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Resumen
	
Las impedancias serie y paralelo del tensor 
magnetotelúrico  se evalúan en relación con su 
relativa inmunidad a las distorsiones galvano-
eléctricas. Las respuestas distorsionadas se 
modelan utilizando la descomposición del tensor 
en términos de giro, cizalla estática y rumbo de 
Groom y Bailey. Estos cuatro parámetros, junto 
con las impedancias sin distorsión, normalmente 
se consideran incógnitas y se obtienen de los datos 
mediante la solución de un problema inverso. En 
el presente trabajo utilizamos la descomposición 
como un modelo directo para simular sondeos 
distorsionados. Partiendo de respuestas 2-D sin 
distorsiones, el tensor se distorsiona suponiendo 
valores arbitrarios de giro, cizalla, estática y 
rumbo. Por definición las impedancias serie 
y paralelo son inmunes al rumbo porque son 
invariantes ante rotación. Adicionalmente, la 
impedancia serie es inmune a giros y a cizalla, y 
la impedancia paralelo sólo a giros. La impedancia 
paralelo depende de cizalla en la forma de un 
factor que desplaza hacia abajo las curvas de 
amplitud. Por otro lado, el efecto de la estática 
en ambas impedancias es más complicado que 
en el tensor mismo porque no se puede corregir 
con un simple desplazamiento de las curvas. En 
términos generales, hay un balance positivo por 
parte de las impedancias serie y paralelo sobre 
las respuestas TE y TM porque los invariantes 
filtran varias distorsiones. Se muestra que la 
condición de invariante no es suficiente para 
tener inmunidad a cualquiera de las distorsiones. 
Se utiliza para esto los valores característicos de 
Eggers, los cuales son inmunes sólo al rumbo, 
como todos los invariantes. Se muestra además 
que la invariancia tampoco es una condición 
necesaria para ser inmune a las distorsiones, 
según lo atestigua el tensor de impedancia, el cual 
depende del rumbo pero está libre de las demás 
distorsiones. Los desarrollos se ilustran utilizando 
sondeos de los conjuntos de datos COPROD2S1, 
COPROD2 y BC87.

Palabras clave: magnetotelurico, distorsiones 
galvanicas, invariantes.

Abstract
	
The series and parallel impedances of the 
magnetotelluric tensor are appraised in relation 
to their relative immunity to galvanic electric 
distortions. The distorted responses are modeled 
using the Groom-Bailey decomposition of the 
tensor in terms of twist, shear, statics and 
strike direction. These four parameters and the 
undistorted responses are normally considered 
as unknowns, and are obtained from field data 
through the solution of an inverse problem. In 
the present work we use the decomposition as 
a forward model to simulate distorted sounding 
curves. Starting with undistorted 2-D TE and TM 
responses, the tensor is distorted by assuming 
arbitrary values of twist, shear, static and strike 
direction. By default, both series and parallel 
responses are immune to the strike direction 
because they are invariants under rotation. In 
addition, series responses are immune to twist 
and shear and parallel responses only to twist. 
The dependence of the latter on shear is in the 
form of a real factor that shifts downwards the 
amplitude curves. On the other hand, the effect 
of statics on both series and parallel responses 
is more complicated than that on the impedance 
tensor because it cannot be accounted for by a 
simple shift of the curves. On the whole, there is 
a positive balance on the part of the series and 
parallel impedances over the TE and TM responses 
because some of the distortions are filtered out by 
the invariants. It is shown that invariance is not 
sufficient to be immune to any of the distortions. 
The example chosen is Eggers’ eigenvalues, which 
are immune only to the by-the-fault strike direction. 
Invariance is not necessary either, as evidenced by 
the phase tensor, whose elements depend on strike 
but are immune to all distortions. The derivations 
are illustrated using soundings from the synthetic 
COPROD2S1 and field-recorded COPROD2 and 
BC87 data sets.

Key words: Magnetotelluric, galvanic distortions, 
invariants.
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Introduction

The series impedance is defined in terms of the 
sum of squares of the elements of the impedan-
ce tensor, and the parallel impedance in terms 
of the sum of squares of the elements of the 
admittance tensor, the inverse of impedance. Both 
quantities, series and parallel, are scalar measures 
of impedance and unlike the individual elements 
of the tensor, are invariant under rotation of the 
system of coordinates. Other properties include 
that series is particularly sensitive to underground 
resistors and that parallel is particularly sensitive 
to underground conductors (Romo et al, 2005). 
Beside these properties very little is known 
about these invariants. Two-dimensional (2-
D) inversions of synthetic and field data throw 
very similar models to those obtained using 
the traditional TE and TM sounding curves. In 
particular, we have noticed that using TE and 
TM data that are corrected for galvanic effects 
produces results suspiciously similar to those 
obtained using uncorrected series and parallel 
responses (Antonio-Carpio et al., 2011). This 
could be due to a mere accident or it could be 
an indication of unknown properties of the two 
invariants. To clarify this issue it is necessary to 
make a rigorous appraisal of the effect of galvanic 
distortions on the series and parallel invariants.

The impedance tensor of a regional 2-D 
conductivity structure can be severely distorted 
by local 3-D structures that are inductively small, 
where inductively small means that their size 
is smaller than the skin depth. The distortions 
are due to perturbations of the regional electric 
field by local 3-D charge distributions, and to 
perturbations of the regional magnetic field by 
also local current distributions. In principle, 
the local 3-D structures can be included in the 
interpretation process as part of the sought 
model of the Earth. However, this is seldom done. 
Rather, the process is divided into two steps: the 
distortion issue is first settled in some way and 
then the undistorted data is properly interpreted. 
It is possible to deal with distortions separately 
because they are not completely arbitrary but 
follow some rules. The most important fact is that 
the impedance tensor distorted by electric effects 
can be simulated by a real tensor multiplied by 
the undistorted impedance (Berdichevsky and 
Dmitriev, 1976a; Bahr, 1988). This means that the 
basic physics and its mathematical representation 
are well understood. However, what matters in 
practice is to recover the undistorted impedances. 
To this end, Groom and Bailey (1989) proposed a 
factorization of the real distorting tensor that they 
call a physical decomposition. They introduced two 
concepts called twist and shear, which together 
with strike direction and static factors completely 
simulate distorted experimental impedances. 
Twist and shear are physically meaningful effects 

on electric fields that distort the impedance in 
distinctly mathematical terms. In fact, they can 
be distinctly identified in the numerical solution 
of the nonlinear inverse problem proposed by 
Groom and Bailey (1989). While it is true that the 
factorization is not unique, as noted by Caldwell 
et al. (2004), many practical applications attest 
for the validity of the model to simulate distorted 
impedances (e.g. Ledo and Jones, 2001).

When computing series and parallel impedances 
we do not know how the distortions propagate 
from the elements of the tensor to the invariants. 
Using Groom-Bailey’s factorization the procedure 
to find out is straightforward but the result 
is far from trivial. The paper is written in a 
tutorial-review manner including results for the 
determinant, the classical invariant, and for 
Egger’s (1983) invariant eigenvalues. This last 
application illustrates that the result for series and 
parallel modes is not due solely to their invariant 
character. A final discussion about the phase 
tensor of Caldwell et al. (2004) gives perspective 
to the other results, illustrating that invariance 
is not a necessary condition to avoid distortions.

Methodology

The algebra of distortions

Assume a two-dimensional (2-D) electrical 
resist ivity distr ibution subject to plane 
electromagnetic waves from above. Placing 
the x-axis of a Cartesian coordinate system 
along strike, the components of the electric and 
magnetic fields are related as

	

Ex
Ey

A
B

Hx
Hy






=

−











0
0 .	 (1)

The components Ex and Hy correspond to the 
TE or E-polarization mode and A is the respective 
impedance. Accordingly, Ey and Hx defines the TM 
or H-polarization mode with its impedance B. It 
has been established that the distortions of the 
electric field can be modeled using a real tensor 
C as

	

Ex
Ey

c c
c c

Ex
Eyd





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=















1 2

3 4 .	 (2)

Behind the simplicity of this equation there are 
extensive studies that led to its development (e.g. 
Berdichevsky and Dimitriv, 1976; Bahr, 1988). 
Substituting (1) in (2) we obtain
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
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2 1

4 3 .	 (3)

If we now rotate the system of coordinates by 
an angle q the components of the distorted electric 
field in the rotated system are

	

′
′





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= −











E x
E y

Ex
Eym

cos sin
sin cos

θ θ
θ θ dd .	 (4)

The components of the magnetic field need 
to be rotated too. Solving for the unprimed 
coordinates and substituting the result along with 
equation (4) back into equation (3), the resulting 
equation relates the electric and magnetic fields 
in the primed coordinates. The corresponding 
impedance is

	

Zm
c B c A
c B c A
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− −
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2 1

4 3
 −






cos sin
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θ θ

            
Zm
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− −
−







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cos sin
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2 1

4 3
 −






cos sin
sin cos
θ θ
θ θ .	 (5)

Notice that in equation (5) the columns of 
the distorted impedance before rotation have 

the same phase because the distorting factors 
are real. After rotation the elements of Zm are 
all different combinations of A and B and their 
phases are mixtures of the phases of the two 
modes. This is illustrated in Figure 1 using the 
impedances of sounding # 11 of the synthetic 
data set COPROD2S1 made available in MTnet 
by Varentsov (1998). The calculations were made 
using c1 = 1.97, c2 = −0.77, c3 = 0.35 and c4 = 0.64.

A useful factorization

Groom and Bailey (1989) proposed to factorize 
or decompose the tensor C such that

	 Zm RTSAZ RT= 2 ,	 (6)

where

	
A g s

s
a

b
= −

+




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=




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1 0
0 1

0
0 ,	(6a)

	
T

t
t

t
=

+
−



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1
1

1
12 ,	 (6b)

	
S

e
e

e
=

+







1
1

1
12 ,	 (6c)

Figure 1.  A and B correspond to the 
TE and TM modes of sounding # 11 
of the synthetic data set COPROD2S1 
made available in MTNet.dias.ie by 
Varentsov (1998). When q ≠ 0 in 
equation (5) the elements of the 
resulting impedance all are mixtures 
of the phases of A and B. Calculations 
were made using c1= 1.97, c2 = −−0.77,  
c3 = −0.35 and c4 = 0.64. The graphs 
correspond to the phase of the 

impedance.
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and

	
R = −





cos sin
sin cos

θ θ
θ θ ,	 (6d)

Notation is changed a little as indicated 
in equation (6a). The tensor A accounts for 
anisotropy and the scalar g for the site gain. 
All together they simulate static shifts on 
impedances A and B. We simply use a and b as 
the corresponding factors, instead of the more 
elegant arrangement with g and s. Tensor T 
twists the electric field so the parameter t is called 
twist. Tensor S produces a shear-like effect so the 
parameter e is called shear. R is simply a rotation 
matrix to account for the coordinate system to 
be off an angle q from strike. Twist and shear are 
expressed in degrees such that t and e are the 
tangent of the corresponding angles.

Figure 2 illustrates what each of the operators 
does to an undistorted unitary electric field. The 

undistorted field varies from (0,1) to (0,-1) to 
cover different initial directions to allow a pattern 
to emerge. Each operator can be thought to be 
the distortion tensor in equation (2) as applied 
to an undistorted electric field. Twist is a simple 
rotation of the electric field similar to the rotation 
of coordinates, and it could be thought to be 
an overlap of the latter. However, this is not so 
because the rotation of coordinates involves 
both electric and magnetic fields or, equivalently, 
the whole impedance tensor and not only the 
electric field. Another important comment about 
this factorization or decomposition is that it does 
not reduce or increase the number of distorting 
parameters; it just spreads them in a useful way 
for their recovery from the elements of Zm.

The absorption of static factors

The impedance tensor, distorted or undistorted, 
can be mathematically transformed into an exactly 
equivalent set of 8 real numbers. We consider in 
the next sections some of these transformations. 
Groom and Bailey (1989) factorization, although 

Figure 2. The effect of the individual distortion tensor T, S and A are illustrated in a), b) and c), respectively. The 
figures illustrate what each of the operators does to an undistorted unitary electric field shown in a). The undistorted 
field varies from (0,1) to (0,-1) to cover different initial directions to allow a pattern to emerge. Each operator can be 
thought to be the distortion tensor in equation (2) as applied to a unitary and undistorted electric field. The figure is 

inspired in a similar one in Groom and Bailey (1989).
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mathematically expressed, is not a mathematical 
decomposition in the same sense that these others 
are. It is more a convenient proposal to allow for 
the distortions to be estimated from the elements 
of Zm through an inverse procedure. They do it 
by neutralizing the two distortion factors a and b 
due to static, simply by placing A next to Z2 The 
unknowns now become aA and bB.

This reduction in the number of unknowns 
accomplishes two things. Zm on the left side of 
equation (6) provides with 8 real numbers as data, 
and on the right side we have 9 unknowns: q, t, 
e, a, b and four real numbers to make Z2. This 
means that without this absorption the inversion 
cannot even be attempted. However, this is not 
the most important reason because the relative 
number of data can be increased by using many 
frequencies and by forcing q, t and e to be the 
same for all frequencies. The second reason is 
more fundamental because it cannot be dealt with 
except by doing what they did. It is universally 
acknowledged that static distortions factors 
cannot be determined from the impedance tensor 
alone, and that independent information is needed 
to resolve them (e.g. Pellerin and Hohmann, 

1990; Ledo et al., 2002). By absorbing the static 
factors into A and B the problem is solvable. We 
can mimic the recovery of static shifted curves 
by explicitly solving for them in equation (6). The 
recovery equation is

	 AZ S T R Z RT
m2

1 1= − −  .	 (7)

First we compute a distorted Zm using equation 
(6). The undistorted Z2 is the same sounding 
used in Figure1. The distortions are as follow: 
two different static factors a=2 and b=3 in one 
case and a=3 and b=2 in the other, and the 
same q, t and e for both cases. The distorted, 
undistorted and recovered curves are shown in 
Figure 3. Notice that the recovered curves are 
scaled versions of each other, but the disturbed 
ones are not. Note also that the recovered curves 
are scaled versions of the original TE or A curve.

In general, Zm depends on q, t, e, a and b, as 
indicated by equation (6). In other words, all of 
them are needed to fit experimental impedances. 
The Groom and Bailey (1989) approach does not 
use the static factors to fit Zm, but this does not 

Figure 3. The recovery of undistorted TE impedances using equation (7) is correct save for the static factors. The 
distorted Zm is computed using equation (6) and the indicated distorting parameters of twist, shear and strike. The 
undistorted Z2 is the same sounding used in Figure1. Notice that the recovered curves are scaled versions of each 
other, but the disturbed ones are not. Note also that the recovered curves are scaled versions of the original TE or A 
curve. In this instance it is pretended that we know the distorting parameters of twist, shear and strike in equation (7).
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mean that Zm is immune to them. In other words, 
the unprocessed Zm is immune to none of the 
distorting parameters: twist, shear, static and 
strike. This is a natural starting point to analyze 
other responses derived from Zm that are immune 
to one or more types of distortions.

When dealing with invariants, we can dispense 
of the rotation matrix and its transpose and use 
the simplified expression

	
Z

t e
e t B te A
te B e t Am =

+ +

− − −
− + +











1
1

1
1

1
12 2

( ) ( )
( ) ( ) . 	

		  (8)

This equation follows from (6) by carrying out 
the multiplications. Again, we assume that a is 
absorbed in A and b in B.

Results

Immunity to twist

The first invariant to examine is the classical 
determinant of the impedance tensor (Berdichevsky 
and Dimitriv, 1976). In the absence of distortions, 
the determinant is simply given as

	 det( )Z ABm =  .	 (9)

In general, when the four elements are present 
in the tensor, the determinant is given as

	det( ) ( , ) * ( , ) ( , ) * ( , )Z Z Z Z Zm m m m m= −1 1 2 2 2 1 1 2  .	
		  (10)

To determine the effect of distortions we must 
substitute equation (8) into equation (10).

The result is

	
det( )Z e

e
ABm =

−
+







1
1

2

2
 .	 (11)

The twist parameter t cancels in the algebra 
but not the shear parameter e. The effect on the 
determinant is equivalent to modify the static 
factors on either A or B, or both. With no static 
effects the amplitude of the determinant would 
still be smaller than the actual one if shear 
distortions are present. On average, we might 
expect the static factors of the determinant to be 
biased towards values less than unity.

An invariant closely related to the determinant 
is the parallel impedance (Romo et al. 2005) which 

is given as

Z Z
Z Z Z Zmp

m

m m m m

2
2

2 2 2 2
2

1 1 1 2 2 1 2
=

+ + +
det ( )

( ( , ) ( , ) ( , ) ( ,, ))
det( )
( )2
2

=
Z

tr Z Z
m

m
T

m 	

      
Z Z

Z Z Z Zmp
m

m m m m

2
2

2 2 2 2
2

1 1 1 2 2 1 2
=

+ + +
det ( )

( ( , ) ( , ) ( , ) ( ,, ))
det( )
( )2
2

=
Z

tr Z Z
m

m
T

m  .		  (12)

Making t=e=0 in equation (8) and using 
equation (12), the undistorted parallel impedance 
is

	
Z AB

A Bmp
2

2

2 22=
+







( )
 .	 (13)

On the other hand, the general case reduces to

	
Z e

e
AB

A Bmp
2

2

2

2 2

2 22 1
1

=
−
+





 +







( )

 .	 (14)

Again, the distorted impedance is immune to 
twist, but not to shear and, of course neither to 
static, which is hidden in A and B. The effect of 
shear is most effective on the parallel impedan-
ce than on the determinant because of the square. 
This is illustrated in Figure 4 for both invariants. 
The quantity plotted is the traditional apparent 
resistivity |Z|2/(wm0), where w stands for angular 
frequency and m0 is the permeability of free space.

Immunity to twist and shear

It is interesting how in the previous section twist 
separates quite neatly from shear, to leave only 
the latter as an active distorter. In this section we 
report an invariant that leaves no trace of both 
twist and shear. This invariant we call the series 
equivalent (Romo et al., 2005) corresponds to 
half the sum of squares of the elements of the 
impedance tensor (Szarka and Menvielle, 1997). 
This is

	
Z Z Z Z Zms m m m m
2 2 2 2 21

2
1 1 1 2 2 1 2 2 1

2
= + + + =[ ( , ) ( , ) ( , ) ( , )] ttr Z ZmT m( )

	    
Z Z Z Z Zms m m m m
2 2 2 2 21

2
1 1 1 2 2 1 2 2 1

2
= + + + =[ ( , ) ( , ) ( , ) ( , )] ttr Z ZmT m( )

.	 (15)

When t=e=0, this reduces to

	 Z A Bms
2 2 21

2
= +( )  .	 (16)

In general, substituting equation (8) in (15) 
leads to
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Z
t e

e t e t A Bms
2

2 2

2
2 2 2 2 2 21

2
1
1

1
1

1=
+ +





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+ + + +( )( )

	             Z
t e

e t e t A Bms
2

2 2

2
2 2 2 2 2 21

2
1
1

1
1

1=
+ +







+ + + +( )( ) .	(17)

It turns out that this reduces to the undistorted 
series impedance, which means that this type of 
invariant response is immune not only to strike, 
but also to both twist and shear. Of course, it is still 
affected by static because A and B have absorbed 
a and b, the two static factors.

The distorted parallel impedance given by 
equation (14) differs from the undistorted 
impedance by a real factor that depends on 
shear. This implies that the corresponding phase 
is immune to shear, and because the complex 
impedance was already immune to strike and 
twist, this implies that the phase of the parallel 
impedance is immune to all three distorting 
parameters. The phase is given as

	

ψ mp
AB A B
AB A B

=
+
+












−tan Im( /
Re( /

1
2 2

2 2

 .	 (18)

Immunity to strike, twist and shear isolates 
static effects. It can be appreciated in both 
equation (16) and (18) that static factors will 
produce phase mixing. This is illustrated in Figure 
5 for the phase of the series impedance. Static 
effects, absent in the phase of the TE and TM 
modes, can severely distort the phase of the series 

impedance. Care must be taken before or while 
inverting the data. The same applies to the phase 
of the parallel impedance, for while the factors 
cancel in the product AB, they do not within the 
square root sign.

Immunity to twist, shear and statics

Equation (11) indicates explicitly that the 
determinant is affected by shear through a 
multiplicative factor. On the other hand, implicitly 
it is affected by static though another factor (ab), 
which comes from the absorption of a and b into 
A and B. All together they compose a single factor 
that vanishes when determining the phase of the 
determinant. That is

	
ψ md AB AB= { }−tan ( ) / ( )1 Imag Real

 .	(19)

The phase of the determinant is then immune 
to shear and static, along with twist and strike that 
shares with the complex determinant. We have 
arrived at a standstill, for there is nothing that we 
can vary that alters the phase of the determinant.

Invariance is not sufficient

The twist tensor as defined in equation 6(b) is a 
rotation matrix that changes the direction of the 
electric field. This may seem to indicate that all 
invariants are immune to twist, as are the three 
invariants analyzed so far. However, this is not the 
case. Consider the two invariant eigenvalues of 
Eggers (1983), which are given by the quadratic 
formula

Figure 4.  As ide from 
statics, the amplitudes of 
the determinant and of 
the parallel impedance are 
distorted only by shear. This 
is illustrated in this figure 
where it can be observed 
that according to theory 
the effect is more effective 
on the parallel impedance.
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	 λ
α α± =

− ± −2 2
2 4
2

det( )Zm
 .	 (20)

where

	 α2 2 1 1 2= −Z Zm m( , ) ( , )  .	 (21)

To see how the distortions affect these 
invariants we need to use the general expression 
for Zm given in equation (10). Let us first substitute 
Zm in (20) when t=e=0. The result is

	
λ± =

+ ± −B A B A[ ]2

2  .	 (22)

In this case the eigenvalues reduce to either 
A or B and in the distorted case to

	
λ± =

+ + − ± + − + − −( ) ( ) [( ) ( ) ] ( )1 1 1 1 42 2 2te B te A te B te A t e ABB
t e2 1 12 2+ + .		

		  (23)

This is about the minimum expression one 
can obtain for the distorted eigenvalues. It can 

be observed that t and e are present in the 
expression and that there is no possible way that 
those in the numerator cancel out with those in 
the denominator. It is also clear that the effect of 
twist and shear cannot be absorbed as equivalent 
static factors on A and B, although they can 
in several places in the expression. The factor 
(1+te) multiplies B and (1-te) multiplies A, both 
outside and within the square root. However, the 
absorption cannot be completed for the product 
AB within the square root. Summarizing, the 
two eigenvalues are not immune to any of the 
distortions. Figure 6 illustrates this with the pha-
se of the two eigenvalues using different factors 
for twist, shear and static. Notice that the curves 
show phase mixing of the original phases of A 
and B.

Invariance is not necessary

We now come to a very interesting response that 
can be derived from the impedance tensor. It is 
called the phase tensor and was proposed by 
Cadwell et al. (2004). This response is immune 
to twist, shear and static and it is not invariant. 
The measured impedance is separated into its real 
and imaginary parts as

Figure 5. Immunity to strike, twist and shear isolates static effects as in the case of equation (16) for the series 
impedance. Unfortunately, if A and B are affected by statics (a and b different from unity) this produces a static-
dependent phase mixing that is not present in the original impedances A and B. This is illustrated in this figure. Static 
effects, absent in the phase of the TE and TM modes, can severely distort the phase of the series impedance. The 
same applies to the phase of the parallel impedance, for while the factors cancel in the product AB, they do not within 

the square root sign in equation (18).
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	 Z X iYm m m= +  .	 (24)

If Zm were a simple complex number, the 
tangent of its phase would be its imaginary 
part divided by its real part. In other words, the 
tangent of its phase would be the inverse of its 
real part multiplied by its imaginary part. But Zm 
is not a simple complex number, it is a tensor. 
However, nothing prevents to multiply the inverse 
of the real tensor by the imaginary tensor. That is

	
Φ

Φ Φ
Φ Φ

= =










−X Ym m
1 11 12

21 22  .	 (25)

The product is a dimensionless tensor whose 
elements can be interpreted as the tangent of an 
angle. So far there is nothing impressive about 
this. However, let us now enquire about the effect 
of the different distortions on this dimensionless 
tensor. The undistorted tensor can be written as

	 Z X iY2 2 2= +  .	 (26)

Substituting this into (6) and doing the 
operation as in (25) we have that

	 Φ = −( ) ( )RTSAX R RTSAY RT T
2

1
2  .	 (27)

Performing the operations there results that T, 
S and A cancel with their corresponding inverses. 
The expression reduces to

	 Φ = −RX Y RT
2
1
2  .	 (28)

The phase tensor depends only on strike. This 
is a very important property because it allows 
obtaining the strike direction independently of 
the distorting parameters. Figure 7 illustrates the 
dependence of diagonal elements of the phase 
tensor as strike is varied.

Series, parallel and determinant impedances

The properties of the determinant in relation to 
distortions are well known (e.g. Arango et al., 
2009) and derive from the fact that if Zm= CZ2, 
then det (Zm) = det (C) det (Z2). Given that C is real 
the phase of det (Zm) is the same as the phase 
of det (Z2). Stated in this way this result is more 
general than that of equation (11), which assumes 
that the undistorted impedance is 2-D. The results 
for the series and parallel impedances derived 
above also assume a 2-D undistorted impedance. 
This means that for real data, seldom fully 2-D, 
we should expect the results to hold exactly for 
the determinant and only approximately for series 
and parallel. This issue is explored in the next 
three figures. First, we present a reference case 

Figure 6. Eggers’ eigenvalues, the invariants defined by equation (23) are not immune to any of the distortion 
parameters of twist, shear and statics. This is illustrated here with the phase of the two eigenvalues. This case 
demonstrates that invariance under rotation is not a sufficient condition for immunity to any of the other distortions. 
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further distort both soundings with different strike 
directions, twists and shears and then computed 
the three invariants. It can be observed that the 
phases of the three invariants are immune to the 
changes of the distorting parameters, implying 
that they are free of distortions except for the 
implicit static factors. Notice that the phases of 
the determinant are exactly the same for the 
three shears (Figures 9b and 10c) and that those 
of the series and parallel depart a little from 
each other (Figures 9d and 10d). As mentioned 
before, this is because the determinant makes no 
assumption about dimensionality while the other 
two assume a 2-D undistorted impedance. Overall, 
the phases for the three shears are reasonably 
close considering that a shear of 40 degrees is 
close to the maximum of 45 degrees.

The example drawn from the BC87 data 
set illustrates an important point about what 
is removed and what remains to be done to 
completely clean the data. Notice that at short 
periods the series and parallel apparent resistivities 
(Figure 10c) are both horizontal for the null shear, 
and that the latter is depressed in relation to the 
former. This suggests that the parallel apparent 
resistivity curve has an intrinsic shear distortion 
that is depressing it from the undistorted series 
resistivity. This would lead us to shift the curve 

using synthetic 2-D data. What we have done is to 
distort the original TE and TM data using equation 
(6) and then compute the three invariants of 
Zm. It can be observed in Figure 8c and 8d that 
both apparent resistivity and phase curves of the 
series impedance are immune to the distortions. 
The comparison is made for three shears, 0, 30 
and 40 degrees. Strike direction and twist are 
not recorded because these and the other results 
presented below are exactly the same regardless 
of the value of these parameters. According to 
theory the only distortion left is due to shear and 
this is what Figure 8 shows. The determinant 
and the parallel apparent resistivities, as shown 
in Figure 8a and 8c, suffer a downward shift as 
predicted by equations (11) and (14), respectively. 
The shift being more pronounced the larger the 
shear, and the shift of the parallel resistivity being 
larger than that of the determinant, as it should 
be according to theory. It can also be observed in 
Figures 8b and 8c that the corresponding phases 
are not affected by shear.

The results using field data are presented in 
Figures 9 and 10. We chose soundings from the 
COPROD2 and BC87 data sets (Jones, 1993a, 
1993b). It can be observed that in both cases the 
corresponding curves behave very much like those 
using synthetic data. We used equation (6) to 

Figure 7. Contrary to the invariants, the phase tensor depends on strike and at the same time it is immune to all 
other distortions. This is a very important property because it allows obtaining the strike direction independently of 
the distorting parameters. This figure illustrates the dependence of the diagonal elements of the phase tensor as strike 
is varied. The phase tensor is an example of a response that is not invariant but is immune to distortions. This result, 
together with that of Figure 6, imply that invariance is neither sufficient not necessary for immunity to distortions, 

and that each response must be evaluated on its own.
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Figure 8. Synthetic TE and TM data are distorted using equation (6) and then invariants of Zm are computed. It can be 
observed in b) and d) that the phases of the determinant (yd), series (ys), and parallel (yp) impedances are immune 
to distortions, in agreement to theory. The corresponding amplitudes shown in a) and c), also in agreement to theory, 
are scaled versions of the originals (shear = 0 degrees). This includes the series impedance which is immune to this 
scaling due to shear. Strike direction and twist are not recorded because the results are exactly the same regardless 

of the values of these parameters.
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Figure 8.
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Figure 9. Results for the determinant, series and parallel impedances using field data from the COPROD2 data set, 
show that the corresponding curves behave very much like those of Figure 8 using synthetic data. We used equation 
(6) to further distort both soundings with different strike directions, twists and shears and then computed the three 
invariants. It can be observed that the phases of the three invariants shown in b) and d) are immune to the changes 
of the distorting parameters, implying that they are free of distortions except for the implicit static factors. Notice 
that the phases of the determinant are exactly the same for the three shears and that those of the series and parallel 
depart a little from each other. As mentioned in the main text, this is because the determinant makes no assumption 
about dimensionality while series and parallel assume a 2-D undistorted impedance. The amplitudes shown in a) and 
c) are scaled versions of the originals (shear = 0 degrees) in agreement to theory. This includes the series invariant 
which is immune to this scaling due to shear. Overall, the phases for the three shears are reasonably close considering 

that a shear of 40 degrees is close to the maximum of 45 degrees.
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Figure 9. (Cont.)
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Figure 10. Results for the determinant, series and parallel impedances using field data from the BC87 data set, show 
that the corresponding curves behave very much like those of Figures 8 and 9. It can be observed in c) that there is 
already a significant downwards shift of the parallel amplitude with respect to series that is not related to the added 
shear scaling. As discussed in the main text, this could be due to a preexisting shear distortion or to static effects. 
The rest of the curves in a), b) and d) follow the same patterns as in Figures 8 and 9. Notice that, as in the other 
tests, the series amplitude is immune to the scaling introduced by the shear distortion as predicted by equation (17).
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Figure 10. (Cont.)
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upwards and leave the phase unchanged to undo 
the effect of shear. However, the fact is that we 
do not know whether this shift is due to shear or 
static. The parallel resistivity curve could also be 
lifted by playing with the implicit static factors, 
in which case the phase curve would have to be 
modified according to equation (18). Deciding 
which of the two is the proper way to proceed is 
outside the scope of this first communication. The 
present results are encouraging to continue the 
process of advancing our knowledge of the series 
and parallel invariants, whose properties are just 
beginning to be understood.

Conclusion

Galvanic distortions of magnetotelluric data can be 
neutralized by some invariants of the impedance 
tensor. Except for strike direction, invariants are 
devised without any thought about distortions. 
However, as it turns out for the case of 2-D 
data, the 3-D distorting effects can gradually be 
neutralized by an also gradual averaging process. 
Series and parallel impedances are averages of the 
tensor elements and, in turn, the determinant is 
an average of the series and parallel impedances. 
This gradual immunity is summarized in Table 1. 
The new results include: a) The amplitude of the 
series impedance is affected only by statics, being 
immune to twist, shear and strike, and so are the 
phases of series and parallel; b) the amplitude 
of the parallel impedance is immune to twist and 
strike but not to shear and statics. These results 
place the series and parallel impedances midway 
between invariants that are not immune to any 
of the distortions, like Egger’s eigenvalues, and 
the phase of the determinant which is immune to 
all of them.
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