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Resumen
La técnica Monte Carlo proporciona un método natural para evaluar la incertidumbre. La incertidumbre se 

representa por medio de una distribución de probabilidades o por medio de cantidades relacionadas tales como 
los momentos estadísticos. Cuando se resuelven las ecuaciones que gobiernan el flujo y el transporte del agua 
subterránea y se considera a la conductividad hidráulica como una función espacial aleatoria, se tiene que, la 
carga hidráulica, las velocidades y las concentraciones se convierten también en funciones espaciales aleatorias. 
Cuando ese es el caso, para llevar a cabo la simulación estocástica del flujo y del transporte del agua subterránea 
es necesario obtener un número de realizaciones de la conductividad hidráulica, por lo que surge la pregunta, 
¿cuántas realizaciones de la conductividad hidráulica son necesarias  para obtener una buena representación de las 
cantidades relevantes en un problema dado? Diferentes métodos requieren un número distinto de realizaciones, 
de aquí que, es relevante trabajar con aquel que reduzca más el esfuerzo computacional. Zhang y Pinder (2003), 
propusieron un caso específico del método de muestreo por hipercubo latino (latyn hypercube sampling, LHS) 
llamado la técnica de muestreo de enrejado (lattice) para generar realizaciones Monte Carlo que permite la 
reducción del esfuerzo computacional para realizar simulaciones estocásticas de flujo y de transporte del agua 
subterránea confiables. Compararon la versión propuesta del método LHS con tres algoritmos generadores de 
campos aleatorios que son: simulación secuencial gaussiana, bandas rotantes y descomposición LU. Para realizar 
la comparación consideraron un problema bidimensional. El propósito de este trabajo es probar el método LHS 
para generar un campo aleatorio de la conductividad hidráulica tridimensional. Se presentan dos problemas 
ejemplo, en el primer problema se supone una función de covarianza exponencial y para el segundo problema se 
considera una del tipo esférico. La técnica LHS se compara con la de simulación secuencial gaussiana disponible 
en GSLIB.

Palabras clave: Simulación Monte Carlo, conductividad hidráulica, simulación estocástoca, incertidumbre, muestreo por 
hipercubo latino, simulación secuencial gaussiana.

Abstract
The Monte Carlo technique provides a natural method for evaluating uncertainties. The uncertainty 

is represented by a probability distribution or by related quantities such as statistical moments. When the 
groundwater flow and transport governing equations are solved and the hydraulic conductivity field is treated 
as a random spatial function, the hydraulic head, velocities and concentrations also become random spatial 
functions. When that is the case, for the stochastic simulation of groundwater flow and transport it is necessary 
to obtain realizations of the hydraulic conductivity. For this reason, the next question arises, how many hydraulic 
conductivity realizations are necessary to get a good representation of the quantities relevant in a given problem? 
Different methods require different number of realizations and it is relevant to work with the one that reduces the 
computational effort the most. Zhang and Pinder (2003) proposed a specific case of the latin hypercube sampling 
(LHS) method called the lattice sampling technique for the generation of Monte Carlo realizations that resulted in 
a reduction in the computational effort required to achieve a reliable random field simulation of groundwater flow 
and transport. They compared the LHS method with three other random field generation algorithms: sequential 
Gaussian simulation, turning bands and LU decomposition. To compare the methods they presented a two-
dimensional example problem. In this paper we report a test of the LHS method in a three dimensional random 
hydraulic conductivity field. We present two example problems, in the first problem an exponential covariance 
function is assumed and in the second problem a spherical covariance one. The LHS is compared with the 
sequential Gaussian simulation available in GSLIB (Deutsch and Journel, 1998).

Key words: Monte Carlo simulation, hydraulic conductivity, stochastic simulation, uncertainty, latin hypercube 
sampling, sequential Gaussian simulation.
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time required to run these models several times can be 
huge. A Monte Carlo simulation method is based on 
the hypothesis that the realization moments tend to the 
true moments when the number of realizations increases 
(see Orr, 1993; Harter, 1994, for a detailed review). The 
computational effort required by the Monte Carlo method 
when working with a flow and transport problem will 
depend on the number of realizations required for the 
convergence of the hydraulic head and/or concentration 
moments of interest, it is natural to expect that this 
number will be smaller if the converge of the hydraulic 
conductivity moments require less realizations. So, an 
important question is: how many hydraulic conductivity 
realizations are necessary to get a good representation of 
the hydraulic conductivity moments relevant in a given 
problem?

In a previous work by Zhang and Pinder (2003), a 
Monte Carlo method that reduces the computational 
effort that is required for groundwater flow and transport 
simulation, was reported. The method is a specific case 
of the latin hypercube sampling (LHS) method called 
the lattice sampling technique. They compared this 
LHS method with three other random field generation 
algorithms: sequential Gaussian simulation (SGS), turning 
bands method, and LU decomposition method.

Some of the conclusions obtained by Zhang and Pinder 
(2003) are the following:

• It is noted that when using different random seeds 
the realizations statistics may be different.

• The covariance matrix of the realizations obtained 
with the LHS converges faster than with any of the 
other three methods.

• The statistics of the LHS realizations are not as 
affected by the seed.

• The LHS technique reduces the computational 
effort.

Zhang and Pinder (2003) considered a two dimensional 
random ln hydraulic conductivity field (ln K) which is 
second-order stationary and isotropic. They assumed that 
the statistics are known and they gave an exponential 
covariance function for ln K as the target covariance matrix. 
The objective of this work is to compare the convergence 
of ln K using the techniques of LHS and SGS, considering 
two and three dimensional random hydraulic conductivity 
fields with exponential and spherical covariance functions. 
We only consider these two methods because LHS and 
SGS had the best performances in the work of Zhang and 
Pinder (2003).

Introduction

Due to the heterogeneity of natural groundwater 
systems, any quantitative description of aquifer hydraulic 
properties is subject to uncertainty. Consequently, 
prediction of groundwater flow and transport is also 
subject to uncertainty. Groundwater flow and transport 
stochastic models represent these uncertainties in terms 
of random variables (hydraulic conductivity, boundary 
conditions, vertical recharge, etc.). Usually from these 
models different moments of the predicted variables 
are calculated, more often, the mean and covariance 
matrix. Monte Carlo simulation is a method used to 
calculate such moments and consists in generating 
several realizations of the random variable considered and 
calculating the moments of interest through averaging 
the realizations (Zhang, 2002). A number of researchers 
have used this kind of methods in groundwater problems 
for different purposes, for example, Massmann and 
Frezze (1987) calculated the probability of detection 
of a monitoring network using stochastic contaminant 
transport simulations, they represented the hydraulic 
conductivity stochastically; McLaughlin et. al. (1993) 
used stochastic simulation of groundwater flow and 
solute transport through a synthetically generated random 
hydraulic conductivity for characterizing groundwater 
contamination; Wong and Yeh (2002) presented a 
systematic approach for solving the management problem 
of a contaminated groundwater supply system, they 
used a random hydraulic conductivity field to produce 
the contamination variability at each extraction well; 
Herrera and Pinder (2005) used stochastic simulation 
combined with Kalman filter and an optimization method 
for groundwater quality monitoring network design, the 
hydraulic conductivity and the contaminant source were 
represented as random variables. In more recent works 
the calibration of stochastic models was also proposed 
(Franssen et. al., 2009; Sun et. al., 2009). An important 
practical consideration in the application of such methods 
is their computational cost.

The Monte Carlo technique provides a natural 
method for evaluating uncertainties (see Zhang, 2002, 
for a general review of the Monte Carlo method). The 
uncertainty is represented by a probability distribution or 
by related quantities such as statistical moments. When 
the groundwater flow and transport governing equations 
are solved and the hydraulic conductivity field is treated 
as a random spatial function, the hydraulic head, velocities 
and concentrations also become random spatial functions. 
To solve the flow and transport equations through Monte 
Carlo simulation it is necessary to obtain realizations of the 
hydraulic conductivity. For each conductivity realization 
a run of the groundwater flow and transport models is 
generated. For field scale problems, the computational 



133

Geofis. Int. 49 (3), 2010

Methodology

The LHS technique and SGS were compared based on 
the mean and covariance matrix of the ln K realizations 
generated by each method. A second-order stationary and 
isotropic random ln K field was assumed, for wich the 
statistics were assumed known. The analysis was done for 
two and three dimensions, and for two different ranges; for 
which we consider two problems: (1) The target correlation 
matrix is given by an exponential autocovariance function 
of ln K and (2) the target correlation matrix is given by a 
spherical autocovariance function. 

For each of the two methods, different numbers 
of realizations of ln K ranging from 100 to 1500 were 
generated. The relevant statistics for different numbers of 
realizations were calculated and compared with the true 
statistics. The root mean square error measure (RMSE) 
is used to this end. For the mean comparison, RMSE is 

calculated as SQRT ( 1 ∑∑rj
2), where rj is the difference 

between the realizations mean and the true mean at point 
j, and N is the total number of points. For the covariance 

comparison the error is calculated as SQRT ( 1 ∑∑rij
2) 

where rij is the difference between the covariance (at 
positions i and j) calculated by the realizations and the 
true covariance.

For problem (2), when a three dimensional random 
hydraulic conductivity field is assumed, the behavior 
for different random seeds is analyzed. For each number 
of realizations we made five runs with different seeds. 
The deviations of each run from the true statistics were 
calculated.

Latin hypercube sampling

Latin hypercube sampling was developed to address 
the need for uncertainty assessment for a particular class 
of problems (Wyss and Jorgensen, 1998). Consider a 
variable Y that is a function of k statistically independent 
variables X1, X2,... Xk and let Fj be the distribution of Xj, 
j=1,..., k. Latin hypercube sampling selects n different 
values from each of these k variables in the following 
manner (Owen, 1994):

	 Xi
j = Fj

-1 ((pj (i) - Uij ) n),   i=1,..., n   and   j=1,..., p,	(1)

where pj (1),..., pj (n) is a random permutation of 1,..., n in 
which n is the total number of realization, all n! outcomes 
are equally probable, Uij is a U(0, 1) random variable, and  
the p permutations and np uniform variates are mutually 
independent. In other words, the LHS approach is 
characterized by a segmentation of the assumed probability 

distribution into a number of non-overlapping intervals, 
each having equal probability. From each interval a value 
is sampled at random.

The lattice sampling technique of Petterson (1954) is a 
special case of LHS. In lattice sampling, the Fj are discrete 
uniform distributions and n is a multiple of the number of 
atoms in each Fj. In this case the Uij do no affect Xi

j, and 
they could all be taken to be .5 (Owen, 1994).

Sequential Gaussian simulation

Sequential Gaussian simulation (SGS) is a well-known 
stochastic simulation algorithm that is used to obtain 
Gaussian random fields (for a review of the theory see 
Deutsch and Journel, 1998). The algorithm we use herein 
was taken from GSLIB (Deutsch and Journel, 1998), a 
geostatistical software package developed at Stanford 
University.

Example 1

A random 1n K field, which is second-order stationary 
and isotropic, is assumed. Realizations are generated on a 
mesh with 27 x 27 square blocks, each block side is 100 m 
long, with two uniform layers of 150 m thickness each. The 
target correlation matrix is given by the autocovariance 
function for which we assume:

	 C(h) = C1exp[-3h] ,	 (4)

	 h =√ ( hx )2

 +  ( hy )2

 +  ( hz )2  

,
	

ax	 ay	 az

where C(h)is the covariance between two points separated 
by a distance h, hx, hy and hz are the distances between the 
two points in the x, y and z direction, respectively; and 
ax, ay and az are the ranges in the x, y and z directions, 
respectively. Two ranges are considered: 672 and 2500 
m (ax = ay = az), which are within the values of ranges 
reported for ln in K in the literature (Gelhar, 1993), and 
two and three dimensional analyses were done. For the 
2D analysis we considered hz = 0. The same 2D example 
is presented by Zhang and Pinder (2003). 

Comparison of results for example 1

Figure 1 shows the comparison of the means of 1n 
K errors, of the realizations generated by LHS versus 
those of SGS in 2D. The lattice sampling technique of 
LHS is an unbiased, for this reason there are no errors 
for the means (Zhang and Pinder, 2003). Fig. 2 shows 
the comparison of the covariances of 1n K errors, of 
the realizations generated by LHS versus those of SGS 

N2	i=1	 j=1

N

N	 i=1

N	 N
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in 2D. The curve LHS is smooth and convergent as the 
number of realizations increases and when the number of 
realizations are 800 or more, the error does not decrease 
significantly any more (the LHS RMSE order is 0.001). 

The SGS presents error higher than that of LHS, even 
when we have 1500 realizations, the SGS error is 0.026 
if the range is equal to 672 m, and 0.034 if the range is 
equal to 2500.

Fig.1. Comparison of the errors in 1n K means, generated by LHS versus SGS in 2D (example 1).

Fig. 2. Comparison of the errors in 1n K covariances, generated by LHS versus SGS in 2D (example 1).
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Fig. 3. Comparison of the errors in 1n K means, generated by LHS versus SGS in 3D (example 1).

Fig. 3 shows the comparison of the means of errors, 
for the realizations generated by LHS versus those of 
SGS in 3D. The means obtained by the LHS technique, 
always will present the same behavior; i.e., there are no 
deviations for the means. Figure 4 shows the comparison 
of the covariances of errors for the realizations generated 
by LHS versus those of SGS in 3D. The curve LHS is 
smooth and convergent as the number of realizations 
increases and when the number of realizations is 1500 or 
more the error does not decrease significantly any more 
(LHS RMSE order is 0.001). The SGS presents an error 
higher than LHS, even when we have 1500 realizations, 
the SGS error is 0.025 if the range is equal to 672 m, and 
0.029 if the range is equal to 2500 m.

Example 2 

A random 1n K field, which is second-order stationary 
an isotropic, is assumed. Realizations are generated on a 
mesh with 29 x 21 square blocks, each block side being 
25 m long, with two uniform layers of 150 m thickness 
each. The target correlation matrix is given by the 
autocovariance spherical function for which we assume:

	 C(h) = C0+{C1[-5h+1.5h3] if h≤1
	 (5)

	 0	 if h>1

where C(h), C0, h, ax, ay and az were defined earlier. For this 
example we considered C0=0.3, s2=C0 + C1=1.3 and two 
ranges, 672 and 2500 m. Also two and three dimensional 
analyses were done. 

Comparison results for example 2

Fig. 5 shows the comparison of the means of 1n K 
errors, for the realizations generated by LHS versus 
those of SGS in 2D. Fig. 6 shows the comparison of the 
covariances of errors, generated by LHS versus SGS 
in 2D. The LHS curve is smooth and convergent as the 
number of realizations increases and when the number of 
realizations are 600 or more, the error does not decrease 
significantly any more (LHS RMSE order is 0.001). The 
SGS presents error higher than LHS, even when we have 
1500 realizations, the SGS error is 0.043 if the range is 
equal to 672 m, and 0.044 if the range is equal to 2500 m.
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Figures 7 and 8 show the comparison of the 1n K mean 
errors for ranges equals to 672 and 2500 m, respectively, 
generated by LHS versus SGS in 3D. As it was mentioned 
before, five different random seeds were used. With 1500 
realizations the moments of SGS are clearly affected by 
the seed. Figs. 9 and 10 show the comparison of the errors 
in the 1n K covariances for ranges equals to 672 and 2500 
m, respectively, generated by LHS versus SGS in 3D. 
Compared with the SGS method, the realization statistics 

of LHS are not affected significantly by the seed. We can 
consider that after 1300 realizations the LHS method is 
not affected by the seed. The LHS curves are smooth and 
convergent as the number of realizations increases and 
when the number of realizations is 1300 or more the error 
does not decrease significantly (The LHS error order is 
0.001). The SGS presents errors higher than LHS, ranging 
between 0.037 and 0.064.

Fig. 4. Comparison of the errors in 1n K covariances, generated by LHS versus SGS in 3D (example 1).

Fig. 5. Comparison of the errors in 1n K means, generated by LHS versus SGS in 2D (example 2).
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Fig. 6. Comparison of the errors in 1n K covariances, generated by LHS versus SGS in 2D (example 2).

Fig. 7. Comparison of the errors in 1n K means, range equal to 672 m, generated by LHS versus SGS in 3D using different seeds 
(example 2).
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Fig. 8. Comparison of the errors in 1n K means, range equal to 2500 m, generate by LHS versus SGS in 3D using different seeds 
(example 2).

Fig. 9. Comparison of the errors in 1n K covariances, range equal to 672 m, generated by LHS versus SGS in 3D using different seeds 
(example 2).
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Conclusions

In the examples presented, the LHS method requires 
less realizations than the SGS method to converge. 

For the example, in which an exponential autocova-
riance function in 2D is considered, we can conclude that 
the LHS method converges after 800 realizations, because 
after 800 realizations the covariance matrix RMS error 
order is approximately equal to 0.001 and the changes on 
this error with extra realizations are very small.

For the example,  in which an exponential autocova-
riance function in 3D is considered, we conclude that 
LHS method converges after 1500 realizations, because 
after 1500 realizations the error order is approximately 
equal to 0.001 and the changes on this error with extra 
realizations are very small.

For the example in which a spherical autocovariance 
function in 2D is considered, the LHS method converges 
after 600 realizations, because after 600 realizations the 
error order is approximately equal to 0.001.

For the example in which an spherical autocovariance 
function in 3D is considered, we conclude that the LHS 
method converges after 1300 realizations, because after 1300 
realizations the error order is approximately equal to 0.001.

We analyzed the effect of the seed for example 2 in 3D. 
Compared with the SGS method, the realization statistics 
of LHS are not affected much by the seed. We can consider 
that after 1300 realizations the effect of the seed for the 
LHS method is negligible because its magnitude is small 
and after this the error does not decrease significantly. 

There are two important disadvantages of the LHS 
method in comparison with the SGS method. The first 
one is that if n1 realizations are generated through the 
LHS method, the moments can be evaluated only after 
all the realizations are obtained. If the moments are not 
satisfactory, it is necessary to generate a complete new 
set of realizations, where n2 > n1. That is, it is not possible 
to accumulate the realizations in a sequential manner for 
the LHS method, while it is possible to accumulate them 
for the SGS method. The second disadvantage of the LHS 
method is that it has a large requirement of computer 
memory because it is necessary to store at least a NXNXNr 
matrix, where N is the number of points to be generated 
and Nr is the number of realizations. 

When working with stochastic flow and transport 
problems if the computer memory available is enough, it 
is recommended to use the LHS method because it can 
save a considerable amount of computational effort.

Fig. 10. Comparison of the errors in 1n K covariances, range equal to 2500 m, generated by LHS versus SGS in 3D using different 
seeds (example 2).
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