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Resumen

Este estudio presenta el comportamiento geoquimico de las tierras raras (TR) en tefra y depdsitos volcani-
clasticos subyacentes del Cuaternario Tard{o en la sub-cuenca de Pachuca, ubicada en la parte noreste de la Cuenca
de México. Los contenidos totales de TR, asi como los patrones normalizados de TR, indices de fraccionamiento
de TR ligeras (La/Sm), pesadas (Gd/YDb), total (La/Yb) y anomalia de Eu son comparados con la mineralogia y el
contenido de elementos mayores y trazas, con el proposito de encontrar los firmas geoquimicas de la fuente. Las
tefras de composicion basdltica y basdltica-andesitica, con plagioclasa, piroxeno y olivino, se caracterizan por
bajos contenidos de TR, bajos indices de fraccionamiento de TR ligeras y pesadas, asf como anomalia positiva de
Eu. Los sedimentos subyacentes muestran dos diferentes comportamientos de TR e indican que la proveniencia
varia entre rocas félsicas y maficas durante el Cuaternario Tardio. La composicién geoquimica y los patrones
normalizados de TR del grupo I (15-17 m, 4.6-9.6 m y 2-4.6 m) son comparables a los de las tefras y sugieren una
fuente mafica. Ademads, se caracterizan por una ausencia de anomalia de Eu y bajo contenido en el total de TR,
comparada con las muestras del grupo II. Los sedimentos del grupo II (9.6-15 m y 0-2 m) contienen abundante
feldespato potdsico y los datos geoquimicos muestran altas concentraciones en el total de TR, anomalia negativa
de Eu y son enriquecidas en Zr, Y y Th. Esto ultimo indica una contribucién de minerales pesados, tales como
alanita, monacita y zircdn, tipica de rocas félsicas.

Palabras clave: Geoquimica, TR, Proveniencia, Sedimento volcdn-clastico, Cuenca de México.

Abstract

Chondrite normalized REE patterns, fractionations of light (La/Sm), heavy (Gd/Yb) and total (La/Yb) REE
and Eu anomalies of the Late Quaternary multi-layer tephra fall deposits and overlying volcano-clastic sediments
deposited in the Pachuca sub-basin (north-eastern Basin of Mexico) are studied to characterize their geochemical
signatures. The REE geochemistry is compared with mineralogical abundances and multi-element concentra-
tions to identify the possible source terrains contributing sediments into the basin. The basalt to basaltic-andesite
tephra deposits have chemical compositions comparable to the rocks from Apan-Tezontepec volcanic field and
consist of plagioclase, pyroxene and olivine. They are characterized by lower total REE abundances, lower light
and heavy REE fractionations and a positive Eu anomaly. The overlying sediments show significantly different
REE characteristics and can be divided into two different groups (i.e. I and II). The geochemical composition
and REE patterns of group I (15-17 m, 4.6-9.6 m and 2-4.6 m depths) are comparable to the tephra deposits
and suggest a mafic provenance. They are characterized by the absence of the Eu anomaly and lower total REE
concentrations compared to group II. In group II (9.6-15 m and 0-2 m depths), higher total REE, a negative Eu
anomaly, abundant K-feldspar and enriched Zr, Y and Th indicate felsic source terrains containing heavy miner-
als such as allanite, monazite and zircon.

Key words: Geochemistry, REE, Provenance, volcano-clastic sediment, Basin of Mexico.

Introduction of a coherent group of trace elements (trivalent state)

with similar chemical and physical properties. Compared

Rare earth elements (REE) are transported in to the signatures of major elements that are modified
particulate matter (Rollinson, 1993) and regarded as by the diagenetic history of the sediments, degree of
relatively immobile during low-grade metamorphism and metamorphism and alteration of the sedimentary system
hydrothermal alteration (Michard, 1989). They comprise (Lee, 2002), the REE are insoluble in aqueous solutions



Geofis. Int. 49 (1), 2010

and adsorbed to the sheet silicates (clay minerals) or
included in the inter layer cation sites. They are unaffected
by chemical alteration and transferred from source rocks
to sedimentary basins without significant fractionation
(Nesbitt, 1979; Davies, 1980; Girty et al., 1994; Bierlein,
1995). So, the studies of Taylor and McLennan (1985),
Preston et al. (1998), Davies and Pickering (1999),
Svendsen and Hartley (2002) and Andersson et al. (2004)
have emphasized the importance of REE to characterize
source terrains.

The mineralogical and chemical composition of
source rock is the most important factor that controls the
abundance of REE in the clastic sediments. The REE are
incompatible in basaltic and andesitic liquids and vice
versa(Cox etal., 1995). Mineralogical distribution controls
the REE abundance and their fractionation. Sediments
enriched in quartz and carbonate minerals (i.e. calcite
and dolomite) have very low REE abundance (Taylor and
McLennan, 1985). Although there is no direct relationship
between REE abundance and clay minerals, the studies by
Cullers et al. (1987, 1988), Sharma and Rajamani (2000)
and Singh and Rajamani (2001) show that the bulk REE
reside in the finer silt-clay fractions of the sediments.
Another significant contributor of REE is the presence of
different heavy minerals like zircon, allanite, monazite,
sphene and garnet (Gromet and Silver, 1983). For example,
addition of zircon and garnet in the sediments increases
the Yb abundance and decreases the fractionation of heavy
REE (Gd/Yb). Similarly, higher abundance of allanite
increases the concentration of light REE and monazite
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increases the abundance of middle REE compared to
heavy REE (McLennan, 1989). REE fractionations are
also affected by depositional environment and intensity
of chemical weathering. Depositional environment causes
change in the valency state of certain REE leading to
their fractionation (McLennan, 1989). Under reducing
environment, Eu*> precipitates as complexes of SO,?,
CO3'2 and CI (Sverjensky, 1984; Michard and Alberede,
1986). Similarly, Ce** precipitates as oxide and carbonate
under oxidizing environments (Elderfield and Greaves,
1982; Rollinson, 1993) and alkaline conditions (Moeller
and Bau, 1993; Volkova, 1998; Roy and Smykatz-Kloss,
2007). In a profile consisting of granodioritic parent rock
and its altered product, Nesbitt (1979) reported that REE
abundance of the altered product was higher compared to
both parent material and residual clay.

The Basin of Mexico is a topographically closed, high
altitude (2240 m asl) sedimentary basin, located in the
central-eastern part of the Trans Mexican Volcanic Belt
(TMVB) (Bradbury, 1989; Lozano—Garcia et al., 1993).
The topographically closed nature of the basin is associated
with the formation of the Chichinautzin volcanic field
during 7.8 Ma (Mooser et al., 1974; Urrutia-Fucugauchi
and Martin del Pozzo, 1993). The basin presently hosts
a number of sub-basins, i.e. Xochimilco and Chalco in
the south, Texcoco in the centre, Zumpango and Xaltocan
in the north and Tecocomulco and Pachuca in the north-
east (Fig. 1). The sediments of the basin are thoroughly
investigated for its biological (pollen and diatom contents)
and physical (magnetic) properties by Bradbury (1989),
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Fig. 1 Location map of the Pachuca sub-basin at the north-eastern part of the Basin of Mexico (location of the studied profile is marked
with asterisk).



Lozano—Garcia et al. (1993), Caballero (1997), Caballero
and Ortega-Guerrero (1998), Lozano-Garcia and Ortega-
Guerrero (1998) and Caballero et al. (1999). Geochemical
investigations are relatively scarce, except for the works
by Geyne et al. (1963), Garcia-Palomo et al. (2002) and
Roy et al. (2008, 2009). Geyne et al. (1963) and Garcia-
Palomo et al. (2002) have reported the geochemical
compositions of the volcanic deposits in the Sierra de
Pachuca and Apan regions, respectively. Recently, Roy
et al. (2008, 2009) studied the geochemical properties
of the lacustrine sediments from the Tecocomulco sub-
basin to understand the Pleistocene-Holocene paleo-
environmental conditions.

In this study, we present new geochemical data on REE
systematic of the Late Quaternary multi-layered tephra
fall deposits and overlying volcano-clastic sediments
deposited in the Pachuca sub-basin to strengthen the
geochemical investigations in the region. The abundance
and fractionations of REE were compared with
mineralogy and major and trace element geochemistry to
characterize the possible source terrains of the volcano-
clastic sedimentary sequence.

Regional setting

The Pachuca sub-basin has a temperate climate
(average temperature 13-15 °C) and receives an average
annual precipitation of ca. 680 mm. Cretaceous marine
limestone, shale, sandstone and evaporite deposits are
present in the south and north of the basin, respectively.
Low temperature shallow depth hydrothermal vein
deposits of pyrite, sphalerite, chalcopyrite and chalcosite
are present in the mining district of Real de Monte
(Duenas-Garcia et al., 1992). The Tertiary granodiorite
to diorite are present at Zimapan and Jacala located at
ca.100 km north-west of the sub-basin. The sub-basin is
surrounded by Tertiary sedimentary and igneous rocks in
the vicinity. The sedimentary rocks consist of sandstones,
gravels and conglomerates (Duefias-Garcia et al., 1992)
and the igneous rocks comprise inter-layering of felsic
and mafic volcanics exposed in the Sierra de Pachuca
(Fig. 1). These rocks belong to the Santiago (rhyolite),
Corteza (andesite), Pachuca (andesite-dacite), Real de
Monte (andesite), Santa Gertrudis (dacite), Vizcaina
(andesite) and Cerezo (rhyolite-dacite) Formations
(Geyne et al., 1963). The overlying lithologies exposed
in the vicinity are constituted by basaltic-andesites of the
Zumate Formation, rhyolites of the Tezuantla Formation
and basaltic-andesite of the San Cristébal Formation
(Geyne et al., 1963).

The endorreic nature of the Pachuca sub-basin
occurred through an intensive eruptive period of mafic
eruptions in the Apan-Tezontepec volcanic field (ATVF)

Geofis. Int. 49 (1), 2010

during Pliocene-Pleistocene (Duefias-Garcia et al., 1992;
Garcia-Palomo et al., 2002). The rocks of ATVF are
characterised by presence of basalt to basaltic-andesites
with aphanitic texture and phenocrysts of olivine and
plagioclase (Garcia-Palomo et al., 2002).

Material and methods

A total of 42 samples were collected from a 20 m
thick exposed profile in the central part of the Pachuca
sub-basin (Fig. 1). The profile consists of fining upward
tephra fall deposits (17.0 and 20.0 m depths) at the base
and overlying volcano-clastic sediments. The tephra
deposits consist of at least 6 different layers containing
black-brown lapilli and coarse ash scoria. Each layer
begins with lapilli and terminates with coarse ash. The
overlying clastic sediments are characterized by massive
silty-clay (15.0 - 17.0 m), medium to fine sand (9.6 — 15.0
m), intercalations of silt and silty-clay (4.6 - 9.6 m) and
massive fine sand (2.0 - 4.6 m) and conglomerates (0 — 2.0
m). For geochemical analysis, 12 different samples were
collected from the tephra layers and 30 samples from the
overlying clastic sediments (Fig. 2).
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Fig. 2 Schematic diagram showing stratigraphy of the studied

profile at the Pachuca sub-basin. The profile consists of multi-

layered tephra fall deposits at the base overlain by volcano-clas-
tic sediments.
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The samples were subjected to oven drying at 40°C,
homogenizing and grinding in an agate mortar. The
concentrations of REE were analyzed in a VG Elemental
PlasmaQuad3 ICP-MS following the procedure of
Morton-Bermea et al. (1997). Analytical precision of the
REE is < 10 %. Mineralogy was determined on a Philips
1130/96 X-ray diffractometer with digital data collection
using Cu target from 4° to 70° (20) at a speed of 1°/min in
the bulk powder samples. The oxides of 10 major elements
(Si, Al, Ti, Fe, Ca, Mg, Na, K, Mn and P) were measured
in fused discs and trace elements (Zr, Y, Zn and Th) were
measured in pressed pellets after the methods of Verma
et al. (1996) and Lozano and Bernal (2005) in a Siemens
SRS 3000 wavelength dispersive X-ray fluorescence
(XRF) spectrometer. The precision of the analysis is < 10
% for both major and trace elements.

Results

Rare earth elements

The REE concentrations of the tephra, sediments and
upper continental crust (Taylor and McLennan, 1981)
are normalized to the chondrite meteorite (Taylor and
McLennan, 1985) to eliminate the abundance variations
between elements with even and odd atomic numbers
and to compare their normalized REE patterns and
fractionations of light REE (La/Sm), heavy REE (Gd/Yb)
and total REE (La/Yb) and Eu anomaly (Eu/Eu* = Eu
A[Sm x Gd)).

The REE patterns of the tephra fall deposits are more
homogeneous compared to the overlying sediments (Fig.
3). They are characterized by comparable and low light
(La/Sm = 1.53-2.02) and heavy (Gd/Yb =1.12-1.73) REE
fractionations and a positive Eu anomaly (Eu/Eu* = 0.99-
1.30). The tephra are relatively less fractionated in total
REE compared to rest of the sediments. The La/YDb of the
tephra varies between 2.25 and 5.22 (Table 1).

Based on their REE patterns and Eu anomalies, the
overlying sediments are divided into two different groups
(i.e. I and II). The first group (I) includes sediments from
the depths of 15.0-17.0 m (massive silty-clay), 4.6-9.6
m (intercalations of silt and silty-clay) and 2.0-4.6 m
(massive fine sand). The group II comprises samples from
depths of 9.6-15.0 m (massive medium to fine sand) and
2.0-0 m (conglomerates) (Fig. 2).

The REE patterns of group I samples (Fig. 3) are
characterized by slightly enriched light REE (La to Sm)
compared to heavy REE (Gd to Lu). However, they differ
among themselves in terms of their total REE abundances
and Eu anomalies (Table 1). They are characterized by
relatively higher light REE fractionation (La/Sm = 2.07-

3.83) compared to heavy REE (Gd/Yb = 1.15-1.64)
and variable Eu anomaly (Eu/Eu* = 0.82-1.12). Table 1
presents the REE concentrations and chondrite normalized
REE ratios of group I samples and upper continental crust
(UCO).

8
[=]

-« group | sediments

-
=1
=]

U L

sediments/chondrite

-
=1
M

T T T a T T T T T T T T T
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Fig. 3 Chondrite normalized REE diagrams of tephra, group I

sediments and UCC (upper continental crust, Taylor and McLen-

nan, 1981). The solid lines show REE patterns of tephra and dot-
ted lines show REE patterns of group I sediments.

The group II sediments show REE patterns similar to
UCC (Fig. 4): enriched light REE, flat heavy REE and
negative Eu anomaly. They are highly fractionated in
light REE (La/Sm = 2.19-4.66) compared to heavy REE
(Gd/Yb =0.52-1.75) and their Eu anomaly varies between
0.24 and 0.97. Table 2 presents REE concentrations and
chondrite normalized REE ratios of group II samples and
UCC. The sediments of both the groups have similarly
fractionated total REE contents: La/Yb vary between 4.12
and 8.71 in group I sediments and ranges from 3.57 to
8.89 in sediments of group II. Fig. 5 shows fractionations
of (a) light REE, (b) heavy REE, and (c) total REE
with increasing REE abundance in tephra deposits and
overlying sediments.

The tephra deposits and sediments can also be
differentiated in terms of their total REE (TREE)
concentrations. The tephra deposits have the lowest (TREE
= 55-128 ppm), group I sediments have intermediate
(TREE = 82-248 ppm) and group II sediments have the
highest (TREE = 126-392 ppm) REE concentrations. The
tephra have lower TREE abundance compared to UCC
(Table 1). Sediments show a large TREE variation and
most of them have higher TREE concentrations than UCC
(Tables 1 and 2). The samples of both the groups have
higher Eu concentration compared to UCC.
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Fig. 4 Chondrite normalized REE diagrams of group II sedi-
ments and UCC (upper continental crust, Taylor and McLennan,
1981).

Mineralogy

Table 3 presents the semi-quantitative estimation of
the bulk mineralogy of the tephra deposits and sediments.
The tephra deposits consist of plagioclase as the most
abundant mineral followed by pyroxene. Olivine is
present in minor amounts. The mineralogical distribution
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and their abundance in the sediments of groups I and
II are different from tephra. In group I, plagioclase and
polymorphs of quartz (i.e. tridymite and cristallobalite)
are the most abundant minerals. Quartz, K-feldspars,
amphiboles, mica and clay minerals are present in minor
amounts. Both pyroxene and olivine are absent. Group II
consists of K-feldspar, plagioclase, tridymite/cristobalite
and mica in minor amounts.

Major and trace elements

The tephra layers have comparable chemical
composition and basalt to basaltic-andesite in nature
(Si0, = 49.9-57.1%). They show variable concentrations
of ALO, (13.0-18.5 %), TiO, (0.9-1.6 %), Na,O (0.9-
3.1 %), K,0 (0.4-1.3 %), CaO (1.7-9.7 %), MgO (2.7-
7.5 %), Fe,0, (6.0-9.0 %) and relatively homogeneous
concentrations of P O, (0.15-0.39 %), Zr (142-215 ppm),
Y (17-39 ppm), Zn (69-89 ppm) and Th (3 ppm).

Except for a few elements, the chemical composition
of group I sediments is comparable to tephra (SiO,: 52.6-
61.7 %, Al1,O,: 16.4-19.0 %, TiO,: 0.8-1.7 %, Na,0: 1.9-
3.3 %, K,0: 1.0-1.8 %, CaO: 2.2-6.9 %, Fe,0,: 5.6-9.2
%, P,0.: 0.04-0.31 %, Y: 24-42 ppm). They are depleted
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Fig. 5 Chondrite normalized (a) light REE, (b) heavy REE, (c) total REE fractionations with changing REE contents and (d) distribution
of light REE and heavy REE fractionations in tephra and sediments from the Pachuca sub-basin.



Geofis. Int. 49 (1), 2010

Table 3

Bulk mineralogy of tephra deposits and sediments of the Pachuca sub-basin.

Tephra Sediment
Group I Group II
Quartz - 4k -
Tridymite/Cristobalite - ++ T+
Plagioclase ++++ +++ ++
K-feldspar - + ++
Pyroxene +++ = -
Amphibole - + -
Olivine + - -
Mica - + +
Amorphous (Non crystalline) + ++ ++
Clay minerals - + _

++++, very abundant, +++, abundant, ++, major, +, minor, -, absent

Table 4

Average elemental concentrations and CIA values in tephra deposits and sediments of the Pachuca sub-basin.

Elements Tephra Sediment
(n=12) Group I (n=11) Group II (n=19)
Major elements (%)
SiO, 51.63 58.29 66.83
TiO, 1.41 1.11 0.39
ALO, 17.27 17.55 14.49
Fe20, 8.30 6.86 4.01
MnO 0.12 0.11 0.08
MgO 5.38 1.65 0.44
CaO 8.51 3.11 1.43
Na,0 2.65 2.37 2.80
K,0 0.61 1.37 3.54
PO, 0.23 0.11 0.04
Trace elements (ppm)
Zr 162 352 491
Y 23 33 50
Zn 78 99 141
Th 3 6 13
CIA 46 62 57

CIA = chemical index of alteration

10
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Table 5

Coeficiente of correlation between rare earth elements (REE) and total REE (TREE) with different major and trace ele-
ments at 95% confidence level (p<0.05).

SiO, TiO, ALO, FeO, MnO MgO CaO Na O KO PO, Zr Y Zn Th

La 0.84 -0.82 -0.60 -0.79 -052 -0.84 -0.83 - 076 -0.72 0.84 0.68 0.71 0.67
Ce 0.84 -0.83 -0.60 -0.80 -0.57 -0.85 -0.84 - 079 072 085 0.64 0.72 0.66
Pr 0.80 -0.79 -0.59 -0.75 -049 -0.80 -0.78 - 0.74 -0.68 0.79 0.66 0.72 0.59
Nd 0.76 -0.75 -0.58 -0.70 -047 -0.76 -0.73 - 0.70 -0.63 074 0.62 0.71 0.3
Sm 0.75 -074 -059 -0.69 -045 -0.74 -0.71 - 071 -0.62 072 0.63 0.72 0.52
Eu 0.34 - - - - -0.43 -038 036 - - 048 - - -

Gd 0.76 -0.75 -0.63 -0.69 -048 -0.73 -0.71 - 073 -0.62 072 0.64 0.74 053
Tb 0.77 -076 -0.64 -0.71 -047 -0.74 -0.72 - 075 -0.64 074 0.68 0.77 0.56
Dy 0.77 -0.77 -0.65 -0.71 -048 -0.73 -0.72 - 0.77 -0.65 0.76 0.71 0.79 0.59
Ho 0.78 -0.78 -0.68 -0.72 -048 -0.72 -0.72 - 0.79 -0.65 0.78 0.73 0.80 0.64
Er 0.79 -0.79 -0.68 -0.74 -048 -0.74 -0.74 - 0.81 -0.67 082 0.77 081 0.70
Tm 0.78 -0.78 -0.65 -0.73 -045 -0.73 -0.74 - 0.81 -0.67 084 079 081 0.76
Yb 0.77 -0.77 -0.61 -0.73 -043 -0.73 -0.74 - 0.79 -0.67 086 081 080 0.79
Lu 0.75 -075 -059 -0.72 -041 -0.71 -0.73 - 077 -0.66 085 0.81 0.78 0.81
TREE 0.83 -0.82 -0.61 -0.78 -0.53 -0.83 -0.81 - 0.77 -0.70 083 0.67 0.74 0.64

in MgO (1.0-3.2%) and enriched in Zr (226-512 ppm),
Zn (68-152 ppm) and Th (3-11 ppm) compared to tephra.
Both the tephra deposits and group I sediments have higher
concentrations of TiO,, A1203, Fe203, MnO, MgO, CaO
and P20O5 compared to group II sediments.

Group II sediments show higher concentrations of SiO,
(62.2-70.9 %), K,O (1.9-5.4 %) and Na,O (2.1-4.2 %).
The distributions of Zr (293-698 ppm), Y (31-71 ppm), Zn
(84-181 pm) and Th (5-32 ppm) show large variations and
most of the samples have higher concentrations of these
elements than the sediments of group I. Table 4 presents
the average concentrations of major and trace elements in
the tephra deposits and overlying sediments.

The degree of chemical alteration of the samples is
estimated by the calculation of the chemical index of
alteration (CIA) using the formula of Nesbitt and Young
(1984), where

CIA = [AL,0, / (ALO+Ca0O+Na,0+K,0)] x100.

The CIA of tephra deposits (44 — 51) suggests the
absence of chemical weathering. The CIA values of the
sediments vary between 49 and 77. The sediments of
group I (49-77) and group II (51-65) have comparable
CIA values which indicate low to intermediate chemical
weathering in the source terrains (Table 4).

Statistical analysis

Table 5 presents the coefficient of correlation between
the REE and different major and trace elements at 95%
significant level (p<0.05). Among the compositional
variables, TiO,, Fe,03, MgO and CaO show strong
negative correlations and Al,O,, MnO and P,O, show
significant negative correlations with the REE and TREE.
Constituents like SiO,, K,O, Zr, Y, Zn and Th show
positive correlations. Zr shows a strong correlation with
both light REE (LREE) and heavy REE (HREE) and an
intermediate correlation with middle rare earth elements.
The correlation coefficient of K,O, Y, Zn and Th are
stronger with HREE compared to LREE. Similarly, SiO,
shows stronger correlation with LREE compared to
HREE. Na,O show significant positive correlation with
Eu.

Discussion

The tephra fall deposits of the Pachuca sub-basin are
basalt to basaltic-andesite in nature and have chemical
and mineralogical compositions comparable to the
volcanic products from the Apan-Tezontepec volcanic
field (ATVF). Both of them also have equivalent SiO,
concentrations. The rocks of ATVF consist of basalt to
basaltic-andesites that are characterized by the occurrence
of olivine and plagioclase (Garcfa-Palomo et al., 2002).
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The tephra deposits have SiO, concentrations of 49.9-
57.1% and the rocks of ATVF have concentration of
Si02 varying between 50.0 and 56.0% (Garcia-Palomo
et al., 2002). This suggests that the tephra layers present
at the base of the studied profile are possibly sourced
from different eruptive events at ATVFE. The K/Ar dates
constrained the volcanic activities at ATVF between 1.50
Ma and 0.47 Ma (Cantagrel and Robin, 1979; Lépez-
Hernandez and Castillo-Herndandez, 1997; Carrasco et al.,
1997). So the overlying sediments were likely deposited
after 0.47 Ma.

In order to understand the REE systematic (abundance
and pattern) of the tephra deposits and overlying sediments,
chondrite normalized light REE (Fig. 5a), heavy REE
(Fig. 5b) and total REE (Fig. 5¢) fractionations are taken
into consideration. The samples do not show any heavy
REE fractionation but indicate varying degrees of light
REE fractionation. With increasing REE abundance (La),
the light REE fractionation (La/Sm) of group II sediments
remains relatively constant. The tephra deposits and
group I sediments show gradually increasing light REE
fractionation. This feature is similar for their total REE
fractionations (Fig. 5¢). So, the differences in REE patterns
are mainly caused by variations in the La/Sm ratios (Fig.
5d). The absence of authigenic minerals (i.e. carbonates
and evaporites) both in the tephra deposits and overlying
sediments rules out the effect of inflow geochemistry
on REE fractionations. Similarly, intermediate and
comparable CIA values (Table 4) also rule out the effect
of chemical weathering on REE abundance and their
fractionations. This suggests that the REE abundance
and their fractionations are controlled mainly by the
source rock composition and clastic mineralogy including
heavy minerals. In the absence of heavy mineral data,
concentrations of elements associated with heavy minerals
are considered. For example, higher concentration of Zr is
related to zircon, Th with both monazite and allanite and
Ti to sphene.

The tephra deposits consisting of pyroxene and
olivine show lower total REE abundance. The REE are
incompatible in basaltic and andesitic liquids and are only
slightly fractionated (Rollinson, 1993). This is mirrored by
the lower light and heavy REE fractionations (Fig. 3 and
Table 1) and the negative coefficient of correlation between
TiO,, Fe O,, MnO, CaO, MgO, P,O, and TREE (Table 5).
The positive Eu anomaly mirrors the higher abundance of
plagioclase (Table 3). The higher concentration of PO,
(0.15-0.39 %) in the tephra could be from the accessory
phases such as apatite and monazite. However, lower Th
concentration (Table 4) and light REE (La to Sm) rule out
the presence of monazite. So, the higher concentrations
of middle REE (Gd to Ho) in tephra layers compared to
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UCC (Table 1) is mainly caused by the occurrence of
apatite. Apart from plagioclase, a part of the CaO in the
tephra is associated with apatite.

The sediments overlying the tephra deposits show
comparable LREE and HREE fractionations (Fig. 5d)
but variable REE patterns (Figs. 3 and 4), TREE contents
and Eu anomalies (Tables 1 and 2). Most of the group I
sediments have lower TREE concentrations and absence
of Eu anomalies compared to group II sediments.
This variable REE systematic is also mirrored by their
different mineralogical assemblages and geochemical
compositions. Group I sediments have plagioclases and
amphibole and geochemical composition comparable
to the tephra layers (Table 4). The comparable REE
systematic and geochemical composition between group
I sediments and tephra and presence of mafic minerals
(plagioclases and amphibole) suggest that the group I
sediments are possibly sourced from mafic rocks with
chemical composition similar to the tephra deposits.

The sediments of group II have higher concentrations
of Si0,, KO, Na,0, Zr, Y, Zn and Th (Table 4), higher
abundance of K-feldspar (Table 3) and higher TREE
concentrations (Table 2). The REE are preferentially
partitioned into melts during crystallization and are
enriched in felsic rocks compared to mafic rocks (Feng
and Kevrich, 1990). The higher concentrations of SiO,,
KZO, NaZO, Zr, Y, Zn and Th (Table 4), their positive
correlation with REE and TREE (Table 5) and higher
abundance of felsic mineral K-feldspar in group II
sediments point to a source terrain comprising of felsic
rocks. Higher concentrations of both Th and Zr in group II
sediments suggest that the higher LREE abundance could
be due to presence of monazite and allanite and higher
HREE abundance could be due to presence of zircon. The
provenance of the sediments that varies between mafic
and felsic source terrains is supported by the surrounding
geology. The sierra de Pachuca consists of alternated
layers of mafic and felsic rocks (Geyne et al., 1963). So
the sediments from depths of 15-17 m, 4.6-9.6 m and 2-4.6
m (group I) could be derived from the erosion of mafic to
intermediate rocks consisting of basaltic-andesite, andesite
and andesite-dacite, whereas the sediments from depths of
9.6-15 m and 0-2 m (group II) are possibly sourced from
dacite, dacite-rhyolite and rhyolites. The geochemical
characteristics of group II sediments suggest the presence
of heavy minerals (monazite and allanite) that are typical
of intrusive plutonic rocks, e.g. granodiorite, granite and
pegmatite. However detail geochemical analysis of the
surrounding geology is required to point out the exact
source terrains contributing sediments to the Pachuca
sub-basin.



Conclusions

The tephra fall deposits and overlying volcano-
clastic sediments from the Pachuca sub-basin located
at the north-eastern Basin of Mexico show significantly
different REE patterns, fractionations and Eu anomalies.
The basalt to basaltic-andesite tephra layers present at the
base of the sequence were likely sourced from the Apan-
Tezontepec volcanic field and characterized by lower
TREE, lower light and heavy REE fractionations and
positive Eu anomaly. The positive Eu anomaly reflects
the higher abundance of plagioclase. Similarly, the
higher concentrations of middle REE suggest presence of
apatite. Based on the REE abundances and Eu anomalies,
the sediments overlying the tephra are divided into two
different groups and show comparable light, heavy and
total REE fractionations. However, group I sediments have
geochemical compositions and Eu anomalies comparable
to the tephra. They are characterized by the absence of Eu
anomaly and lower TREE abundances compared to group
IT sediments and suggest a mafic provenance possibly
from the basaltic-andesite and andesites exposed in the
Sierra de Pachuca. Group II show a negative Eu anomaly
comparable to UCC, but their TREE concentrations are
higher than UCC. Higher concentrations of light REE and
Th in group II suggest the occurrence of trace minerals
(allanite and monazite). Similarly, higher abundances of
heavy REE and Zr suggest presence of zircon. All of these
are indicative of a provenance comprising of plutonic
igneous rocks or felsic volcanic rocks, e.g. dacite and
rhyolite.
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