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Introduction

Forward seismic modeling is used in multiple 
applications to predict the amplitude behavior of 
physical models, for oil exploration, earthquake 
seismology and other applications. It is 
typically based on grid methods that discretize 
the wave equation and the physical model; 
another approach is deriving high-frequency 
approximations of the wavefield based on 
geometrical optics as provided by ray tracing 
methods. The latter method delivers quick 
acceptable results for a variety of geometrically 
complex geological models; the band-limited 
wavefield is simulated by seismic rays. The grid 
numerical solutions are often computationally 
demanding as the equations must be solved in 
each of the numerical cells.

The Ray tracing methods, provide a good 
approximation for models in which the size of 
the heterogeneities is larger than the dominant 
wavelength: it is a high frequency solution. The 
solution, in terms of amplitudes and phases, is 
remarkably good for offsets smaller than the critical 
distance (pre-critical offsets) and moderately so 
in the post-critical zone. The amplitudes however 
completely diverge around the critical distance xc 
due to singularities at caustics and foci (Cerveny, 
1966a, 1966b). This window of divergent ampli-
tudes can be called “critical region”. Several 
methods have been developed to correct ray 
amplitudes in this region. In flat-layered media 
the standard approach is to use Weber-Hermite 
functions (Cerveny and Ravindra, 1971). Another 
approach is to use Gaussian-beam summation 
method (Norris, 1986). 

Table1. Physical parameters of the geological 
model (see Figure 1).

Figure 1. AVO curves for 5 different frequencies com-
paring generalized ray (GRT) and ray theory (RT). 
Brown dotted lines show how the width of the criti-
cal zone xz varies exponentially with frequency and 
source receiver height above interface (1 and 5 km). 
The physical parameters of the model can be found in 

Table 1.

	 ρ(kg/m3)	 Vρ (km/s)	Vs (km/s)

Upper half-space	 2.0	 2.0       	1.3
Lower half-space	 2.5	 3.7	 1.5
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The objective of this work is to develop a 
fully empirical approach, which is completely 
independent of any seismic theory describing 
the propagation of waves. To achieve this, it is 
shown in the following section that simply by 
defining a ‘critical region’ and smoothing the 
AVO curves within it, the amplitude is properly 
corrected. Here the problem is restricted to two 
elastic isotropic half-spaces in welded contact 
for incident and reflected P waves, but it can 
easily be generalized to n-layers. The results 
are compared to the exact solution based on the 
generalized ray theory (Kanasewich et al., 1983).

Method

To quantify the behavior of amplitude errors 
within the critical region, comparisons are made 
in this work between the results obtained with 
an exact analytical method, i.e., Generalized 
Ray Theory (GRT), (Kanasewich et al., 1983) 
and Geometrical Ray Theory (RT) for realistic 
physical parameters in each of the two half-
spaces. Of all trials, we include only the most 
representative cases: Poisson’s ratio in each of 
the two half-spaces varyng, from 0.1 to 0.4, 
varying Poisson’s ratio contrast between both 

	 ρ(kg/m3)	 Vρ (km/s)	 Vs (km/s)

Upper half-space	 2.0	 2.9	 1.3
Lower half-space	 2.5	 4.0	 2.6

Table 2. Physical parameters of the geological 
model (see Figure 2).

Figure 2. AVO curves comparing the exact analytical 
amplitudes (GRT-blue), geometrical ray theory ampli-
tudes (RT-green) and corrected ray theory amplitudes 
(CRT-ray) for different frequencies (5-15 Hz) and two 
different source-receiver height above the interface 
(0.5 and 5 km). The correction involves the amplitude 
smoothing within the critical zone xz. The physical pa-

rameters of the model can be found in Table 2.
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As for the upper bound of the critical zone xH, 
it is observed, again to first order, that xc < xH’ 
< 2 xc  where xH = xH’ xc. In practice,

            xH’ = [ Vp1/Vp2 + 0.35 xc ] /h		 (1)

independently of the source-receiver height 
above the interface. 

The second step of the empirical approach to 
correct RT AVO within xz is to determine the type 
of interpolation to be used. It is found that a cubic 
polynomial is best suited for this purpose as the 
rate of change of amplitudes varies rapidly near 
xL and xH, especially the latter. Cubic splines

 				    (2)

have a smooth first derivative and a continuous 
second derivative both within the interval and 
at its boundaries, which makes them amenable 
to smooth the ray theory amplitudes. The y”s 
correspond to the second derivatives of the 
interpolation polynomial y, and the coefficients 
are given by 

 				     

 			    

Using Eq (2) it can be shown that the system 
of equations in the interval j = 2,…,N-1  (xz) is 
just

 		  (3)

This system leads to N-2 linear equations in 
N unknowns, y”i=1,…,N which is thus completed 
with boundary conditions at x1 and xN for a 
unique solution. This is accomplished by setting 
the derivatives at the outer bounds to y”i= y”N= 
0, yielding the so-called natural cubic splines. 
The spatial locations x1 and xN correspond to xL - 
h and xH + h. Thus, the algorithm first computes 
the second derivatives of the RT AVO curve 
and solves the tridiagonal system to obtain the 
cubic-spline interpolated amplitudes within the 
critical zone. 

half-spaces, from 0.36 to 3.0, increasing velocity 
contrast Vp1/Vp2 from 0.5 to 0.967, varying 
source-receiver height above the interface, from 
0.5 to 5 km, and varying frequency, from 5 to 25 
Hz. The GRT method makes use of a Cagniard-
Pekeris method by decomposing the wavefield 
into generalized rays. 

From the seismograms in Fig. 1, it is 
consistently observed that the main difference 
between the two results is in terms of the 
amplitudes in the AVO curves within the critical 
zone. The phase differences are negligible for 
this elastic isotropic case. It is expected however 
that anelasticity could yield significant phase 
differences as well. 

Our approach comprises two steps. The first 
step consists of defining the critical zone xz 
where the amplitudes are to be interpolated. This 
is done by finding the lower and higher bound 
xL and xH; they correspond to the smallest and 
largest offsets about xc where the RT amplitudes 
start to diverge from the exact results (GRT). 
Figure 1 shows that these boundaries vary 
exponentially with (1) the physical parameters of 
the model, (2) the frequency and (3) the source-
receiver height above the interface. 

It should be noted that the differences in 
amplitudes between RT and GRT within xz 
diminish with increasing frequency and with 
increasing source-receiver height above the 
interface. 

The most accurate way to determine these 
bound is to compare the exact (GRT) and the 
RT AVO curves only at the lowest and highest 
frequencies of the wavefield to get two sets of 
values of xL (f0,∞) and two of xH (f0,∞) and then 
fit an exponential function to get the remaining 
xL(f)’s and xH (f)’s across the entire frequency 
range. This is only done once for each geological 
model; f0,∞ stands for zero and infinite 
frequencies. Since the exponential function of 
frequency of xL and xH corresponds to a linear 
function of frequency in the log scale, the only 
difference among geological models is the slope 
and intercept of xL(f)’s and xH (f)’s.

To first order it turns out that xL is smaller 
than the critical distance xc whose first order 
derivative of the AVO curve undergoes the first 
polarity reversal. As these first-order derivatives 
need not be accurate, they are computed 
numerically with a first-order accurate central 
difference algorithm y’(x) =[y(x+h) – y(x–h)] / h. 
Here y represents the wave amplitude at offset 
x (receiver location), y’ to its corresponding first 
order derivative and h to the receiver interval. 
These derivatives are computed only for offsets 
smaller than the critical distance. 
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zone. After comparing the AVO curves produced 
with the exact analytical formulation with ray 
theory using two half-spaces in contact using 
numerous geological models, it was observed 
that smoothing the ray theory amplitudes within 
the critical zone suffices to match the exact 
amplitudes very well, independently of the 
physics of the problem. The fit was obtained 
by using cubic splines about the critical zone. 
It was observed that the width of this window 
decreases exponentially with frequency and with 
the source-receiver height above the interface. 
Thus we developed a procedure to determine the 
window size.

Numerical results

Figures 2 through 4 show the corrections in RT 
amplitudes within the critical zone using the 
empirical approach proposed here. The physical 
parameters from which the AVO curves are 
computed can be found in Tables 2-4. As can be 
observed in these figures, the fit to the exact 
analytical amplitudes is very good. The most 
critical part of the procedure is to determine 
accurately the window size of the critical zone.

Conclusions

We present a fully empirical approach to correct the 
ray theory P-wave amplitudes within the critical 

	 ρ(kg/m3)	 Vρ (km/s)	 Vs (km/s)

Upper half-space	 2.0	 2.2	 1.3
Lower half-space	 2.5	 4.0	 2.6

Table 3. Physical parameters of the geological 
model (see Figure 3).

Figure 3. AVO curves comparing the exact analytical 
amplitudes (GRT-blue), geometrical ray theory ampli-
tudes (RT-green) and corrected ray theory amplitudes 
(CRT-ray) for different frequencies (5-15 Hz) and two 
different source-receiver height above the interface 
(0.5 and 5 km). The correction involves the amplitude 
smoothing within the critical zone xz. The physical pa-

rameters of the model can be found in Table 3.
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Table 4. Physical parameters of the geological 
model (see Figure 4).

Figure 4. AVO curves comparing the exact analytical 
amplitudes (GRT-blue), geometrical ray theory ampli-
tudes (RT-green) and corrected ray theory amplitudes 
(CRT-ray) for different frequencies (5-15 Hz) and two 
different source-receiver height above the interface 
(0.5 and 5 km). The correction involves the amplitude 
smoothing within the critical zone xz. The physical pa-

rameters of the model can be found in Table 4.
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