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Resumen

Se desarrolla una nueva técnica de cdlculo en el andlisis de amplitud contra distancia fuente-receptor y contra acimut
(AVOA) que resuelve la ambigiiedad en la estimacion de las direcciones principales de fracturas. Se analiza el tercer término
de la aproximacion de Riiger para el coeficiente de reflexidn de ondas P, para distinguir la direccion de fracturas y la direccion
de simetria. La técnica se prueba con datos reales del campo y datos sintéticos.

Palabras clave: AVOA, el medio HTI, anisotropia sismica, caracterizacion de yacimientos fracturados.

Abstract

A new computational technique of AVOA analysis (Amplitude Versus Offset and Azimuth) is developed which resolves
an ambiguity in fracture-direction estimation. It analyzes a third term of Riiger’s approximation for P-wave reflection
coefficient to distinguish symmetry-axis and fracture-strike directions. The technique is tested on synthetic and field data.

Key words: AVOA, HTI media, seismic anisotropy, fracture-reservoir characterization.

Introduction

The analysis of azimuthal variation in reflection
coefficients or AVOA analysis (Amplitude Versus Offset
and Azimuth) is widely applied for detecting and mapping
highly fractured zones with azimuthally-oriented vertical
cracks. Based on the Riiger (1998) approximation for
the reflection coefficients in HTI medium, the AVOA
technique gives, in general, two principal symmetry
directions of HTI medium without any formal indication
of which of these two directions points to the symmetry
axis, and which to the fracture strike. As shown by Zheng
et al. (2004), some additional information is required
besides the reflection coefficients to resolve the ambiguity
in fracture-direction estimation.

We develop a computational technique for PP-wave
AVOA analysis improved in comparison with existing
techniques, which resolves the ambiguity using only
information obtained from amplitudes (or reflection
coefficients). The technique analyzes the third term
of Riiger’s approximation for determining symmetry-
axis and fracture-strike azimuths uniquely. We test the
algorithm on synthetic and field data.

Background

The methodology of AVOA analysis is based on the
concept of azimuthal anisotropy caused for the most part
by parallel vertical fractures. It leads to the azimuthal
anisotropy of amplitudes, in particular, to azimuthal

variation in reflection coefficients. The fractured reservoir
is represented by a model of a transversely isotropic
medium with horizontal symmetry axis (HTT medium).
The PP-wave reflection coefficient R at the interface (or
reflecting boundary) between weakly anisotropic HTI
media (or between isotropic and HTI media) is defined by
the approximate formula (Riiger, 1998):

R(6,9) = A + B(¢)sin> 0 + C (¢)sin’ 0 tan? 6,
(h

where 6is the incidence angle, and ¢is the source-receiver-
line azimuth with respect to the coordinate axis x. The
term A is the normal-incidence reflection coefficient

A=NAZ/(27), 2)

where Z=pV "is the vertical P-wave impedance, V "is the
vertical velocity (or velocity in the isotropy plane) of the
P wave, A denotes the difference between the values of a
parameter below and above the reflecting boundary, and
the bar .. indicates the mean of these values.

The coefficient B(¢) is a so-called AVO gradient,
which can be written (Riiger, 1998)

B(¢) = B, + B, cos* (9=9,). 3)

where ¢, is the angle of the symmetry axis with the x-axis.
The term B, is the AVO-gradient isotropic part (equal



Geofis. Int. 47 (1), 2008

to the AVO gradient for isotropic media), and B,,, is the
anisotropic part of the AVO gradient.

The last term in equation (1), that is, the term with
the coefficient C(¢), gives a marked contribution to the
reflection coefficient value only for distant offsets (large
incidence angles). The coefficient C(¢) can be written
(Riiger, 1998)

2C(¢) = Aa+Ae cos* (9—¢)+Ad sin* (¢—¢,)cos” (¢—¢),).
4)

where A= AV !/ V!, A8 = 8% ~3%] . and
Ae = £(V>|2— 5(")|1' (5)

Following the terminology of Riiger (1998) and Ts-
vankin (1997), the Thomsen-style anisotropy parameters
V), 0¥ and y are used to describe the anisotropy of HTI
media, which are effective models of vertically fractured
rocks. The parameters ¢V, and " are negative, y is posi-
tive for HTI medium (Bakulin et al., 2000), and they are
equal to zero for an isotropic medium. The difference in
anisotropy parameters across the boundary is written with
the help of A in (4) - (5) as above, and the subscripts |,
and |, refer to the upper or lower medium respect to the
boundary.

The main problem is to estimate the symmetry-axis
angle ¢. The technique which we propose is based on
equations (1) - (5). Note that equation (1) is intended
for calculation of reflection coefficients, while in real
data, one deals with amplitudes of reflected waves, not
with reflection coefficients. This brings some problems.
We may not use instantaneous amplitude due to its high
variability. Instead, we must take into consideration
some integral characteristic of a signal for imitation of
amplitude. A proper definition of this integral amplitude
from wave samples of seismic records is required because
amplitude estimation is very sensitive to noise and errors.
Depending on this definition, the sign of amplitude
may sometimes differ from the sign of the reflection
coefficient; therefore it is necessary to know the sign
of the difference of impedances across the boundary
(see equation (2)). Also, it is necessary to correct the
amplitudes for geometrical spreading, which procedure is
not simple or exact for anisotropic media. Our solution of
these problems is presented in Appendix A.

Algorithm

The algorithm for estimating the symmetry axis angle
¢, may be divided into three steps. The first step consists
in estimating the coefficients A, B and C in equation

(1). The second step is defining two principal symmetry
directions of HTI medium using the formula (3) for the
AVO gradient B. The third step is analyzing the coefficient
C, equation (4), to distinguish the symmetry axis direction
from the fracture strike.

The first step of the algorithm is the estimation of A(¢),
B(¢), and C(¢) for each individual azimuth-sectored CMP
gather. The coefficients A, B and C in equation (1) are
determined by the least-squares method. For each source-
to-receiver line j (j = 1,...,n ), the functional

F= Z[Aj+ B, sin’6, + C, sin® 0, tan” 6 — R(Bi,gbj)];)

is to be minimized. Here i is the number of the offset (co-
rresponding to the incidence angle 6) in the j-th azimuth-
sectored CMP gather. The coefficients Aj., B, and C, are
determined from the system of three linear equations

0F /A =0, 0F /B =0, 0F /C.=0.

J J J J (7)
This procedure is repeated for each j (j = 1,...n ). Due to
azimuthal anisotropy of the medium, the AVO gradient B

acquires different values B, B,, ..., B, for n azimuth-sec-
tored CMP gathers.

The second step of the algorithm consists in the
estimation of the angle ¢, from equation (3). For this
purpose, at least three AVO-gradient values are required,
each of them estimated for a different source-to-receiver
line azimuth (or sector). For n=3 the problem was solved
by Mallik et al. (1998). For n=3 the problem is solved by
the least-squares method as follows.

As the A value should not depend on azimuth, but the
A values may be calculated different for different azi-
muths, then we should normalize the AVO gradient B as
B,/ A, = B,, where A and B, are calculated above by the
least-squares method for each azimuth sector j. Formula
(3) for the normalized AVO gradient can be rewritten by
trigonometric transformation in the form

B.= a+b cos[2(, - ], ®
where 9, is the mean azimuth of the j-th azimuth sector
for real data, or the azimuth value for synthetic data. The
values Bj,= Bj/ Aj are already known as estimated in the
first step. The parameters a, b, and ¢, are unknown, and
can be obtained by minimizing the functional

f=2{a+bcos[2(¢,- ¢)]1 - B}
s ©)

This yields the system of equations
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From (10), we derive an analytical trigonometric
equation for ¢, (given in Appendix B) and we find that
the solution ¢, has a period of % This value of the period
means that we cannot be sure whether ¢, is the symmetry-
axis azimuth or the orthogonal direction, i.e. the fracture-
strike. Also from equations (8), one can infer two different
solutions, namely (a, b, @,) or (a, -b, @, * %), see also
Zheng et al. (2004). These solutions are the local minima
of the functional (9), as may be confirmed by evaluating
the second partial derivatives of the functional f.

How to distinguish fracture strike from symmetry
axis

For some cases, the ambiguity in fracture-orientation
detection may be resolved by analyzing the AVO-gradient
dependence on ¢, equation (3). As shown by Hall &
Kendall (2000), and by Zheng et al. (2004), when the
sign of B, is known beforehand it is possible to solve
the problem. However, in general, the sign of B, may
be arbitrary. For many anisotropic media B,,, > 0. But
as shown by Chichinina er al. (2003), anisotropic media
with B,,, <0 are not exotic, and one can be sure that
B,,, >0 for a given HTI medium as long as, for host-rock

velocities, the ratio VS/ V,> 0.56 is valid.

Let us rewrite equation (4) as

2Cj=Aa+A£ cos2(q)j - ¢)+An sinz(q)j - ¢,)cos’ (¢j -,
(11)

where j=1,...,n, An=A § — A ¢ and A¢ is given by equa-
tion (5).

When substituting the value ¢+ % instead of ¢, into
equation (11), the sign of the second term in the sum, Ae
gosz(qﬁj—¢0), switches to the opposite sign, because equa-
tion (11) takes the form

2C/.=(Aa+A£) —Ascosz((pj—qbo)+Ansin2(¢j—¢0)cos2(¢/.—¢O).
' " (12)

Note that Ae should be negative for the upper reflecting
boundary of the HTT layer (the case of HTI layer overlain
by an isotropic overburden), and positive for the lower
reflecting boundary (i.e., for the interface HTI medium —
isotropic medium). This follows from equation (5), taking
into account é¥= 0 in the isotropic medium and V< 0 in
the HTT medium.

Thus, the sign of Ag is predefined for the model. If,
for a given ¢, the sign of A¢ from equation (11) does
not satisfy the condition for the boundary of HTI layer
mentioned above, it means that ¢, is the fracture-strike
direction, because the sign of the term Ascosz(q)j-q)o) is
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changed. Thus, if the sign of A¢ could be estimated, the
ambiguity problem would be solved.

At first, we will normalize both sides of equation (11),
dividing by Aj, as was done for equation (8), and assume
from now on that Cj = Cj /Aj, Ao = Aa/Aj. Ae= As/Aj, and
An=An/A,

Then the value of the new normalized Ae can be es-
timated by minimizing the following functional f,, using
the least-squares method:

fi= 2 [Aa+ A cos’ (¢ +An sin’ (94 cos’ (¢ ~) -2C,
=1
af, /]a(Aa) =0, df,/d(Ae)=0, df,/ d(An)=0,
(13)

where ¢, is one of the known solutions of system (10).

The system of equations (13) is solved by analogy
with the system of equations (6) - (7).

Keeping in mind the sign requirements for non-nor-
malized Ag, we suggest the following criterion for identi-
fication of the solution ¢, as the symmetry-axis azimuth:

for upper reflecting boundary of the HTI layer
sign (A)Ae < 0; (14)

Jor lower reflecting boundary of the HTI layer
sign (A)Ae >0, (15)

where the value of normalized A¢ is assumed to be calcu-
lated from equations (13).

In (14) and (15), the term sign (A) is the sign of the
normal-incidence reflection coefficient A, which can be
determined from the impedance change over the boundary,
equation (2), or from equations (7). If one deals with data
of amplitudes (not with data of reflection coefficients),
then one can not be certain of using sign (A) from the
system of equations (7), because the sign of the amplitude
might not match the sign of the reflection coefficient. For
example, this might arise from distortion of wave form
that could lead to a changed sign of integral amplitude
(see Background, and Appendix A).

Examples of algorithm application

We tested the algorithm using synthetic data shown in
Fig. 1, and we applied it to field data shown in Fig. 2.

Tests with synthetic data. The synthetic data are repre-
sented by three CSP seismograms corresponding to three
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source-to-receiver-line azimuths 0°, 45° and 90°. These
synthetic seismograms were generated by the ray method
(Obolentseva and Grechka, 1989). Figure 1 shows one
seismogram (for the azimuth of 45°) as an illustration.
The model consists of 11 layers and describes the subsur-
face of the Urubchen-Tokhomo Area (Eastern Siberia), in
which the HTI layer is the tenth (460 m-thick Riphean
carbonates). The symmetry-axis azimuth of the HTT layer
is ¢, = 60°. The Thomsen parameters and density for this
layer as well as vertical velocities (V', V,) and density
for isotropic layers above and below the HTI layer are
given in Table 1.

Table 1

Model parameters of 9-th, 10-th and 11-th layers for
synthetic seismograms

The proposed AVOA technique can be applied to the
upper as well as the lower boundary of HTI layer. Here
we performed AVOA analysis for the lower reflecting
boundary of the HTI layer at a depth of 2665 m, and for
the upper reflecting boundary of the HTI layer at a depth
of 2205 m, both marked by arrows in Figure 1. Note from
Table 1 a negative change of the impedance over the
lower boundary, that is A<0, and a positive change of the
impedance over the upper boundary (A>0).

For calculating the incidence angles from offsets, we
used ray-tracing in the multi-layered model, or a one-
layer approximation which considers the layered medium
above the reflecting boundary as a homogeneous layer.
The ray-tracing was performed by Snell’s law using the
formula (Tsvankin, 1997) V,= V. [1+3Vsin*cos® O+
cos*d] for the velocity in the anisotropic layer, if needed.

When using the ray-tracing for calculating 6, we

Layer Vertical Densit; Anisotrop . o
T ol w0000 45 088 e
Il d (V) (V) 5 0 — . .
Ve Vs P ) ! ° using the one-layer approximation, we estimated ¢,
9) Isotropic 5300 2800 26 0 0 0 =61.26° for the upper boundary, and ¢ = 61.26° for the
10) HTI 8349 4114 28  -0.087 0.105 -0.118 lower boundary. ThusZ the accuracy was better than
11) Isotropic 3700 1500 24 0 0 0 1.5% for t.he ray-tracing, and 2% for the one-layer
approximation.
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Fig. 1. The synthetic seismogram for the source-to-receiver-line azimuth of 45°.
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Fig. 2. Field data: CMP gathers for twelve azimuth sectors of 15°-width.

With a knowledge of these values of #,, we now
use the algorithm for distinguishing the symmetry-axis
direction by calculating the parameter A¢ found from (13).
We obtained A¢ < 0 for both boundaries in all considered
cases, which yields sign(A)Ae <0 for the upper boundary
and sign(A)Ae >0 for the lower boundary, as it should be
for the symmetry axis, equations (14) and (15).

To simulate real data, we added a random Gaussian
white noise to the synthetic seismograms. Maximum
amplitude of the noise was chosen as 10%, and as 20% of
the maximum amplitude of the signal reflected from the
upper boundary of the HTT layer at the first trace. As the
amplitudes of reflected waves in the traces decrease with
offset up to 2.3 times, the actual error caused by the 20%
noise was up to 45% for distant offsets.

For the upper boundary, in the case of ray tracing,
we obtained ¢, = 63.64° for 10% noise, and ¢, = 64.12°
for 20% noise. For the lower boundary the respective
values were ¢, = 59.39° for 10% noise, and ¢, = 58.03°
for 20% noise. Such a difference between the results for
the boundaries can be explained by interference of the
waves reflected from the upper boundary with the waves
reflected from the preceding boundary (see Fig. 1), the
superposition interval is equal to 10 ms. To reduce the
influence of interference, an additional smoothing can be
applied (see Appendix A) for obtaining better results for
the upper boundary.

In the case of calculation with the one-layer approxi-
mation, the results were as follows: for the upper bound-
ary (with additional smoothing) ¢, = 62.98° for 10% noise,

and ¢, = 63.4° for 20% noise; for the lower boundary ¢, =
61.52° for 10% noise, and ¢, = 57.91° for 20% noise. The
one-layer approximation seems to be a good alternative to
ray-tracing for the data used.

Application to field data. The field data contain 12
seismograms from 12 azimuth sectors (Fig. 2) for a su-
perbin of 13x13 bins acquired at the Vancor Area (Eastern
Siberia, Russia) in 2004. The target reflection is from the
top of the HTI layer (overlain by an isotropic overburden)
at the depth of 3.4 km marked by an arrow in Fig. 2.

The analysis of azimuthal variation in the AVO gradient
provided two principal directions of symmetry: -4.3° and
85.7° (Fig. 3). From these two directions we distinguished
the azimuth of 85.7° as the symmetry-axis direction. We
used our criterion taking into account that the coefficient
A was negative due to negative impedance change across
the reflection boundary, AZ<0 (estimated from the sonic
logs). We substituted the calculated values of o and ¢,
= -4.3° into equations (13), and obtained the parameter
Ae = -19.4. Following equation (14), the condition for
the symmetry axis at the boundary “isotropic medium
- HTT medium” requires sign(A)Ae < 0, but in this case
sign(A)=-1, and therefore sign(A)Ae > 0. We concluded
that ¢ = -4.3° was the fracture-strike direction, and the
symmetry-axis azimuth was 85.7°.

Discussion and conclusion

We solve the problem of ambiguity by analyzing the
sign of the parameter Ae which is a coefficient in the
second term of (11) for the coefficient C at the third, high-
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Fig. 3. The normalized AVO-gradient B(¢) as a function of azimuth ¢ for the field data example shown in Fig. 2: the values B//Aj
(j=2,...,12) estimated from the polynomial fit (marked by the black squares) and from the linear fit (the circles), and AVO-gradient varia-
tion B(¢) (solid line and dashed line, respectively) calculated from the a + b cos2 (¢-¢ ) -fitting.

angle, term in Ruger’s equation (1). We realize that it is
hard to obtain a reliable estimation of Ruger’s high-angle
term from real field data. However, actually only the sign
and not the value of A¢ is required for the criterion (14)
- (15).

For determining the sign of Ae, we use equations
(13), in which we take into account only sectors j with
reliable values of coefficients Cj. For instance, in the
above example of field data, the data at the azimuth sector
of 7° (j=1I) which give an unaccountably large value of
Cj was omitted as shown in Figure 3, where the omitted
points (from the polynomial fit as well as from the linear
fit) are marked by crosses. The point was eliminated
from the total of 12 points in the plot and only 11 points
remained for the fit. Note that the corresponding AVO-
gradient value Bj for the first sector, j=1, exhibits another
unreliable value like the Cj -value, and should be excluded
from the cos2(¢-¢,) -fitting for the variation B(¢).

Following equations (1), and (6) - (7), it is obvious
that the estimate of C, is linked to the B-estimate. By
selecting a reliable Bj-estimate, we can provide a reliable

Cj—estimate. To select a reliable Bj-estimate, if necessary,
we perform the linear fitting y=A+Bx (where x=sin>6),
additionally to the polynomial fitting y=A + Bx + Cx?,
which is carried out in the first step, equations (6) - (7).
Figure 3 shows the trend of the polynomial fit similar to
the trend of the linear fit, that gives a difference of 11.8° in
the ¢ -estimate (¢, =7.5°). It seems sufficient to consider
the used data as reliable.

Also, Aj-estimate demonstrates close values for reli-
able sectors, and extremely unlike values for unreliable
sectors.

We believe that the technique is applicable to field
data by using controlled reliable values of Cj, that are con-
sistent with reliable values of B, and A,
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Appendix A
Using amplitudes instead of reflection coefficients

While the background of AVOA analysis is based on
Ruger’s formula for the reflection coefficient, equation
(1), in real data AVOA analysis should use signal ampli-
tudes. It is true that the signal amplitude is not equal to the
reflection coefficient. Moreover, no picked instantaneous
amplitude (sample) in the signal can be used because the
signal changes form during propagation for many reasons.
One should use an integral amplitude characteristic of the
signal which adequately corresponds to the reflection co-
efficient. Let’s call this characteristic simply by amplitude
and denote it as P.

From our experiments, a simple definition of the am-
plitude as an extremum of samples in the time window of
the signal P = P = max |P |, where P is a sample, n is

nE[n n,)

a number of the sample n, and n, are limits of the time
window) was found non-satisfactory.

We found that the estimated value of ¢, is very sensi-
tive to the definition of P, especially for data with noise.
We suggest the following procedure for definition of P
which gives good and stable results. The procedure cal-
culates a maximum value of the signal envelope with a
sign of the central peak of signal. In calculating the en-
velope, the Fourier transform of this signal is used: F =
F.+F , where F, is the part of spectrum corresponding to
positive frequencies (w=0), and F _is the part of negative
frequencies. The envelope of the signal is given by the
absolute value of inverse Fourier transform of 2F ., with
F =0 (Sheriff & Geldart, 1983).

Limits of the signal (r, and n,) are very important pa-
rameters in this definition. In the examples above, for a
Ricker wavelet which has a central peak and two adjacent
peaks of opposite sign, we define the time limits of the
signal by including the central peak and 0.9 of the adja-
cent peaks. For finding the limits for data with noise, we
smooth the signal by a sequence of cubic polynomials,
each defined on 12 points, using the least-squares meth-
od.

For accuracy of Fast Fourier Transform one should
use as many points as possible. For this, we calculate the
envelope of a wave composed from the signal repeated
five times, and we find the maximum from the middle part
of this envelope.

Equation (1) should be rewritten for using the am-
plitudes. The amplitude of reflected PP-wave can be ex-
pressed as

Geofis. Int. 47 (1), 2008

P=cRP. ,
g ini

where ¢, is the coefficient of geometrical spreading (di-
vergence) of this wave, ¢, = ¢, (6.¢9), P, is the amplitude
of the source (the initial amplltude) and R is the reflection
coefficient R = R(6,¢) in the equation (1).

The amplitude for the normal-incidence wave can be
written as

P() = Cg()APini’

Wherec ,is thenormal-incidence coefficient of geometrical
spreadlng, which does not depend on (6,¢), and A is
the normal-incidence reflection coefficient, A=const,
equations (1) - (2). Then the reflection coefficient can be

expressed as
c P
g0

R=ACP
g 0

Therefore the equation (1) for the reflection coefficient
R transforms into the following equation for the amplitude
P:

rgP(H,q/)) =P, + B, (¢)sin* 0+ C () sin® 0 tanzlf,l)

where B =BP /A, C =CP/A, and rgscg(/cg. This equation
should be used in the AVOA technique instead of (1).

Note that ¢, can be expressed as c=c, (6,9)/r, where
r is a wave path from source to receiver, and ¢, depends
on the direction of wave propagation (for isotropic me-
dia ¢, =const). In assuming a weak anisotropy, one may
assume a weak dependence of geometrical spreading on
incidence angle: ¢ =const for a given source-to-receiver
line with azimuth ¢. Then

c r 1

ro= = = , (A-2)
c Z cosf

where z is the normal-incidence ray path, and cgoscm/z. It
is the approximate formula for divergent correction.

For multilayered media, the expressions for diver-
gence correction can be found in Newman (1973). A prac-
tical methodology for the P-wave geometrical-spreading
correction in layered azimuthally anisotropic media can
be found in Xu & Tsvankin (2004).
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Appendix B
Formula for calculating symmetry-axis direction

There is a distribution of n B j-Values (B,B,,....,B)
given for n azimuth angles ¢, (¢,, ¢, ..., ¢,). The problem
is to fit the function

a+bcos[2 (q)j— ¢,)]
to these Bj- values (j=1, 2, ..., n).

In this function, there are three unknown quantities: a,
b, and ¢, which may be determined by the least-squares
method, by introducing the functional f, equation (9). The
goal of AVOA analysis is to determine the symmetry-axis
direction, or to estimate the angle ¢,. The condition for
minimum of the functional f yields the system of equa-
tions (10), from which the simple trigonometric equation
for ¢, is derived by excluding parameters a and b:

(LN - KP) sin (2¢,) = (KN - LM) cos (29,) ,

where K=F-UA,L=G-UB,M=C-A’,N=D,A,B,

and P = EO-BOZ, with U, A, B, C,, D, E, F,, and G, are
determined as the arithmetic mean values (for example,

E/E'ITJ,_ZI B)):

U,= B/,, A, =cos (2(])/,), B, =sin (2¢j.),

C, =cos’ (2¢/,), D, =cos (quj) sin (2¢/,),

E, =sin’ (2¢/,), £, =B cos (2¢/.), G,=B, sin (2¢/.).

10



Bibliography

Bakulin, A., V. Grechka and I. Tsvankin, 2000. Estimation
of fracture parameters from reflection seismic data
— Part I: HTI model due to a single fracture set.
Geophysics, 65, 1788-1802.

Chichinina T., V. Sabinin and G. Ronquillo Jarrillo, 2003.
Numerical modeling of P-wave AVOA in media
containing vertical fractures / Expanded abstract. The
Sixth International Conference on Mathematical and
Numerical Aspects of Wave Propagation “Waves’
20037, Finland, Springer, 897-902.

Hall, S. A. and J-M. Kendall, 2000. Constraining the in-
terpretation of AVOA for fracture characterization:
in Anisotropy 2000: Fractures, converted waves, and
case studies. Soc. Expl. Geophys., 107-144.

Mallik, S., K. L. Craft, L. J. Meister and R. E. Chambers,
1998. Determination of the principal directions of
azimuthal anisotropy from P-wave seismic data.
Geophysics, 63, 692-706.

Newman, P., 1973. Divergence effects in a layered earth.
Geophysics, 38, 481-488.

Obolentseva, I. R. and V. Yu. Grechka, 1989. Ray method
for anisotropic media (algorithms and codes). Institute
of Geology and Geophysics Press, Novosibirsk, 226
p. (in Russian).

Geofis. Int. 47 (1), 2008

Riiger, A., 1998. Variation of P-wave reflectivity with
offset and azimuth in anisotropic media. Geophysics,
63, 935-947.

Sheriff, R. E. and L. P. Geldart, 1983. Exploration Seis-
mology, Volume 2, Data-processing and interpretation.
Cambridge University Press, Cambridge, 400 p.

Tsvankin I., 1997, Reflection moveout and parameter esti-
mation for horizontal transverse isotropy. Geophysics,
62, 614-629.

Xu, X. and I. Tsvankin, 2004. Geometrical-spreading
correction for P-waves in layered azimuthally
anisotropic media. 74th Ann. Internat. Mtg. Soc. of
Expl. Geophys., 111-114

Zheng, Y., D. Todorovic-Marinic and G. Larson, 2004.
Seismic fracture detection: ambiguity and practical
solution. 74th Ann. Internat. Mtg. Soc. of Expl.
Geophys., 1575-1578.

Dr. Vladimir Sabinin

Mexico

E-mail: vsabinin@yahoo.com

Dra. Tatiana Chichinina

Instituto Mexicano del Petroleo.

Eje Central Ldazaro Cdrdenas, 152, Mexico, City, Me-
xico.

E-mail: tichqvoa@yahoo.com

11



