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Resumen
Se estudia la difracción de ondas de Rayleigh debida a grietas rompientes en superficie. Se consideran varias configuraciones 

y profundidades para mostrar la importancia de la geometría de las grietas en la propagación de las ondas de Rayleigh. Para este 
fin, empleamos el Método Indirecto de Elementos Frontera. Esta técnica numérica se basa en una representación integral del 
campo difractado, el cual se deduce de la identidad de Somigliana. Este método permite evaluar el campo total de desplazamientos 
mediante la superposición de un campo libre y un campo difractado. Para el caso que nos ocupa en este trabajo, el campo 
libre se encuentra descrito por ondas de Rayleigh en un medio hipotético (sin la presencia de grietas) y el campo difractado 
se obtiene a partir de la solución integral tomando en cuenta la presencia de las grietas. Nuestros resultados se comparan con 
estudios previos. Enfatizamos las reducciones y amplificaciones que sufren las ondas de Rayleigh al interactuar con las grietas. 
Consideramos que esta información puede ser de gran utilidad a la comunidad científica, pues se busca describir la importancia 
de los parámetros como la profundidad y orientación de las grietas. El estudio aquí presentado permite caracterizar un grupo 
de grietas rompientes a partir del análisis del campo difractado.

Palabras clave: Ondas de Rayleigh, propagación de ondas, grietas rompientes, difracción.

Abstract
Several crack configurations are considered in order to show the importance of the cracks’ geometry on the Rayleigh-wave 

propagation. We use the Indirect Boundary Element Method, this numerical technique is based on an integral representation of 
the diffracted wave field, which has been reduced from Somigliana´s identity. The method allows us to evaluate the complete 
displacement field by the superposition of the free field and the diffracted field. It is remarkable that the free field is specified 
as incident Rayleigh- waves, making the assumption of absence of cracks. The diffracted field is obtained from the integral 
representation by means of the presence of cracks. Our results are compared with those previously published. We emphasize 
the amplitude reduction of Rayleigh- waves while the interaction with the cracks take place. Conspicuous wave amplification 
at the crack neighborhood is observed immediately after such interaction. This information may give us a way to characterize 
crack’s depth and orientations from the analysis of the diffracted field.

Key words: Rayleigh waves, wave propagation, surface-breaking cracks, diffraction.

waves. Such type of motion has been considered to be the 
main cause for many damages (e.g. seismic problems). It 
is well known that an important feature of Rayleigh-waves 
is that most of the energy is localized near the free surface 
within a depth of about one wavelength.

Several studies have been carried out to analyze 
the effect of grooves, trenches, sub-surface and surface 
cracks on the incidence of Rayleigh-waves. Diffraction 
of Rayleigh-waves by surface-breaking cracks has 
been considered as an important area in geophysics 
and seismology. These cracks affect the travel of waves 
generating scattered wave fields. Therefore, it may be 
expected that scattered fields carry substantial amount of 
information on the crack´s geometry (Mendelsohn et al., 

Introduction

Elastic surface waves, also called surface acoustic 
waves, were discovered in 1885 by Lord Rayleigh (1885). 
In infinite elastic medium, the longitudinal and transverse 
waves (P- and S- waves, respectively) are independent 
and propagate with different velocities, but in surface 
waves the longitudinal and transverse waves are coupled. 
Surface waves also differ from P- and S-waves in their 
propagation velocity. The Rayleigh-wave velocity is about 
5 to 13% smaller than S-wave velocity and mainly depends 
on the Poisson’s ratio (Hess, 2002). In a two-dimensional 
propagation problem that contains a free surface, Rayleigh-
waves are more dominant than P- or S-waves (Wong, 1982). 
This is due to the retrograde nature of motion of Rayleigh-
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1980). In this sense, near surface and surface-breaking 
cracks under surface and bulk wave incidences have 
been widely studied in frequency domain. Scattering by a 
single surface-breaking crack in a half-space was studied 
by Mendelsohn et al. (1980) where the formulation of the 
boundary-value problem was reduced to a singular integral 
equation, which was solved numerically. 

In Stone (1980), diffraction of time harmonic antiplane 
shear waves by an edge crack normal to the free surface 
of a homogeneous half space was studied. The problem 
was formulated in terms of a singular integral equation 
with the unknown crack opening displacement as the 
density function. A ray theory approach was presented in 
Achenbach et al. (1980) to analyze scattering of Rayleigh-
waves by a surface-breaking crack. The stress intensity 
factors were found over reflection, transmission and 
diffraction coefficients. Excellent results were reported 
for ratios of crack depth versus wavelength greater than 
one. In Kundu and Mal (1981) the interaction of time 
harmonic elastic waves with an edge crack in a plate under 
P-, SV- and Rayleigh-waves was studied. For each incident 
wave type the complete high frequency diffracted field on 
the plate surface was calculated. By the application of an 
asymptotic theory of diffraction, they found that for short 
waves compared to plate thickness, the crack is an efficient 
reflector and poor transmitter of Rayleigh-waves. 

Diffraction of time harmonic plane SH-waves by a crack 
of finite length within homogeneous isotropic elastic half 
space was studied in Mal (1980). The crack was arbitrarily 
oriented to the medium and may or may not intersect the 
surface. The crack opening displacement was calculated 
numerically by a singular integral equation formulation 
and by approximate solution with the aid of the solution 
of the Sommerfeld diffraction problem. It was suggested 
the location of the crack tip and crack orientation could 
be determined by examining the spectral characteristics 
of diffracted pulses recorded on the free surface of the 
medium.

Rayleigh-wave diffraction from surface-braking 
discontinuities was also studied by Tittmann (1986). 
Theoretical and experimental results for cracks and grooves, 
in the regime where crack depth is large compared to the 
Rayleigh wavelength were considered. They concluded 
the generation of shear waves polarized perpendicular to 
the crack face was particularly efficient in experimental 
tests, which agree well with theory. Changes of Rayleigh-
wave velocity caused by distribution of one-dimensional 
surface-breaking cracks were studied in Pecorari (1996). 
A real cracked surface was modeled by a homogeneous, 
anisotropic layer on the top of an isotropic substrate. The 
substrate elastic properties were those of the original 

isotropic half-space, whereas those of the layer were 
modified due to the presence of the crack distribution. 
Several crack configurations were considered, concluding 
that surface acoustic wave velocity is shown to be most 
sensitive to changes in crack density and crack depth.

Recently, a technique for detection and sizing of 
small cracks in studs and bolts by using Rayleigh-waves 
has been used (Suh, 1996). It was found that a small 
delayed pulse due to the Rayleigh- wave was detected 
between large regularly spaced pulses. The time delay was 
associated to size of the crack. In Scales and Wijk (1999) 
attenuation of ultrasonic surface waves by strong-scattering 
medium, consisting of a grooved surface of aluminum, 
was studied. They found that grooves placed normal to 
wave propagation generate dispersed and exponentially 
attenuated waves. In Ruiz and Nagy (2002) dispersion of 
surface waves by surface roughness was studied. Using 
state-of-the-art laser-ultrasonic scanning and sophisticated 
digital signal processing method, it was recognized that 
there is a perceivable dispersive effect on untreated smooth 
surfaces. 

In recent works (Rodríguez-Castellanos et al., 2005 
and 2006) diffraction of elastic waves by subsurface 
cracks and cavities were studied. We showed important 
aspects, in frequency domain, that can be useful to detect 
and characterize subsurface discontinuities. Synthetic 
seismograms for several cases were included and diffraction 
patterns of elastic waves also discussed.

In this paper we explore the use of the Indirect Boundary 
Element Method (IBEM) to study scattering of Rayleigh-
waves in a surface-breaking cracked medium (Figure 1). 
The method is based on the integral representation for 
scattered (diffracted and reflected) elastic waves using a 
single layer boundary sources, which has been reduced 
from Somigliana’s identity. This approach is usually called 
indirect BEM as the sources’ strengths are obtained as 
an intermediate step. The complete displacement field is 
written as a superposition of diffracted wave field, using 
the integral representation, and free field (Rayleigh-wave 
in an elastic half-space). The motivation of this study is to 
show how wave amplification in the vicinity of cracks are 
and give to the analyst results to infer the presence and 
orientation of surface breaking cracks.

Integral representation

Consider a domain V, delimited by its boundary S. If this 
domain is formed by an elastic material, the displacement 
field under harmonic excitation can be written, neglecting 
body forces, by means of the simple-layer boundary integral 
equation
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	      ,	 (1)

where ui(x) is the ith component of the displacement at 
point x, Gij(x;ξ) is the Green’s function, which represents 
the displacement produced in the direction i at x due to the 
application of an unit force in direction j at point ξ, fj(ξ), is 
the force density in the direction j at point ξ. The product 
fj(ξ)dSξ in the integral represents the distribution of forces 
at the surface S. The suffix in the differential operator 
shows the variable on which the integration is carried 
out. This integral representation for displacements can be 
obtained from Somigliana’s identity (Sánchez-Sesma and 
Campillo, 1991). It was proved that if fj(ξ) is continuous 
along S, then the displacement field is continuous across 
S (Kupradze, 1963).

This integral representation allows the calculation of 
stresses and tractions by means of the direct application of 
Hooke’s law and Cauchy’s equation, except at boundary 
singularities, this is when x is equal to ξ on surface S. From 
a limiting process based on equilibrium considerations 
around an internal neighborhood of the boundary, it is 
possible to write, for x on S, 

	 	 (2)

where ti(x) is the ith component of the traction associated to 
a direction n(x) in a smooth boundary S, c = 0.5 if x tends 

to the smooth boundary from inside the region. c=-0.5 if 
x tends to S from outside of the region, c=0 if x is not at 
S. Tij(x;ξ) is the traction Green’s function, that is to say, 
the traction in the direction i at a point x with associated 
direction n(x) due to the application of an unit force in the 
direction j at ξ on S. The first term of the right-hand side 
of eq. (2) must be equal to zero if x is not on the surface 
S. Green’s functions for traction and displacements can be 
found in Rodríguez-Castellanos et al. (2005) and (2006).

Boundary Conditions

Traction-free boundary condition is reached at the 
free surface (∂R), including crack faces, and this can be 
written as:

		  ,	 (3)

Developing the boundary conditions and considering 
the incident and diffracted field, eq. (3) can be expressed 
as 

       ,	 (4)

where,  = free-field traction in the Region R, as if the 
crack did not exist,   = diffracted-field traction due to 
the presence of the crack. Then, eq. (4) can be written as 

(5)

Fig. 1. A medium that contains surface breaking cracks under the incidence of Rayleigh waves.
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This equation represents a system of integral equations 
for boundary sources, i.e. those producing the diffracted 
field.

To solve the above integral equation system, we have to 
discretize them along a finite portion of the boundary  that 
contains the crack or cracks. The cracks are considered as 
mathematical ones and then cero crack thickness is taken 
into account. Let us suppose that the force densities fj(ξ) 
are constant over each of the boundary elements with equal 
length DS along the boundary. If we assume that N is the 
number of elements along the discretized part (free surface 
of the Figure 1), we can obtain

	 (6)

where, 

	 (7)

these integrals are calculated numerically, except when x= 
ξ. In such case, the right side term has to be dropped out, 
therefore we have 

	                            .	 (8)

This discretization leads to a linear system of 2N 
equation with the same number of unknowns. The system 
is solved using Gauss method. Once the values of fj(ξ) 
are known the diffracted field is computed by means 
of the appropriate discretization of equation (1). In the 
following section we apply our integral formulation to 
solve Rayleigh- wave propagation in a surface-breaking 
cracked medium.

Numerical examples

First, we validate our method, in frequency domain, 
applying it to an uncracked medium. In Figure 2, 
components of the Rayleigh wave motion, obtained 
by our integral formulation, are plotted. Normalized 
horizontal (u/w0) and vertical (w/w0) displacements against 
normalized depth (z/lR), for several Poisson’s ratios ( 
0.25, 0.30 and 0.33), are compared. The components u 
and w represent the displacements in the directions x 
and z, respectively. lR means one Rayleigh wavelength 
and w0 is the vertical displacement measured at the free 
surface. For this simulation, we take the following elastic 
properties: n=0.3 and b=1.0, as taken by Graff (1975). Good 
agreement can be observed between our results and those 
of Graff (1975). Moreover, the validation and application 
of the IBEM to subsurface crack problems can be seen in 
Rodríguez-Castellanos et al. (2005, 2006). The specified 

free field (Rayleigh-wave field as shown in Figure 2) has 
been implemented in several cases (see, Sánchez-Sesma 
and Campillo (1991) for 2D problems and Sánchez-Sesma 
and Luzon (1995) and Luzón et al. (1997) for 3D ones). In 
this figure one can appreciate that the major part of energy 
is concentrated near the free surface and that, for both 
components of displacement, the influence of the Rayleigh- 
wave disappears near  , which is in agreement with theory. 
One can also notice that horizontal displacement changes of 
sign near  , which is a notable indication of the retrograde 
motion of Rayleigh-waves.

To show the application of our integral formulation to 
a cracked medium, we have applied it to various cases, 
where the number and orientation of surface-breaking 
cracks vary. Initially, a vertical surface-breaking crack is 
considered with five crack depth ratios, which are d/a=0.1, 
0.2, 0.4, 0.6 and 1.0 (a is taken as a reference parameter). 
We selected these simple crack configurations in order to 
validate our results with those obtained by other authors, as 
shown below. The properties of the medium are: tb/a=1 (b 
and t are the shear wave velocity and time, respectively) and   
(Poisson’s ratio). We compute, in the frequency domain, 
the displacement field for 64 frequencies up to 3.848 Hz at 
various surface receivers. In order to simulate motion along 
time we used the FFT algorithm (Fast Fourier Transform) 
to calculate synthetic seismograms using a Ricker wavelet 
with characteristic period of tpb/a=1.

Fig. 2. Horizontal and vertical components of displacement for 
Rayleigh waves. Dotted lines represent results obtained by our 
integral formulation. Continuous lines are results from Graff (1975).



245

Geofis. Int. 46 (4), 2007

In Figure 3, temporal representation of the Rayleigh-
wave pulse is shown. Horizontal and vertical displacements 
(Figure 3a and 3b, respectively) are depicted in order to 
show their amplitude with respect to depth and crack 
length. The wavelength selected to interact with the crack 
was lR/a=1, this is equivalent to d/a=1. Thus, the deepest 
crack considered here corresponds to d/a=1.0. Easily 
appreciated is the fact that in Figure 3 an accumulation 
of energy is concentrated at a distance shorter than one 
wavelength (Rayleigh, 1885; Hess, 2002; Wong, 1982; 
Graff, 1975). This important feature can be observed again 
on the horizontal component, where a simultaneous change 
on the particle motion is also identified at 0.2lR.

In Figure 4, horizontal (left) and vertical (right) 
displacements represented as synthetic seismograms for 
crack depth ratios of d/a=0.1, 0.4 and 1.0 (upper, middle 
and lower, respectively) have been plotted for this one 
vertical crack model (in all cases, the 26th-receiver is 
placed just at the crack and plotted with an horizontal line). 
In all cases wave amplifications can be observed for the 
nearest receiver placed at the left side of the crack, where 
the surface wave impacts. For the deepest crack model 
(d/a=1) the reflected and transmitted waves for the two 
components of displacement are clearly defined. However, 
when the crack becomes shallower, the diffracted wave 

field for horizontal component shows more complicated 
patterns for the receivers behind the crack. In the case of 
vertical components, when the crack depth ratio is d/a=0.1 
, the transmitted amplitude of the wave is almost equal to 
those of the incident wave and the wave amplification at the 
crack is almost negligible. For the other cases, d/a=0.4 and 
d/a=1.0, the amplitude of transmitted waves are reduced 
while those of reflected ones increases.

In Figure 5, transmitted and reflected wave coefficients 
and amplification wave factor are plotted, using the same 
one vertical crack model with the crack depth ratios 
mentioned above. Here, we define such coefficients and 
factors as the ratio between the transmitted, reflected wave 
amplitude and the incident wave amplitude. For the case 
of horizontal component (Figure 5a), amplifications of 
almost 3 times for the ratio d/a=0.1 are seen and for the 
ratio d/a=1 that value grows twice. For the case of d/a=1.0 
the reflection coefficient corresponds to 0.35 (as obtained in 
Bray and Stanley, 1997), which was found for the case of a 
Rayleigh-wave that impacts on a corner). For lower ratios of 
d/a, transmitted wave coefficients tend to 1.0 and reflected 
ones to 0.0. Similarly, for vertical component (Figure 
5b) wave amplifications reach almost 1.8 times for ratios 
d/a>0.4 and transmitted and reflected wave coefficients 
reach almost a factor of 0.45 times (these amplifications 
can also be seen in Kromine, 2000).

To study scattering of surface waves by multiple 
surface-breaking cracks we have analyzed three cases with 
five cracks each. The first one corresponds to cracks with 
ratio d/a=0.1, b/a=1.0 and q=90°, the second to q=135° 
and the last one to q=45° (see Figure 1). It is important to 
mention that these models were selected in order to show 
the use of our integral formulation dealing with strong-
scattering media. Many other crack configurations could 
be of interest. However, we do believe that these simple 
models allow us to perceive important features about the 
diffraction of Rayleigh waves by surface-breaking cracks. 
In Figure 6 synthetic seismograms for the studied cases are 
shown (upper, middle and lower, respectively). In Figure 
6a the horizontal component of displacement is strongly 
influenced by cracks, showing amplifications of almost 3 
times with respect to the incident wave (as mentioned in 
Figure 5a). However, finally slight wave attenuation at the 
last receiver can be seen. The vertical component shows 
similar behavior, because the incident wave is affected 
at cracked zone, but finally slight attenuation at the last 
receiver is again obtained.

In the case of vertical and horizontal displacements 
for q=135° insignificant attenuations and amplifications 
are observed (Figure 6b). As well, for the case of q=45° 
(Figure 6c) only small amplification and attenuation are 
seen for both components of displacement. We believe that 

Fig. 3. Synthetic seismograms for horizontal and vertical 
components of displacement of a Rayleigh wave that impacts 
a vertical crack; a) Horizontal displacement and, b) vertical 

displacement.
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for these two last cases the crack orientation does not affect 
the Rayleigh- wave propagation. This can be attributed to 
the small distance between the crack tip and the free surface 
and their orientation. From these analyses we can say that 
the crack depth and orientation are crucial to identify a 
medium with several cracks. A damaged surface could not 
be recognized if the incident pulse is not applied at the right 
direction or with the proper wave amplitude.

Conclusions

In the present paper we have analyzed the effect that one 
or several surface-breaking cracks have on the propagation 
of Rayleigh-waves.  We have briefly shown the formulation 
of the Indirect Boundary Element Method applied to the 
propagation of surface waves in a halfspace containing 
surface-breaking cracks. Attenuation, reflection and 
amplification of Rayleigh-waves by several crack depths 
have been studied with good detail. We have concluded 
that the horizontal component of displacement of Rayleigh-
waves is more affected by shallow cracks, where strong 
amplification can be seen (almost 3 times of the incident 
wave). However, for the case of vertical component the 
amplification reaches 1.8 times the incident wave for ratios 
d/a>0.4. From the multiple diffraction results (Figure 6), we 
have found that surface-breaking cracks influence strongly 
the propagation on surface waves. In fact, it is well known 
that the major amount of energy of the Rayleighwaves is 
located around the free surface. In that sense, surface-

Fig. 4. Synthetic seismograms for horizontal (left) and vertical (right) components of displacement for crack depth ratios of  , 0.4 and 1.0 
( a), b) and c), respectively) In all cases the 26-receiver is placed just at the crack and plotted with an horizontal line.

Fig. 5. Reflection and transmission wave coefficients and 
amplification wave factor for horizontal (up) and vertical (down) 

components against crack depth ratios.
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breaking cracks may produce different attenuation 
depending upon depth and inclination. Given surface 
wave polarization, has been pointed out that the vertical 
component appears to be slightly affected by the presence 
of cracks. A damaged surface could not be recognized if 
the incident pulse is not applied at the right direction or 
with the proper wave amplitude. We believe that the results 
presented in this paper are of interest to the scientific 
community given their usefulness as benchmark solutions 
to calibrate other numerical techniques. The information 
reported here may provide to the field engineers a way to 
recognize patterns and behavior of surface-breaking cracks 
from the analysis of the diffracted field.
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