equal to zero and the eigenstructure coherency is the ratio 
of the first eigenvalue to the trace of C:

 

If data are completely coherent, the data vectors Xt are 
the same and the rank of C is one. Therefore, its eigenvalues 
are zero but the first, and because their sum is the trace of 
C (Golub and van Loan, 1983), the eigenstructure will be 
one.

The eigenstructure is the ratio of the “energy” of data 
in the main direction, pointed by the first eigenvector, 
to the sum in its orthogonal directions which are zero in 
case of total coherency. When there is not coherency, the 
eigenstructure is a minimum value not equal to zero.

Similarly to the generalization leading from C1 to C2, 
eigenstructure or C3 was slanted and optimized to calculate 
apparent dips. Accordingly, with apparent dips p and q, the 
components of these data vectors are:

 

With the corresponding covariance matrix:
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And the eigenstructure optimized by the apparent dips 
is:

Marfurt et al. (1999) named it C3.5 coherency. Soon 
C3.5 was realized that it does not provides good resolution, 
and suffered from the “dip saturation” phenomenon (i.e., 
in the presence of very steep faults, the estimated apparent 
dips correspond to the fault trace and not to the reflectors 
themselves). In this way coherence is being assigned where 
it really does not exist, and in the resulting image, steep 
faults remain hidden.

To overcome this inconvenience, Marfurt et al. (1999) 
proposed to smooth with a low pass filter the apparent dips 
calculated in neighbouring positions. With the resultant 
dips, seismic traces are slanted before calculating the 
eigenstructure. Coherence C3.6 was so formulated. 

Additionally to the here summarized coherencies other 
measures have been proposed. 

Among them, we have MUSIC-based coherency 
(Marfurt et al., 2000) which is also based in optimizing 
an objective function in terms of the dips and the Higher 
order statistics coherency (Lu et al., 2005).

 
However, excepting C3 and C3.6, in all these seismic 

attributes the apparent dips are obtained by maximizing 
the respective proposed measure of coherency. This step is 
very important because the reliability of the obtained dips is 
measured by the coherency itself (Marfurt et al., 1998). 

An applications of the obtained results is given in 
enhancing the slanted C3 coherency described above. 
Instead of calculating the apparent dips by maximazing 
directly the C3, as in C3.5 coherency, we calculated them 
by maximazing equation 1 by means of the optimization 
algorithms, and then use them to slant the traces, to finally 
calculate the C3 coherency; we name this variation “dip 
corrected eigenstructure”. Here we describe our algorithms 
and discuss the obtained results.

Optimization techniques

Direct search strategies

As already mentioned, Marfurt et al. (1998) estimates 
(p, q) through a straightforward search over a user-defined 
range of apparent dips, and proposes discretizing of the 
search domain by rectangular, radial, or Chinese checker 
tessellations at whose nodes equation (1) must be evaluated 

(Figure 1). The distances (Dp, Dq) between nodes in these 
grids should be

		   	 (3a)

		   	 (3b)

where a and b are the half-widths of the major and minor 
axes of the analysis window, and fmax the Nyquist temporal 
frequency of the seismic data.

In this way, optimization reduces to calculate directly 
c(t, p1, qn) over np × nq discrete apparent pairs (pl, qm) where 
np = 2dmax/Dp + 1 and nq = 2dmax/Dq + 1. The interpreter 
defines the maximum true dip, dmax. 

The above mentioned direct search strategies are not 
efficient because 1) to iterate through each node from the 
search domain is time consuming, and 2) the tessellation 
can miss the pair (p,q) at which equation (1) has its true 
maximum, i.e., the maximum is not attained efficiently 
as could be done by using optimization techniques (e.g., 
simplex or Levenberg-Marquardt techniques), as we shall 
demonstrate.

Simplex algorithm

The process in the simplex algorithm is based in a 
polyhedron whose vertices are constituted by (n+1) points 
belonging to the n-dimensional parameter space where the 
solution is sought. The polyhedron is called simplex. At 
each iteration the worst evaluated point is replaced by a new 
one, and the algorithm can create a new simplex from the 
previous one. This process enables the simplex to evolve 
and to get away from the region around the worst point of 
the previous simplex. The direction in which the search 
proceeds is given by the value of the objective function 
and a series of rules. In first place, this technique calculates 
the centroid from all the points except the worst one. The 
worst point is then reflected around this centroid (Figure 
2a). If the function value is “better” than the best point of 
the simplex in the previous evaluation, it is considered that 
the search has conducted the simplex to a better region 
from the solution space. In this case an expansion is done 
in the given direction (i.e., the line joining the centroid 
and the new point) (Figure 2b). However, if the value of 
the function is “worst” than at the previous worst point, 
it is considered that the search has conducted the simplex 
to a bad region from the solution space. In this case a 
rectification is done by way of a contraction along the 
search direction (Figure 2c). Finally, if the function value 
is better than the worst point but worst than the second 
worst point, this contraction is limited as in Figure 2d. The 
contraction is controlled by a factor β (negative for case c, 
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and positive for case d), while the expansion is controlled 
by the factor γ. This ingenious search algorithm was first 
proposed by Spendley et al. (1962), and modified by Nelder 
and Mead (1965). Every time a new simplex is generated 
the objective function is evaluated three times. 

Several comparative studies indicate that the simplex 
algorithm is robust in the presence of noise, and Box and 
Draper (1969a, b) considered it as the best one from all the 
sequential search algorithm.

The Levenberg-Marquardt algorithm.

It is based on the family of gradient descent algorithms 
(i.e., Rao, 1996). In order to maximize a function of several 
variables, a vector of a proposed solution Xi is improved 
by adding to it the term -(H-lI)-1∇f, where H and ∇f are 
respectively the Hessian matrix and gradient of the objective 
function (1), I the identity matrix and l a regularization 
factor. In the Levenberg Marquardt, the trace of the identity 
matrix is replaced with the trace of the Hessian in order 
to avoid the optimization process “oscillates” around a 
solution. If the new solution is better than the old one, the 
l factor is replaced by its half, otherwise, it is doubled.

A problem with this algorithm is the inversion of 
matrices and this factor increases its computational cost. 
However, the Levenberg-Marquardt was chosen because 
other gradient-based techniques require that the objective 
function must be maximized along a parameterized line 
between two vectors of proposed solutions, and this 
increases their computational cost and programming 
effort. 

Implementation

In our case we considered the semblance as a non 
linear function and look for a local maximum in the 2-D 

parameter space constituted by the apparent dips in the x 
and y directions. The respective polyhedron, i.e., simplex, 
is a triangle (i.e., Figure 2). 

For an initial point (X0, Y0) and simplex size a, the rest 
of the vertices are given by 

where

We can control the number of iterations either by 
limiting it directly, or by fixing the tolerance, the absolute 
difference between the best evaluation in the previous and 
the present iteration below which the process is stoped. 
Neither the true dip dmax nor the Nyquist frequency in the 
data fmax are needed, parameters which at first instance 
could not be known. 

Results

In a first step, several numerical experiments were 
conducted to assess the performance of direct search 
strategies, the Levenberg-Marquardt, and the simplex 
algorithms to maximize the C2 coherency. In a second 
step, the obtained results were also applied to enhance 
the resolution from the eigenstructure, i.e., the here 
proposed “dip corrected eigenstructure”. These numerical 
experiments were conducted with real seismic data.

The first data set comprises 25 000 traces with an inline 
distance of 30 m and crossline of 30 m. The sampling time 

Fig. 1. Direct search strategies (Marfurt et al., 1998). (a) Square, (b) Polar and,  (c) Chinese checker tesselations.
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was 4 ms. The number of traces in the slanted semblance, 
equation (1), was 3 traces in inline times 3 traces in 
crossline, and a time gate of [-5 ms, 5 ms]. 

The size for the initial simplex and for the tessellations 
was set equal to the value provided by equation (3a), 
the tolerance was set equal to 1.E-6 for the simplex and 
Marquardt-Levenberg algorithms. The results are illustrated 
for a time slice of this 3D cube.

 
Obtained coherencies (Figure 4a and 4b respectively) 

have an overall similar pattern. However, a closer analysis 
reveals two conspicous points: 1) coherency values 
provided by simplex are higher than those obtained by the 
Levenberg-Marquardt algorithm, and 2) all the Simplex 
imaged features are thinner. The first feature implies 
that simplex achieves the maximization process more 
efficiently, while the Levenberg-Marquardt technique 
converge towards the solution region but fails attaining 
the maxima. This feature translates into a better definition 
from the geological features being imaged by the coherency 
(i.e., a higher resolution). 

For direct search strategies, the size of each tessellation 
was set according to (3a) and (3b) for the square direct 
search, while (3a) was used to define the size of the 
discretization of the radius for the polar and Chinese 
checker tessellations. The maximum dip was fixed to 0.500 
ms/m. Note that the same range and color scale is also used 
to display these results. 

Figures 4c to 4e present the results for the Chinese 
checker, polar and square tessellations. Lower coherency 
values are obtained with all these strategies in relation to 

the simplex algorithm (see also Table 1). Among the direct 
search strategies, the polar tessellation provides the lower 
bounds of coherency values. In general the resolution is 
relatively higher than that from the Levenberg-Marquardt 
technique. A better resolution is obtained by the simplex, 
for example, in features marked in Figure 4b.

 
We analyzed the sensitivity to the dp and dq sizes 

of the direct search techniques. Smaller values for these 
parameters provide results with higher coherency values 
(i.e., higher definition from geological features being 
defined), at the cost, as will be discuss below, of penalizing 
the processing times. For example, for the Chinese 
tessellation, dp/15 and dq/15 sizes must be used to obtain 
a solutions comparable to those from the simplex technique 
implying processing times as large, and even larger, than 
those required for the simplex technique (Table 1). Figure 
5 shows the results of this second experiment. A maximum 
dip of 0.450 ms/m was used.

From a comparative analysis from Figures 4 and 5 
we see that in general, higher coherency values are now 
observed with the exception of the Levenberg-Marquardt 
technique that did not change substantially. However, 
a closer analysis reveals that, for the Chinese checker 
tessellation the coherency values decreased around feature 
number 2. In general the delimitation of features 2 and 
3 became less precise (i.e., a corresponding resolution 
loss). The resolution improved for the square and polar 
tessellations. This second experiment indicates that this 
enhacement of resolution is not an artifact in the simplex 
algorithm, but is associated to a better sampling process, 
i. e., that the parameter space is sampled with a smaller 
simplex (Figure 2) as iterations proceeds around a local 
maximum of the slanted semblance, or bigger sampling 
when iterates around a local minimum. The direct search 
algorithms lack this adaptative feature and this explains 
why the coherency ranges estimated by the simplex is the 
widest among those from the analized algorithms.

Therefore, this second experiment indicates that, in 
order to achieve a higher resolution, an optimization 
algorithm with better performance is needed to maximize 
the slanted semblance.

These experiments also indicate that the simplex 
algorithm provides the optimal maximization of the slanted 
semblance in the shortest time from all the techniques 
analyzed.

The processing times were measured for each technique 
(Table 1). For dp and dq sizes greater than a tenth of the 
values obtained according to equations (3a) and (3b), the 
polar and Chinese tessellations provide results in the shortest 
processing times. However, for even smaller tessellation 
sizes, i.e, dp/15 and dq/15, the simplex technique was much 

Fig. 2. (a) The worst point in the simplex XH is reflected in the 
opposite side giving point XR. (b) Along this reflection a new 
point is found by using a factor g. (c) and (d) When this reflection 
does not constitute a better point, a new point is tested inside and 

outside the simplex.
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Fig. 3. (a) Original data. 

Table 1

Processing times required for each technique. Included maximal, minimal, and processing times. Sizes from the dp and dq 
values as Fractions of dip discretization according to equations (3a) and (3b) measured in ms/m are also indicated.
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faster. From data in the Table 1 we can see that the simplex 
technique provides the greatest coherency values among 
all the compared techniques. 

The largest processing times correspond to the square 
and polar tessellations. A straightforward analysis can 
account for this time requirements. In the direct search 

techniques the objective function is evaluated only one time 
per point studied. The Levenberg-Marquartdt technique 
requires the calculation not only from the objective 
function but also from its derivatives, calculated by finite 
differences. In the simplex technique the objective function 
is evaluated three times as already mentioned. However, the 
process converges towards the solution faster because of 

Fig. 4. Coherency obtained from the different techniques analyzed. 
(a) Simplex technique; (b) Levenberg-Marquardt technique; (c) 
Chinese checker; (d) Polar search; (e) Square direct search; In Fig. 

4b are indicated some features referred to in the text.
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the algorithm nature itself. For the rectangular tessellation 
the number of point analyzed is much larger than for the 
radial and Chinese checker tessellations.

It was supposed that comparison operations in the 
computer program at each of the iterations would also 
sensibly contribute to the time needed by the numerical 
techniques, but from the experiments described, it did 
not seem to be an important factor because the simplex 

algorithm performs three comparisons per iteration, and 
nevertheless it is the fastest one. 

Lower processing times are also obtained by using 
bigger tolerance values. 

Tests with different windows sizes were also done. 
For a window the size of a sample (i.e., 4 ms) the process 
was also stable. Additional tests, not shown here, with two 

Fig. 5. Coherence obtained from the different analyzed techniques. 
Order as in Fig. 4. For the direct search tessellations (i.e., square, 
polar and Chinese checker tessellations) the dp and dq values 
used were 1/15 times  the values given by equations (3a) and 

(3b). Maximum dip was at 0.450 ms/m.
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other data sets with 10 000 and 68 000 traces respectively 
confirms the results here presented.

Finally we applied the techniques just analyzed to obtain 
C3 coherency. The procedure included: 1) Calculation 
from the apparent dips for the given data cube. This is 
achieved by optimizing the C2 coherency function by the 
simplex algorithm. 2) With the slanted traces, we form the 
covariance matrix, and 3) calculate the C3 coherency. 

The dip corrected eigenstructure is illustrated with the 
same data set (Figure 6). The dip corrected eigenstructure 
provides in a first approach analysis quite similar results 
as the bare eigenstructure. However, depicted features 
seem more continuous with bare eigenstructure. In 
general, dip corrected coherency values are higher. This 
fact accounts for apparently less marked features from the 
dip corrected eigenstructure (less continuous character). 
A closer comparative analysis from Figures 6a and 6b 
shows that in several parts, nevertheless, the dip corrected 

eigenstructure stratigraphic features are more continuous 
and better resolved. Even if the enhancement is only 
marginal it complementes the C3 coherency with additional 
detail. Finally, Figure 6c enables to compare the C2 and 
C3 coherency measure generations. It is conspicuous the 
higher resolution capabilities from the C3 generation 
coherency measure. 

Coherence is a measure of the reliability of dip 
estimation in the sense that bigger coherence means 
higher reliability of apparent dips. Small coherence means 
that the similarity of the traces used is also small, and 
amplitude patterns do not follow a defined pattern with a 
clear orientation which apparent dips can describe. If the 
similarity is larger, the amplitude patterns can be better 
defined and their orientation can be clearly described 
with their apparent dips. We have shown that the simplex 
algorithm calculates the biggest coherence ranges among 
all the optimization methods we have compared (the 
Lavenberg Marquardt and gridding algorithms), and 

Fig. 6. (a) Dip corrected eigenstructure.  (b) Eigenstructure; (c) C2 coherency using chinesse checker tessellation. 
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Fig. 7. (a) Dip corrected eigenstructure. (b) Eigenstructure. (c) C2 coherency with chinesse checker tessellation.
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therefore, the apparent dips calculated by maximizing the 
slanted semblance with the simplex algorithm are the most 
reliable in the sense we mention before.

The dip corrected eigenstructure was also applied to 
a second seismic cube (Figure 7), where the variations in 
amplitude are subtle, and therefore geological structures are 
hard to see with coherency attributes. In all these cases, we 
used a bin of 3 x 3 traces bin with a 5 ms time gate. Apparent 
dips used for this experiment were the ones estimated by 
the simplex algorithm with an initial simplex size of dp/15 
and dq/15, from the equations (3a) and (3b).

Dip corrected eigenstructure (Figure 7a) provides good 
stratigraphic details as normal C3 eigenstructure coherency 
(Figure 7b). In places, as in the former example, the dip 
corrected eigenstructure provides more continuity, as for 
example, the paleochannel crossing from left upper conner 
to the lower rigth corner of the figures is clearly depicted, and 
even more continuous with the dip corrected eigenstructure 
than for single eigenstructure. In C2 coherency, obtained 
by using a chinesse checker tessellation, this paleochannel 
remains hidden (Figure 7c). 

Conclusions 

This study has shown that it is possible to determine 
apparent dips from a set of seismic traces by means 
of optimization techniques. We tested the simplex and 
the Levenberg-Marquardt algorithms. The search of 
the maximal value from the objective function, the 
semblance-based coherency, can indeed be optimized by 
these two numerical techniques. These two optimization 
techniques were tested with real seismic data. To assess 
their performance, and for comparative purposes, the direct 
search strategies (rectangular, polar, and Chinese checker 
tessellations) were also used with the same data sets. 
Accordingly, the conclusions are the following:

1.- The direct search strategies provide relative good 
resolution. Fast estimations from the coherency are 
obtained in general by means of the polar and Chinese 
checker tessellations. The rectangular tessellation is a 
relatively slow technique but with a good resolution. 
Having the rectangular checker tessellation the best 
relative performance.

2.- The polar and Chinese checker tessellations for certain 
range of dp and dq values are quicker that the Simplex 
technique. Nevertheless, for dp and dq values lower that 
certain threshold, the Chinese checker tessellation (the 
fastest of the direct search strategies) requires larger 
computing times than the simplex technique. 

3.- The Levenberg-Marquardt algorithm is the relatively 
worst one.

4.- The overall comparative analysis shows that among all 
the techniques, it is the simplex that always provides 
the highest values under all circumstances for the 
semblance-based coherency. This result implies that 
simplex achieves the maximization process more 
efficiently, while the other analyzed techniques 
converge towards the solution region but fail attaining 
the same maxima. This features enables better 
contrasting between highly and poor coherent zones 
delimiting the geological features being imaged (e.g., 
a meandering channel). 

5.- Also, small dp and dq values are required to obtain as 
high coherency values as with the simplex technique, 
penalizing severely the computing times, but needed 
to achieve a high resolution mapping of geological 
features of interest.

6.- Although some of the direct search strategies were 
fast and displayed good resolution, in our opinion, 
the simplex technique produces better solutions of 
coherency values in the shortest time, and thererfore, 
provides the most reliable apparent dips in comparison 
with the Levenberg-Marquardt technique and the direct 
search strategies tessellations.

7.- We achieved to obtain as good resolution with the 
“deep corrected eigenstructure” as with the C3 
coherency (eigenstructure). In our procedure, we first 
optimize the C2 coherency to estimate the apparent 
dips; subsequently we slanted the data traces using 
these dips, and to finally, proceed to calculate the C3 
coherency. This “dip corrected C3 eigenstructure”, 
enhances partially the resolution of the conventional 
C3 coherency. This tells us that volumetric seismic 
attributes (those calculated in a subvolume of seismic 
data in a 3-D survey) can enhance their resolution if 
they follow the orientation of reflectors described by 
the apparent dips. How to effectively integrate the 
dips into the estimation of the C3 coherency is an 
interesting research topic. We currently are focused in 
such a study.
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