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Resumen
Estudiamos la difracción múltiple de ondas elásticas por un arreglo lineal finito de obstáculos cilíndricos distribuidos 

regularmente. En particular, se resuelve con detalle la respuesta transitoria del sistema para la incidencia de ondas de corte 
antiplanas. Presentamos una extensión de la solución original para cilindros rígidos desarrollada por algunos de nosotros en 
los ochentas. La solución se obtiene formalmente para una excitación armónica en el dominio de la frecuencia y el análisis de 
Fourier nos permite obtener la respuesta transitoria. En este análisis mejorado se consideran variaciones en las propiedades 
de los materiales de las inclusiones cilíndricas. La formulación es bidimensional y se construye a partir de la superposición 
del campo incidente y las ondas difractadas por cada obstáculo. Las soluciones para cada obstáculo se construyen como ex-
pansiones de funciones de onda cilíndricas. La solución exacta se obtiene formalmente después de imponer condiciones de 
continuidad para los desplazamientos y las tracciones en las interfaces matriz-difractor con la ayuda del teorema de adición 
de Graf. Así, el campo total se puede referir a cualquier sistema de coordenadas cilíndrico. El sistema de ecuaciones infinito 
se aproxima por uno finito y esto permite obtener resultados numéricos para diferentes valores de los parámetros. Se estudian 
varios casos de cavidades e inclusiones. Se muestra que un doble efecto es producido por la presencia de un material particu-
lar de relleno: amplificaciones en el lado de la incidencia y reducciones en el lado opuesto, o vice versa. Se calculan también 
sismogramas sintéticos e instantáneas de tiempo con el objeto de ilustrar las características complejas de la propagación de 
ondas en este modelo inhomogéneo.

Palabras clave: Difracción múltiple, respuesta transitoria, solución analítica, ondas elásticas, obstáculos cilíndricos, 
instantáneas de tiempo.

Abstract
We study the multiple scattering of elastic waves by a finite linear array of regularly distributed cylindrical obstacles. The 

transient response of the system for incident anti-plane shear waves is given in detail. We present an extension of an original 
solution for rigid cylinders, developed by some of us in 1983. The solution is formally obtained for harmonic excitation 
and Fourier analysis provides the transient response. Material properties of the cylindrical inclusions are considered. A 2-D 
formulation is constructed by superposition of the incident field upon the waves diffracted by each obstacle. The solutions 
for each obstacle are constructed as expansions of cylindrical wave functions, after imposing continuity conditions for the 
displacements and tractions at the scatterers matrix interfaces with the aid of Graf’s addition theorem. Thus, the total field 
can be referred to any cylindrical coordinates. The infinite system is approximated by a finite one and numerical results 
are obtained for different values of the parameters. Various cases of cavities and inclusions are studied. A double effect 
is produced by different filling materials, f. e. amplification at the incidence side and reductions at the far side, or vice 
versa. Synthetic seismograms and snapshots are computed to illustrate the complex features of wave propagation for this 
inhomogeneous model.

Key words: Multiple scattering, transient response, analytical solution, elastic waves, cylindrical obstacles, snapshots.

Introduction

Mathematical and numerical modeling is fundamental 
in science and engineering. In particular, geophysical 
modeling is crucial to understand basic features of 
hydrocarbon reservoirs in the field. Analytical formulations 
has allowed establishing benchmark solutions for 
some problems. Most of these formulations have been 

employed, among other uses; (1) to build basic solutions 
for more complicated problems, (2) for validation and 
calibration of new results and (3) for trustworthy field data 
interpretation. In scattering problems exact solutions have 
been helpful even thoung only some types of obstacles 
(i.e. cylinders, spheres or ellipsoids) yield exact analytical 
solutions. The insight gained by such applications is 
significant and useful.
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Multiple scattering of elastic waves by a set of flexible 
inclusions was treated by Foldy (1945) and Lax (1951) 
for scalar waves, and subsequently by other authors (e. g. 
Waterman and Truell, 1961; Frisch, 1968; Varadan et. al., 
1978; Varadan and Varadan, 1980; Kikuchi, 1981; Avilés 
and Sánchez-Sesma, 1983). Most recent publications deal 
with the subject in 3D, e. g., asymptotic solutions of the 
dispersion equations in the long and short-wavelength 
regimes (Kanaun et. al., 2004), acoustic wave propagation 
by cylindrical shells (Veksler et. al., 2000), and elastic 
wave scattering by spheres (Gritto et. al., 1995; 1999; 
Ávila-Carrera and Sánchez-Sesma, 2006). Some 2-D 
analytical solutions of the time response of a single cavity 
are presented by Davis et. al., (2001) and by Yin-Bin et. 
al., (2000) for the viscoelastic case. The books by Tsang 
et. al., (2000), Ishimaru (1997) and Sheng (1995) cover 
the subject in the frequency domain reasonably well, but 
they leave aside the analysis of the time response. On the 
other hand, numerical techniques such as finite-difference 
and finite-element methods face limitations regarding 
computer time and core required when dealing with 
realistic scattering problems, even with state-of-the-art-
computers (Vlastos et. al., 2003).

In a previous work (Avilés and Sánchez-Sesma, 1983) 
we faced limitations imposed by computational conditions 
at the time. Only frequency domain results were presented 
and the cylinders were assumed to be rigid. In this paper, we 
review the theoretical analysis developed in the early 80’s 
for rigid cylinders and we extend it to solve the transient 
response of multiple scattering of anti-plane incoming S-
waves by a linear array of cylindrical elastic inclusions 
and cavities. Our aim is to study multiple diffraction of 
elastic waves presumably generated by a distant seismic 
source. We assume that the displacement field of the anti-
plane shear motion is in the same direction as the axes 
of the cylinders. In future work we will address more 
realistic cases, including perpendicular motion of the 
wave field with respect to the axes. We consider closed-
form analytical solutions for diffracted and reflected 
fields produced by various types of cylinders (cavities, 
rigid or elastic inclusions). The solution is constructed 
in the frequency domain as a superposition of incident 
and diffracted fields by each obstacle. Continuity and 
equilibrium conditions are enforced at all scatterer-matrix 
interfaces with the aid of Graf’s addition theorem. Thus, 
the total field may be referred to any cylindrical coordinate 
system, by uncoupling the odd and even parts of the 
solution. From results in the frequency domain, Fourier 
synthesis yields the transient response. Previous work 
(e.g., Benites et. al., 1992), dealt with infinite periodic 
arrays, and this work was taken into consideration. In our 
case the array is finite, and the formulation using Graf´s 
addition theorem leads to exact expressions so that edge 
effects are naturally included, but infinite wave expansions 

must be truncated to a practical size. In our examples, the 
order of wave expansions is commonly limited to ten or 
twelve which movides enough resolution for the studied 
configurations. Several examples of array configurations 
are shown. Normalized amplitudes of the displacement 
field versus distance for a given frequency are depicted. In 
order to illustrate the complex behavior of wave motion 
in this inhomogeneous model, synthetic seismograms and 
snapshots are computed. The results provide insight of 
multiple scattering behavior, and provide a quantitative 
description of various types of material fillers that can 
be used as references for calibration of other modeling 
techniques.

Formulation of the Problem

Consider a linear, elastic, isotropic and homogeneous 
space and let anti-plane displacement w be defined in the 
z direction. Consider a regular array of elastic cylinders 
with properties different from those of the surrounding 
material, as in Fig. 1. The propagation of harmonic plane 
S-waves satisfies the reduced wave equation, or Helmholtz 
equation

where x, y = Cartesian coordinates, k = ω/β = shear 

wave-number, ω = angular frequency and β = √μ
r = shear 

wave propagation velocity; μ = shear modulus and ρ = 
mass density of the elastic space.

Fig. 1. Everly distributed array of elastic cylinders, system of 
reference and incoming anti-plane S-wave.

∂2w		  ∂2w
∂x2	 +	

∂y2	
+ k2w = 0,	 (1)

The excitation consists of a plane wave of amplitude 
w0 with angle of incidence ψ, propagating in the forward 
direction toward the array of cylindrical inclusions, as 
shown in Fig. 1. This incident wave is expressed in the 
reference system (x1, y1) with respect to the first obstacle 
by
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wi (x1, y1) = w0 exp[-ik (x1 cosψ + y1 sinψ )]exp(iwt).	 (2)

where ws
j (rj, qj) denotes the diffracted waves by the 

j-th cylinder as referred to its own coordinate system (rj, 
qj), and NS = number of scatterers.

By separation of variables, the diffracted field for each 
scatterer can be written (Abramowitz and Stegun, 1964)

where a = radius of the cylinders. Salving the problem 
requires imposing the boundary conditions at each 
cylinder. For convenience, the total field in (3)  will be 
given with respect to the arbitrary coordinate system (rl, 
ql). Eqs. (2) and (4) must be referred to this coordinate 
system using Graf’s addition theorem (see Appendix). 
This the total field becomes

w = wi (x1, y1) + S= ws
j (rj, qj),	 (3)

NS

∞

n=0
wj (rj, qj)=SCj

nJn(kcrj)cos nqj + SDj
nJn(kcrj)sin nqj,	 (5)

∞

n=0

The factor exp(iwt) (i = √-1 and t = time) for the time 
dependency of harmonic motion will be omitted from here 
on. The array of aligned cylinders produces diffraction and 
scattering of the incoming wave field. Thus, the solution 
can be represented by

w(rl, ql) rl=a=wl(rl, ql) rl=a	 0≤ql ≤2p and l = 1, 2,.... NS,	(6)

	 ∂w(rl, ql)	 ∂wl (rl, ql)m
	 ∂rl	 rl=a

	=	mc	 ∂rl	 rl=a	
0≤ql ≤2p and l=1, 2,.... NS,	(7)

∞

(1-dl1)S[SAj
n     S (-1)memKn

m   (kdjl)Jm(krl)cos mql +

∞

SAl
m      Hm

(2)(krl)cos mql
+SBl

m     Hm
(2)(krl)sin mql

+

(1-dlNS)S[S(-1)nAj
n     SemKn

m   (kdjl)Jm(krl)cos mql +

∞

n=1
S(-1)nBj

n     SLn
m   (kdjl)Jm(krl)sin mql ]∞

m=1

n=0

(1-dl1)(-1)mSSKn
m   (kdjl)Aj

n+
2 [Hm

(2)´(ka)-FmHm
(2) (ka)]Al

m+	

(1-dINS)SS(-1)nKn
m   (kdjl)Aj

n	 (11)
NS

(1-dl1)(-1)mSSLn
m   (kdjl)Bj

n+[Hm
2)´(ka)-FmHm

(2) (ka)]Bl
m+	

(1-dINS)SS(-1)nLn
m   (kdjl)Bj

n	 (12)
NS

j=l+1

∞

n=0

l-1

J ́ m(ka)-FmJm(ka)j=1

∞

n=0

j=l+1

∞

n=0

l-1

em J ́ m(ka)-FmJm(ka)j=1

∞

n=0

NS

j=l+1

∞

2

∞

m=0

∞

m=0 m=1

∞
n=1
SBj

n     S(-1)mLn
m   (kdjl)Jm(krl)sin mql ]+	 (8)

∞

m=1

n=0

l-1

j=1

∞ ∞

m=0
2

m=1
2S(-i)msin myJm(krl)sin mql ]+

∞

n=0

ws
j (rj, qj)=SAj

n Hn
(2) (krj)cos nqj +SBj

n Hn
(2)(krj)sin nqj,	(4)

∞

n=0

j=1

where Aj
n, Bj

n = unknown complex coefficients that 
will be determined from the boundary conditions, and 
Hn

(2) (.) = Hankel function of the second kind and order 
n. The wave functions Hn

(2)(krj)cos nqj and Hn
(2)(krj)sin 

nqj represent a complete set of solutions of the reduced 
wave equation in unbounded regions which satisfy the 
Sommerfeld radiation condition (Mow and Pao, 1971). 
When we have elastic obstructions, part of the incident 
wave field is refracted and a stationary wave is generated 
inside each cylinder. By solving (1), the refracted field in 
the j-th cylinder can be expressed in the local coordinate 
system (rj, θj) as

where Cj
n, Jn = unknown complex coefficients that will 

be determined from the boundary conditions, and Jn (.) = 
Bessel function of the first kind and order n; the subscript 
c of the wave number kc refers to cylinder. The functions 
Jn(kcrj) cos nqj and Jn(kcrj)sin nqj represent a complete set 
of solutions of the reduced wave equation in bounded 
regions. All coefficients Aj

n, B
j
n, C

j
n and Dj

n that define the 
solution of the problem are obtained when the boundary 
conditions are fulfilled.

Let us assume perfect contact between the cylinders 
and the surrounding elastic material, so that the boundary 
conditions at the matrix-obstruction interfaces are conti-
nuity of displacements and stresses:

where

∞

m=0
w (rl, ql)= w0[Sem (-1)mcos myJm(krl)cos mql +

Kn
m(.)= Hn+m(.)+(-1)m Hn-m(.)	 (9)

Ln
m(.)= Hn+m(.)+(-1)m Hn-m(.)	 (10)

(2) (2)

(2) (2)

-2w0(-i)
m cos my, l =1, 2..., NS and m = 0, 1..., ∞

-2w0(-i)
m sin my, l =1, 2..., NS and m = 1..., ∞

in which em = Neumann factor (e0 = 1and em = 2, m 
≥1), djl = distance between the centers of the j-th and the 
l-th cylinders and dlj = Kronecker delta (= 1 if l = j; = 0 
if l ≠ j).

Inserting (5) and (8) into (6) and (7), and making use of 
the orthogonal properties of trigonometric functions, we 
obtain four infinite systems of algebraic equations for the 
coefficients Aj

n, B
j
n, C

j
n and Dj

n. However, we are interested 
in the solution for elastic media only, so the coefficients 
Cj

n and Dj
n can be eliminated and the four equation systems 

are reduced to two in follows
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where

Fm = √μc rc     Jm´ (kca) ,	 (13)

in which the prime denotes differentiation with respect 
to the argument.

Notice that the azimuthal decomposition of the solution 
(8), reduces the triple summation to a double one, using the 
linear independence of the azimuthal functions cos nqj and 
sin nqj. This boundary conditions (6) and (7) are imposed 
at every cylinder l for each azimuthal number m. Similar 
equations arise for the fields whitin each cylinder. As they 
are simpler, the constants can be eliminated substituted 
and the influence of the cylinders can be lumped together 
in the diagonal. Solving the systems of equations (11) and 
(12) completes the solution. However, such systems can 
not be solved exactly. An approximation is obtained by 
reducing the dimensions of equations to a finite number, 
by truncating the orders of expansions (m and n) such that 
the solution converges. By inspection of the systems of 
equations, it is found that the type of scatterer (elastic, 
rigid or cavity) modifies only the diagonal coefficients.

Numerical Results

In this section we show some relevant results obtained 
by the analytical technique described above. The aim 
is to present instructive examples in a simple way. 
Configurations for each model analyzed are depicted and 
the ensuing results are discussed. Eight to ten terms were 

used for the wave expansions, obtaining up to four-digit 
accuracy in the range of frequencies studied. Normal 
and oblique incidence of plane waves were considered 
for all cases presented. The wave field depends on the 
nondimensional frequency given by

	 ka	 2ahk =	 p	 =	 lk	
,
	

(14)

where lk = wavelength of the incident S-wave. Thus, 
the normalized frequency represents the diameter of the 
cylinder over the wavelength.

In Fig. 2 the normalized displacement amplitude with 
respect to the free-field displacement for an array of eight 
scatterers has been calculated. Displacement is plotted 
against distance x/a along the array axis. Four cases are 
analyzed in terms of separation between cylinders and 
distance y/a at the far side of incidence. Three kinds of 
material fillers have been considered: short dashed lines 
correspond to elastic cylinders with rc/r = 0.5 and mc/m 
= 0.3, long dashed lines to cavities with rc/r = 0 and 
mc/m = 0, and solid lines to rigid cylinders with rc/r = 
1.538 and mc→∞. Dimensionless frequency hk = 0.5 and 
normal incidence of wave excitation have been used 
for the computations. It is remarkable that, for a given 
frequency, the amplitude of the displacement field suffer 
a strong attenuation when an array of rigid cylinders is 
used. The results for cavities and elastic cylinders are 
quite similar; they appear to be sensitive to changes in 
separation between obstacles.

μ  r	  Jm (kca)
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For a more detailed view of the sharp decrease in 
amplitude due to the presence of rigid scatterers as 
previously discussed by Avilés and Sánchez-Sesma (1983), 
it is convenient to compute the displacements at the far 
side of incidence in a relative distant field (y/a = 150). In 
Fig. 3, normalized amplitudes of the displacement field 
w/w0 against distance x/a are shown. Separations between 
cylinders of sp /a = 2.5, 3.0, 3.5 and 4.0, and a normalized 

Fig. 2. Normalized displacement amplitudes for the model of Fig. 1 with NS = 8. Several distances y/a and various separations between 
cylinders sp/a. (a) y/a = 8.75, sp/a = 2.5. (b) y/a = 10.5, sp/a = 3.0. (c) y/a = 12.25, sp/a = 3.5 and (d) y/a = 14.0, sp/a = 4.0.

frequency ηk = 0.5 under incidence of S-waves were taken 
for the computations. Maximum reductions occur near the 
center of the array. This effect is clearly appreciated in 
Fig. 3 for a normalized separation sp /a = 3. In this case, 
the reductive effect of the system is of the order of 55%, 
and 60% for a separation of sp /a = 2.5. Thus the system 
behaves like a single unit at long distances and not as a set 
of independent scatterers. From Figs. (2) and (3) it is clear 

Fig. 3. Normalized displacement amplitudes on y/a = 150 for an array of NS = 8 rigid cylinders with rc /r = 1.538 and mc→∞. Different 
separations between obstacles sp/a, and nondimensional frequency, hk = 0.5. Incidence of anti-plane S-waves.
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that at points near the array of rigid obstacles, the reduced 
field shows large variability, in contrast with the smooth 
variations observed at long distances. As expected, when 
the obstacles are spaced closely, whit a separation of at 
least one radius, the maximum amplitude reductions take 
place. As the separation increases reductions become less 
significant.

To show the scattering effects at the incidence side, 
normalized displacement amplitudes for an eight obstacle 
array have been calculated. Three kinds of material fillers 
(cavities, elastic inclusions and rigid cylinders) were 
considered. The distance between centers of scatterers 
is sp /a = 4.0 and the nondimensional frequency is hk = 
0.4. Results for several distances at the incidence side 
(y/a = -5, -10, -15 and -20) are displayed in Fig. 4a for 
cavities with rc /r = 0 and mc /m = 0, in Fig. 3b for elastic 
inclusions with rc /r = 0.5 and mc /m = 0.3, and in Fig. 
4c for rigid cylinders with rc /r = 1.538 and mc→∞. For 
the arrays with cavities and elastic inclusions, a smooth 
amplification occurs that tends to disappear when we get 
close to the edges. With rigid cylinders the amplification 
effect occurs everywhere and maximum amplitudes at x/a 
= 22.25 for y/a = -20.

So far, with the available set of results we observe a 
common double effect produced by several configurations 
of cylinders. Amplifications are generated at the incidence 
side and reductions take place at the far side. Fig. 5 shows 
the normalized amplitudes of the displacement field along  
x/a = 0, that is at the end of the array, for eight cylinders 
with separation sp /a = 3.0 and dimensionless frequency 
hk = 0.4. The short dashed line corresponds to an array 
of elastic cylinders with rc /r = 0.5 and mc /m = 0.3, long 
dashed line for cavities with rc /r = 0.0 and mc /m = 0.0, 
and solid line for rigid scatterers with rc /r = 1.538 and       
mc→∞. Notice the strong attenuation by the array for all 
three cases computed. The effect is strongest for rigid 
cylinders. The type of material filler seems ir relevant to  
amplitude reductions after the array. This fact must be 
checked by some time domain computations to follow.

Fig. 4. Normalized displacement amplitudes for the model of Fig. 
3 on several distances y/a = -20 (squares), y/a = -15 (triangles), 
y/a = -10 (asterisks), y/a = -5 (circles). Same properties as in Fig. 
2 for (a) cavities, (b) elastic obstacles and (c) rigid obstacles. 
Incidence of anti-plane S-waves, nondimensional frequency     

hk = 0.4.

In order to show the characteristic time response of 
the studied models, several computations of time history 
in a fixed linear or spatial distribution of receivers were 
performed. Figs. 6 to 9 show the Fourier synthetic 
seismograms computed for models of two and four 
cylindrical scatterers. Normal and oblique incidences of 
S-waves were considered. Cavities, elastic inclusions 
and rigid cylinders were used in the computations. The 
seismometers are located at the far side of the array with 
respect to the incoming wave field. These configurations 
were adopted in order to observe forward scattering and 
the behavior of the propagating wave front due to the 
presence of the array.

Fig. 5. Normalized displacement amplitudes on x/a = 0 for          
sp /a = 3.0. Short dashed line corresponds to an array of elastic 
cylinders, long dashed line for cavities, and solid line for rigid 
scatterers. Incidence of anti-plane S-waves, nondimensional fre-

quency, hk = 0.4.
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Fig. 6 shows a simple model of two obstacles with 
radius r = a = 1 and separation between centers of sp /a = 
4.0. There are 51 receivers at x = ±4a and z = 1.5a; this 
configuration will be the same for all synthetic examples. 
The source is given by an S-wave field with an incidence 
angle of y = 900, the time variation is constructed a Ricker 
pulse with tp = 1.5s and tp = 4s. The elastic parameters are 
given by rc /r = 0.0 and mc /m = 0.0 for cavities (Fig. 6(a)), 
rc /r = 0.5 and mc /m = 0.3 for elastic cylinders (Fig. 6(b)), 
and rc /r = 1.538 and mc→∞ for rigid cylinders (Fig. 6(c)). 
Fig. 7 corresponds to the same model as in Fig. 6, except 
that the incidence angle is y = 750. Notice the arrival 
phases r1, c1, r2, and c2 produced by the interaction between 
the incident wave d and the obstacles 1 and 2 respectively. 
The letter r means “reflecting”, and the letter c means 
“creeping”, following the notation proposed by Benites 
et. al., (1992). To observe the wave motion produced 
by the various configurations sketched here, note the 3rd 
generation arrival phases, i. e. r121 and r212. These phases 
correspond to the reflected and creeping waves between 
the boundaries of the two scatterers, taking into account 
the order in which the reflection or creeping occurs. The 
indices are related to the order in which each interaction 
take place. For example, r21 indicates that the wave was 
reflected by scatterer 2 and next by scatterer 1, before 
reaching receiver, in similar way for r121. These phases are 
called “interactive phases” (Benites et. al., 1992). Note 
that for the cases of cavities and elastic inclusions such 
phases are separated by time intervals of approximately 
2a/b. Normal S-wave incidence clearly shows how the 
incident field is delayed by the presence of the cavities. 
In the elastic examples, we observe a strong delayed 
amplification of the incident field due to the soft properties 
of obstacles. Creeping waves c1 and c2, are easily identified 
due to their higher amplitude relative to reflected phases 
r1, r2, and r21. The traces for rigid obstacles reveal that 
creeping and reflecting phases follow the same wave 
paths. 

Fig. 8 shows the same examples as in Fig. 6, except 
that for a four-scatterer array. Again, the response of three 
kinds of obstacles before an incoming plane S-wave field 
is depicted. Fig. 9 corresponds to the same parameter 
configuration as in Fig. 8, except for the case of y = 75°. In 
both figures, it is possible to identify the phases generated 
by the four scatterers, reflections r3, r4, r32, r31, r4, r43, r42 
and r41, Creeping phases c3 and c4 are also observed. While 
the wave paths appear to be regular, a graphic detail and 
longer duration is required to improve identification of 4th 
and 5th order phases. For cavities and elastic inclusions, 
the wave slopes follow similar propagation paths, but for 
rigid obstacles propagation suffers an interference effect 
between cylinders. With the four obstacle types we are 
able to generalize the wave motion and scattering patterns 
caused by any number of scatterers for linear arrays.

Fig. 7. Synthetic seismograms for the sketched models at left 
with NS = 2. Observation line of 51 receivers on y/a = 1.5 for 
various obstacles properties: (a) cavities, (b) elastic cylinders 
and (c) rigid cylinders. Excitation given by an oblique incidence 

of anti-plane S-waves and a Ricker wavelet.

Fig. 6. Synthetic seismograms for the sketched models at left 
with NS = 2. Observation line of 51 receivers on y/a = 1.5 for 
various obstacles properties: (a) cavities, (b) elastic cylinders 
and (c) rigid cylinders. Excitation given by normal incidence of 

anti-plane S-waves and a Ricker wavelet.
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Fig. 9. Synthetic seismograms for the sketched models at left 
with NS = 4. Observation line of 51 receivers on y/a = 1.5 for 
various obstacles properties: (a) cavities, (b) elastic cylinders 
and (c) rigid cylinders. Excitation given by an oblique incidence 

of anti-plane S-waves and a Ricker wavelet.

Finally, consider wave motion and scattering patterns 
for the previously presented models. We have studied 
the  spatial of amplitudes distribution during a lapse of 
propagation time, by means of snapshot series for meshes 
with 101 x 101 evenly spaced receivers located within 
squares of lengths 8a and 16a. In all cases twelve frames 
of displacement field are depicted. Figs. 10 and 11 show 
snapshots for a two cavity model (rc /r = 0.0, mc /m = 0.0) 
for y = 90° and y = 75° respectively. The centers of the 
cavities are located at x = ±2 and y = 0. The observation 
area is given by a square grid of receptors with length 8a. 
Excitation is given by anti-plane S-waves with a Ricker 
wavelet of tp = 0.8s. Figs. 12 and 13 show a similar case  
for elastic cylinders (rc /r = 0.5, mc /m = 0.3). These set of 
results illustrate how the wavefront reaches the array and 
then reflections and diffractions are produced. Forward 
and backward scattering patterns are generated in the 
whole space. Delay and degeneration of wavefront by 
geometrical multiple diffraction from cavities is notorious. 
However, diffraction at the far side of incidence creates a 
shadow or gap due to the cavities, unlike elastic inclusions 
where an amplification effect is clearly seen. Results from 
elastic inclusions reveal that the wavefront is attenuated at 
reflecting phases and amplified at creeping phases, due to 

Fig. 8. Synthetic seismograms for the sketched models at left 
with NS = 4. Observation line of 51 receivers on y/a = 1.5 for 
various obstacles properties: (a) cavities, (b) elastic cylinders 
and (c) rigid cylinders. Excitation given by normal incidence of 

anti-plane S-waves and a Ricker wavelet.

Fig.10. Snapshots of the displacement field for the model giv-
en in Fig. 6(a) (two cavities). Twelve times are depicted from           
ti = 0.0s to ti = 8.25s. The observation area is defined by -4a≤ 
x≤4a and -4a≤ y≤4a. Excitation given by normal incidence of 

anti-plane S-wave and a Ricker wavelet of tp = 0.8s.
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Fig.11. Snapshots of the displacement field for the model given 
in Fig. 7(a) (two cavities). Twelve times are depicted from ti = 
0.0s to ti = 8.25s. The observation area is defined by -4a≤ x≤4a 
and -4a≤ y≤4a. Excitation given by oblique incidence of anti-

plane S-wave y = 75° and a Ricker wavelet of tp = 0.8s.

Fig.12 Snapshots of the displacement field for the model given 
in Fig. 6(b) (two elastic inclusions). Twelve times are depicted 
from ti = 0.0s to ti = 8.25s. The observation area is defined by 
-4a≤ x≤4a and -4a≤ y≤4a. Excitation given by normal incidence 

of anti-plane S-wave and a Ricker wavelet of tp = 0.8s.

Fig.13. Snapshots of the displacement field for the model given 
in Fig. 7(b) (two elastic inclusions). Twelve times are depicted 
from ti = 0.0s to ti = 8.25s. The observation area is defined by 
-4a≤ x≤4a and -4a≤ y≤4a. Excitation given by oblique incidence 
of anti-plane S-wave y = 75° and a Ricker wavelet of tp = 0.8s.

the softer material filler. As time increases the wavefront 
recovers and the scattering of the wave field by the array 
wave diminishes. Again, it is possible to identify the 
interactive phases over the entire propagation space, but 
this exercise is left to the reader.

Figs. 14 and 15 show snapshots for a four cavity 
model with y = 90° and y = 75° respectively. The centers 
of the cavities are located at x = ±2 and x = ±6 with y 
= 0. The observation area is given by a square region of 
length 16a. Excitation is given by anti-plane S-waves 
with a Ricker wavelet of tp = 1.0s. Figs. 16 and 17 show a 
similar previous case, just that for a four elastic inclusions 
model (rc /r = 0.5, mc /m = 0.3). The same responses 
described for the two cylinder models are recognized. The 
scattering patterns from the reflecting and creeping phases 
are dearly due to the higher number of regular obstacles 
in the array. Time analysis permits the observation of 
propagation properties that are not seen in the frequency 
domain, e. g. conspicuous amplification peaks produced 
by the diffraction of the wavefront due to softer elastic 
inclusions. Wave motion and scattering patterns produced 
by any number of cylinders in linear arrays may be 
characterized by the interaction between afew of them.



124

Geofis. Int. 47 (2), 2008

Fig.14. Snapshots of the displacement field for the model given 
in Fig. 8(a) (four cavities). Twelve times are depicted from ti = 
0.0s to ti = 16.5s. The observation area is defined by -8a≤ x≤8a 
and -8a≤ y≤8a. Excitation given by normal incidence of anti-

plane S-wave and a Ricker wavelet of tp = 1.0s.

Fig.15. Snapshots of the displacement field for the model given 
in Fig. 9(a) (four cavities). Twelve times are depicted from ti = 
0.0s to ti = 16.5s. The observation area is defined by -8a≤ x≤8a 
and -8a≤ y≤8a. Excitation given by oblique incidence of anti-

plane S-wave y = 75° and a Ricker wavelet of tp = 1.0s.

Fig.16. Snapshots of the displacement field for the model given 
in Fig. 8(b) (four elastic inclusions). Twelve times are depicted 
from ti = 0.0s to ti = 16.5s. The observation area is defined by 
-8a≤ x≤8a and -8a≤ y≤8a. Excitation given by normal incidence 

of anti-plane S-wave and a Ricker wavelet of tp = 1.0s.

Fig.17. Snapshots of the displacement field for the model given 
in Fig. 9(b) (four elastic inclusions). Twelve times are depicted 
from ti = 0.0s to ti = 16.5s. The observation area is defined by 
-8a≤ x≤8a and -8a≤ y≤8a. Excitation given by oblique incidence 
of anti-plane S-wave y = 75° and a Ricker wavelet of tp = 1.0s.
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Conclusions

We have studied an analytic solution to compute the 
transient response and multiple scattering by a linear array 
of empty, elastic, and rigid cylinders. The formulation is 
two-dimensional and is constructed by the superposition of 
the incident field and the waves diffracted by each obstacle. 
Here, the incident wave field is given by an anti-plane 
S-wave. The new interpretation of results and relevant 
examples were discussed. The normalized displacement 
amplitude relative to the incident field versus distance was 
plotted for specific frequencies. It was possible to identify 
the wave propagation behavior by means of computed 
synthetic seismograms and snapshots. It is shown that a 
conspicuous attenuation effect is observed by the array. 
A double response is produced by the presence of the 
elastic obstacles: reductions at the incidence side and 
amplifications at the opposite side, rather than the rigid 
cylinders, where the inverse response was identified.

The results reported here allow us to aim new paths of 
research and practical ways to describe and analyze the 
seismic response and multiple scattering in heterogeneous 
media. The analytical formulation reviewed in this paper 
offers a relatively simple way, with low computation 
cost, to understand the diffraction and multiple scattering 
of elastic waves by linear array of regularly distributed 
obstacles. The advantages and limitations of these 
techniques give us a complementary view of a not 
widely explored field of research. We are interested in 
the close future to develop these analytical formulations 
for several scatterers in arbitrary or randomly distributed 
configurations. The treatment of vector problem is been 
reviewed and constitutes the second part of this work. It 
is obvious that the 3D problem is extremely expensive 
in CPU and more, if the numerical computations do not 
take advantage of the mathematical properties of models. 
The most popular methods (finite differences, finite 
elements and spectral methods) are commonly used due 
to their easy implementation and programming. The 2D 
analytic formulation presented here appears to be a very 
low demand computational technique that only requires a 
good mathematical treatment and a PC. The applications 
of the numerical and analytical solutions for 3D multiple 
scattering problems are still open and offer a wide research 
area in several fields of science and engineering. The 
solution for 2 and 3D problems are now available using 
super computers or clusters and it is possible to carry on 
with complicated models. However, the characterization 
and the fundamental comprehension of the simplest 
parameters in a realistic model require more versatile 
mathematical formulations.
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Appendix. Graf´s Addition Theorem

In this paper, Graf´s addition theorem is used to rep-
resent the scattered waves by the j-th cylinder in terms of 
the coordinate system l as follows:

Hm
(2) (krj)cos nqj  =  

1 S(-1)mem   Jm (krl) K
n
m (kdjl)cos mql	 (15)

∞

m=0

for j < l, or

if j > l.

Ln
m (kdjl)sin mql

2sin nqj

Hm
(2) (krj)cos nqj  =  

1  (-1)nSem   Jm (krl) K
n
m (kdjl)cos mql	 (16)

∞

m=0 Ln
m (kdjl)sin mql

2sin nqj
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