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RESUMEN 
Por medio de condiciones especiales de frontera. el problema bien establecido se formula para el modelo ocearuco ter­

modinanuco de Adem en una regi6n de oceano abierta. cuando existe un flujo an6malo de calor a !raves de las fronteras late­
rales. Se mueslran la unicidad y estabilidad de las soluciones del modelo. Se estima Ia velocidad de disipaci6n de las anoma­
Has de temperatura en presencia de Ia difusi6n y ausencia del forzamiento. 

Se mueslra que el operador del modelo es positivo defmido, positivo semidefmido o antisim6trico, dependiendo del tipo 
de condiciones de frontera y de Ia difusi6n. EI m6todo de separaci6n se aplica para consiJ'Uir un esquema impHcito en dife­
rencias fmitas con aproxirnaci6n de segundo orden, el cual es econ6mico, balanceado e incondicionalmente estable. Cada 
uno de los problemas separados es de dimensi6n 1, y se resuelve facilmente por el m6todo de factorizaci6n. Se justifica Ia 
aplicaci6n del m6todo de separaci6n. El algoritmo num6rico se puede generalizar con facilidad para el modelo de 3-dirnen­
siones. 

PAI.ABRAS CIA VE: Anomalfas de temperatura superficiales, modelo termodinamico, condiciones de frontera, estabilidad. 

ABSTRACT 
By setting special boundary conditions the well-posed problem is formulated for the Adem thermodynamic model in an 

open oceanic basin when there is an anomalous heat flow across the lateral boundaries. Uniqueness and stability of the 
model solutions are shown. Estimates of the rate of dissipation of the temperature anomalies in the presence of diffusion 
and the absence of forcing are provided. 

The model operator is positive definite, positive semidefmite or skew-symmetric depending on the boundary condi­
tions type and the diffusion. The splitting method is applied to construct an implicit 2nd order fmite-difference scheme that 
is economical, balanced, and unconditionally stable. Each of the split problems is one-dimensional and can easily be 
solved by factorization. The numerical algorithm can readily be generalized to three dimensions. 

KE\' WORDS: Sea surface temperature anomaly, thermodynamic model, open boundary conditions, balanced stable scheme. 

!.INTRODUCTION 

The thermodynamic model developed by Adem (1964, 
1971, 1975, 1991), Adem and Mendoza (1988) and Adem 
er al. (1991, 1994) for the upper mixed level of the ocean 
may be used for calculating monthly mean sea surface tem­
perature (SST) anomalies. In the case of a closed oceanic 
basin when there is no heat flow across the boundary, the 
model differential operator is positive definite, positive 
semidefinite or skew-symmetric depending on boundary 
conditions and the presence or absence of diffusion. This 
allows us to form ulate the well-posed problem in the sense 
of Hadamard (1923) where solutions are unique and stable. 
A model of this type is briefly described in sections 2-4. 

Many references deal with the problem of boundary 
conditions for an open basin (see e. g. Poinsot and Lele, 
1992, and the appended references). In section 5, appro­
priate boundary conditions are formulated for the Adem 
thermodynamic model in an open oceanic basin with heat 
flow across the boundaries. It is shown in section 6 that 
with these boundary conditions, the open basin thermody­
namic model is also a well-posed problem in the sense of 
Hadamard, and that the decay of temperature anomalies for 
different scales is determined by the eigenvalue of the 
model operator. 
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In section 7, the 2-D differential operator of the model 
is split into the sum of two 1-D operators. If the original 
operator is positive definite (positive semidefinite or skew­
symmetric), then each of the split operators has the same 
property. The finite-difference approximations to the origi­
nal and each of the split operators preserve this property, 
justifying the application of the splitting method (Ya­
nenko, 1971) to constructing a balanced and uncondition­
ally stable implicit scheme that has two conservation laws 
in the absence of dissipation and forcing. 

The numerical algorithm can readily be generalized to 
three dimensions. The solution of the original 3-D prob­
lem is reduced to solving a few simple 1-D problems. 

Difference split operators and boundary conditions of 
the second-order approximation in space and time are con­
structed in section 8. A balanced implicit scheme abso­
lutely stable to initial perturbations is given in section 9, 
and final conclusions are made in section 10. 

2. FORMULATION OF 1lfE MODEL IN A CLOSED 
OCEANIC BASIN 

Let n be a two-dimensional closed ocean basin with a 
lateral ocean boundary S. Consider inn and for a time in­
terval (0, I) the Adem (1971) ocean thermodynamic model 
governed by the equation 



Y. N. Skiba and J. Adem 

(1) 

where T(r,t) is the climatic ocean temperature anomaly; 
U (r ,t) is the climatic seasonal current velocity vector; F 
(r ,t) is the heat forcing anomaly that includes evaporation, 
radiation, sensible heat transfer, and advection of heat by 
anomalous c urrent velocity; r=(A, (}) is a point in Q; Jl is 
the constant horizontal diffusion coefficient (J.t>O), and Vis 
the two-dimensional (spherical) gradient. The terms U·VT 
and J.LV2T in Eq.( l ) describe the change of temperature 
anomaly under the effects of advection and turbulent diffu­
sion, respective ly. 

It is assumed that the climatic velocity vector U 
satisfies the continuity equation 

(2) 

where a is the earth's radius, A. is the longitude, (} is the 
cola titude, and u and v are the components of U in 
spherical coordinates. Since the oceanic basin n does not 
contain open (liquid) segments, the normal component U,. 
of the current velocity U is zero at S: 

U,.= U·n =O at S . (3) 

Here n is the outward normal to S. Equation (1) is to be 
solved with the initial condition 

T (r , 0) = TO (r ) in Q (4) 

and the boundary condition 

Jl ()T = 0 at S 
()n 

(5) 

where (}f()n is the derivative in the direction of the outward 
normal. The conditions (3) and (5) mean that there is no 
anomalous heat flow across the boundary S. 

3. UNIQUENESS AND STADILITY OF 1liE CLOS ED 
BASIN MODEL SOLUTIONS 

Let 

(6) 

be a norm of the function T(r) and let H be a Hilbert space 
of all complex functions whose norm (6) is finite. We 
define the inner product 

< T ,g >= J T(r)g(r) dr 

n 

(7) 

for func tions T(r) and g(r) o f H . Here g(r ) deno tes the 
complex conjugate o f g(r). Because of (2), the differential 
operator o f the problem ( I )-(5) can be written as 
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AT= div (UT) - J.L V 2T (8) 

which is defined for all sufficiently smooth functions T(r) 
that satisfy the boundary condition (5). We now show tha t 
A is positive semidefinite, that is, 

<AT,T> ~ 0 (9) 

for each function T(r) of its domain (this property will be 
denoted by A ~ 0). Integrating the inner product <AT,T> 
by parts and using Green's formula and conditions (3) l\nd 
(5), we obtain 

< AT,T >= f TATdr = Jl fiVT( dr ~ 0 . ( ' 3) 

n n 

In the nondissipative case (J.L=O), the operator A is &kl \ /­

symmetric: 

<AT,T> = 0. 

Also, if g(x) = I in Q then 

<AT,g> = 0 . 

(11) 

(1 2) 

Thus, integrating (I) over n we obtain the heat balanc~ 
equation 

~ J T dr = IF dr . (1 3) 

n n 

Hence the average temperature anomaly 

- 'I T = (mes Q)" T ( r ) ~ , (14) 

n 

where mes n is the area of n, will change if and o nly if 
the average heat forcing anomaly 

F = (mes nr' IF (r ) dr 

n 

(1 5) 

is nonzero. Taking the inner product (7) of Eq.(l ) with the 
solution T and using (9) we find 

or 

(17) 

when F (r ,t) = 0. It fo llows from (16) and (17) that each 
solution to the linear problem (1)-(5) is unique and stable 
to initial perturbations. Hence the problem (1)-(5) is well­
posed in the sense of Hadamard (1923). 

4. RATE OF DECAY OF THE SST ANOMALIES 

It fo llows from (13) that the average temperature 
ano maly ( 14) is constant if the average heat forc ing 



anomaly (15) is zero. Let now the forcing anomaly F of 
Eq.(1) be identically zero. By (9)-(1 1), the model operator 
(8) is skew-symmetric if Jl=O, or positive definite if J,J>O. 
Therefore the norm IIT(r,t)ll will be conserved in the first 
case, and decreased in the second one. We now estimate the 
rate of decay. For this purpose let us consider.the spectral 
problem 

A W,.(r) = w,. W,.(r) 

JlJnW,.(r) = O atS 

(18) 

{19) 

for the operator (8). According to (9), all eigenvalues w,. 
are positive except for the zero eigenvalue Wt which corre­
sponds to a constant e igenfunction W1 (r). We take 

W1 (r ) = (mes Q ) -112 (20) 

to satisfy IIW1 (r)ll=l. Since A is non-symmetric, the 
eigenfunctions are not orthogonal in the sense of the inner 
product (7). Thus we also consider the eigenvalue problem 

(21) 

for the adjoint operator 

(22) 

with the same boundary condition (19) for G~r. at S. Here 
wk. is the complex conjugate of W~r.. The eigenfunctions 

W ,.(r) and G.{r) make the biorthogonal basis in the space 
H : 

(23) 

where 8,.1r. is the Kronecker symbol. Evidently, G1 = W1• 

The functions WJr.(r) and G~r.(r) can be used to characterize a 
spatial scale of the temperature anomalies in the oceanic 
domain n. Note that their scale decreases as k increases. 
Let us expand the solution T(r ,l) as 

T(r ,l) = L,T,. (t)W,. (r ), (24) 

m=l 

where the coefficient 

T,. ( l)=< T(r ,l), G,.(r) > (25) 

represents the amplitude of a temperature anomaly that co­
incides with W ,.(r). Thus T ,.(l) characterizes the contribu­
tion of the temperature ano maly of some particular scale m 
to the total temperature anomaly T(r ,l). 

The inner product of the homogeneous Eq. (1) with 
G~r.(r) gives 

(26) 
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or 

(27) 

where T~ is the corr!sponding coefficient of the initial 

temperature anomaly (4). The expression (27) tends to zero 
for k 2: 2, and the rate of decay of the SST anomaly for a 
spatial structure and scale of a function W~r. is determined 
by the eigenvalue W~r.. The amplitude T1 will be constant 
according to (13) and the assumption F = 0: 

1 I 1 I o T1 = T(r)dr = T (r)dr . 
..Jmes n 0 ..Jmes n 0 

(28) 

As a result, the temperature anomaly will eventually tend 
to the mean value (14) of the initial temperature anomaly. 
In particular, if 'f<l= 0 the solution to the problem (1)- (5) 
will tend to zero with time. 

The above eigenvalue method can be applied 'to an 
oceanic domain n of arbitrary form and size. It enables us 
to choose the horizontal diffusion coefficient Jl in such a 
way that the rate of dissipation of the SST anomalies coin­
cides with observed value in n. 

We now consider an example of the model with turbu­
lent diffusion alone. Let {x,y) be the coordinates of a point 
r in a rectangular ocean basin n with sides X and Y. It is 
assumed that U=O inn. Then the operator AT=- Jl'V2 T 
of Eq.(I) is symmetric, and the spectral problem (18), (19) 
yields a complete set of orthogonal eigenfunctions 

W ~r.m (x,y) = cos( k ~ x )cos( m ~ y) 

corresponding to the different non-negative eigenvalues 

Then, by (27), the amplitude of an initial temperature 
anomaly in the form of W~r.m (x,y) will decay as 

(29) 

A simple case of (29) when X=Y was considered by Adem 
(1971, Figures 4 and 6). 

5. FORMULATION OF THE MODEL IN AN OPEN 
OCEANIC BASIN 

Now consider the case of an open oceanic basin n 
when anomalous heat flow is possible across the liquid 
parts of the boundary S. As above, the conditions (3) and 
(5) will be used at the boundary coinciding with the coast 
line. Physically and mathematically appropriate conditions 
at the liquid boundary have been discussed very widely (see, 
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e.g., Vichnevetsky and Bowles , 1982; Poinsot and Lele, 
1992, and references in these papers). Here the approach 
suggested by Marchuk {1986) for the 2-D problem, and by 
Skiba (1993) for the 3-D problem, will be used. 

Let us divide the lateral boundary S into two parts: the 
"outflow" part s· where the velocity vector u is outwardly 
directed (U,. ~ 0), and the "inflow" part s· where the 
velocity vector U is inwardly directed (U,. ~ 0). On Figure 
1 taken from Adem et al. (1994), the Gulf of Mexico is an 
example of such an open basin. 

Equation (1) is now solved in the time interval (0, I) 
and over the domain Q with initial condition (4) and 
boundary conditions 

J.1. ~T - U T ::;::;: 0 at s· , 
on " 

(30) 

J.l.! ::;::;: 0 at s· . (31} 

Condition (30) means that the combined diffusive plus 
advective anomalous heat inflow is zero at s· (nonzero 
climatic heat flows at S· are however possible; see Figure 
1). If (30) is violated, and there is a SST anomaly source 

f 
100 

outside of Q that generates a heat flow at s·. then by 
widening the basin n this source can be included in n. On 
the other hand, (30) can be replaced by 

J.Lffn - u,.T:::;:q at s· , (32) 

if the anomalous heat flow q(r, t) is known at s· from 
observations. Condition (31) means that at the boundary 
s· the anomalous heat flow induced by diffusion is 
negligible as compared with that caused by advection with 
the current velocity vector U. 

Where S coincides with the coastline Eqs.(30) and (31) 
automatically satisfy condition (5) due to (3). Thus when 
(3) is imposed at the solid part of S, conditions (30) and 
(31) can be used at the entire boundary S without sepa­
rating into solid and liquid segments. 

Eqs. (30) and (31) are well known boundary conditions 
of t~e third kind and the second kind, respectively 
(Ladyzhenskaya, 1973). In the limiting no-diffusive case 
{J..L::::;:O), (30) is reduced to the reasonable condition T::::;:O at 
the inflow part of the boundary, while condition (31 ) van­
ishes as it should, since for pure advection, no condition is 
required at the outflow boundary, where the solution is de­
fined by the method of characteristics (Godunov, 1971). 

VawWmtor 

Fig. 1. The open oceanic domain D for the Gulf of Mexico. Points A and B belong to the boundary parts s· and s• respectively: 
U,(A) < 0 and U,.(B) > 0 where U,. is a projection of the current velocity vector U on the outward unit normal n to the boundary. 
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6. UNIQUENESS AND STABnnY OF TilE OPEN 
BASIN SOLUTIONS 

We show now that the operator A of the problem (1 ), 
(4), (30), (3 1) is positive semidefinite: A ~ 0. Integrating 
the inner product <AT,T> by parts and using Green's for­
mula we obtain 

<AT,T>=J.l. I1VTI
2 dr + ~{I U11T

2
dS- I u,.T2ds}~o 

n s• s· 
(33) 

where dS is a linear element of the boundary S. The last 
two integrals in (33) are non-negative since U 11 ~ 0 at S+, 
and u II :::;; 0 at s -. Thus the operator A is non-negative. In 
particular, A is positive definite (A > 0) when U,. is not 
identically zero at S and/or J.1.>0. Then all eigenvalues m" 
of the spectral problem 

A W~c (r ) = m~c W~c (r) 

J.l. in W~c-U,.W" =0 at s· , 
J.l in wk = 0 at s+ (34) 

are positive. As we saw in section 4, if F=O the amplitude 

T~ of an initial temperature anomaly W~c(r) decays as the 

rate determined by the eigenvalue m1c (see (27)). Note that 
A is skew-symmetric only if J.FO (the no-dissipative case) 
and if in addition U11 is identically zero at S. 

The inequalities ( 16) and ( 17) are again satisfied be­
cause of (33). Then each solution of the problem (1), (4), 
(30), (31) is unique and stable under initial perturbations, 
and the problem of the open basin is also well-posed in the 
sense of Hadamard. 

Integrating (1) over n we obtain the balance equation 

~ IT dr = IF dr - I U ,.TdS + I q dS (35) 

n n s· s· 

where boundary condition (32) is taken into account. For 
boundary condition (30), the last integral in the formula 
(35) is zero. Unlike what happens in the closed basin 
model, the average temperature anomaly (14) can be 
changed both by an anomalous heat forcing F(r ,t), and by 
an anomalous heat flow across the boundary S. 

7. SPUlTING METIIOD 

Equation (1) can be written 

(36) 
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where 

A T = 1 [L( T) ()T] J.l ;;2 (37) 
t 2asin9 ()?.. u +u ()?.. - a2sin2 9 ()?..2 T 

(38) 

Using the continuity equation (2) it is easy to see that the 
sum At + A2 coincides with the operator A (see (8)). 

. We n.ow pr?ve that the operators (37) and (38) are posi­
ttve semtdefimte: A;~ 0 (i = 1, 2). Let us calculate the in­
ner product <At T,T>. Integrating by parts and using 
Green's formula with the boundary conditions (30) and (31) 
we obtain 

<AtT,T>= ITAtT dr =J.l.I a2 stn29 (~t dr 
n n 

+I(!u,.T-JJ.fn)TdS=J.lJ 2 ~ 2 (~fdr 
s 

0 
a sm 9 

+t{J. ufds- f. u.r'ds} >O , (39) 

taking into account that U,. :::;; 0 at s -. and U,. ~ 0 at S+. 
The po~itive semidefiniteness of operator (38) can be 
shown m the same way. Since At ~ 0 and A2 ~ 0, the 
splitting method is justified (Douglas and Rachford, 1956; 
Yan~nko, 1971 ; Marchuk, 1975). It can be applied for 
solvmg (36) within each time interval (t, t+f) of small 
length 't. The method consists of two steps: 

(1) the equation 

(40) 

is solved in (t, wr) with the initial condition Tt (t) = T(t) , 
where T(t) is the solution of Eq.(36). 

(2) the equation 

(41) 

is solved in (t, wr) with the initial condition T 2 (t) = T1 

(wr). 

As a result, the solution T2 (t+'l') of the split problem 
(41 ) will approximate the solution T(t+r) of the original 
problem (36) at time t+r. 
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According to Douglas and Rachford (1956), tbe algo­
rithm (40), (41) has the second-order approximation in t 
only if the operators A; are time-independent or commute 
between each other, i.e., A1 A2 = A2 A1• To achieve a 2nd 
order approximation in -r for the time-dependent non-com­
muting operators (37) and (38), we use the symmetric ver­
sion of the splitting method (Marchuk, 1975; Marchuk et 
al., 1975; Marchuk and Skiba, 1978) within each double 
time interval {1--r, t+-r). This consists of the three steps: 

(1) equation (40) is solved in the interval (t--r, 1) with 
the initial condition T1 (H) = T (H); 

(2) equation (41) is solved in (H, 1+-r) with the initial 
condition T2(H) = T1 (1); 

(3) equation (40) is now solved in the interval (1, 1+-r) 
with the initial condition T1 (1) = T2 (t+-r). 

As a result, T (1+-r)== T1 (1+-r). 

8. FINII'E-DIFFERENCE APPROXIMATION 

Previous authors have constructed numerical schemes 
for the transport equation with some useful properties (see, 
for example, Forester, 1977; Smolarkiewicz, 1991 ; 
Williamson, 1992). Our goal here is to obtain the balanced 
and absolutely stable 2nd order scheme that preserves the 
finite-difference analogies of (14) and IIT(r,t)ll when the op­
erator A is skew-symmetric (see section 6). These proper­
ties are especially important in long-term calculations with 
climatic models. 

Note that the boundary S consists only of segments 
parallel to the lines A. = Const or 0 = Const. Thus for ev­
ery point of S the normal component U,. of the current ve­
locity U coincides with either± u or± v, where u, v are 
the components of U in the direction of the axes A. and 8. 

Consider evenly spaced grids on a sphere with distances 
6 A. and 1!.8 between grid points. The net functions 
T;f=T(A.;,Oj). U;J-u(A.;.112,8j) and V;J-V(A;,8j-l/2) are defined 
on different grids (Figure 2). The boundary line S of the 
grid domain passes through nodes of the functions u;j or vii 
(Figure 3). We take 

J 
[ 

ui+l.j - uij vi,j+l sin 0 + - vij sin 8 _] 
!!.X. + 1!.8 = 0 (42) 

as the difference form of the continuity equation (2). The 
notation sin8.=sin8j+l/2• sin9.=sin8j-lfl is used in (42) and 
thereafter. In order to approximate the operators (37), (38) 
we note that they can be written as 

(43) 

~T= aslno[-!r j8(vsin8)+vsin8fo] 
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Fig. 2. Location of the grid functions near a node (A.;, fJj). 
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Fig. 3. The boundary line S of the grid domain passing 

through the nodes of the functions Uij and vij· 

J.L a(· naT) 
2 0 ao smu~ 0 

a smO otJ 
(44) 

Since the term 

(45) 

approximates the sum -!r !+u ~ at the point (A.;, 8i) 

to the 2nd order, the operators Am are approximated by the 

matrices A! (Skiba 1993): 



(46) 

,. vi,j+l sin (}+Ti,j+l- vij sin 8_Ti,j-l 
(A:i. T);j = 2a~8sin8 . 

I 

11{sin (} (T. · I - T..)- Sin(} (T. · - T .. 1 )} ,.- + I,J+ IJ - I,J IJ-
. (47) 

We now approximate the boundary conditions (Skiba, 
1993). Consider, for example, a line along the A.-axis for a 
fixed (}j· Let us assume that (A.;, (}j) are internal nodes of 
the grid domain for i=I, ... , /-1, and let L = (A.112, ~)and 
R = (A-1•112, 8) be the left and right boundary points on 
this line (Figure 4). Then the boundary conditions (30) and 
(31) are approximated as follows: 

(1) If u1j = u(L) ~ 0 then U,.= -u1j ~ 0 and the point L 
belongs to the boundary s-. Furthermore, since 

I 

()T() (L)::: ~A. 1. (} (Toj - T 1j) (48) 
n a s1n j 

the boundary condition (30) is approximated by 

(49) 

(2) If u1j = u(L) ~ 0 then U,. = -u1j ~ 0 and the point 
L belongs to s•. Hence the boundary condition (31) is ap­
proximated by 

(50) 

u (L) 
-o---x---o-- '!). 

J 
Const 

T . 
o, J 

u (R) 
-o----x----- o-- '!). = Const 

J 

Fig. 4 . Location of the grid nodes immediately adjacent to the 
boundary points L and R on a line (}j = Canst. 
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and hence, T 1j = Toj· Thus the value Toj of the function T 

in operator (46) for i=I must be changed to T1j so as to ex­
clude the external point (A.0 , 8j). 

Further, if u1j = u(R) ~ 0 then U,. = u1j ~ 0, and the 
boundary point R beloEgs to s-. Furthermore 

and hence, the boundary condition (30) is approximated as 

Finally, if u1j = u(R) ~ 0 then the boundary point R 
belongs to s•. and (31) is reduced to 

T1j = T1•1j . (53) 

For the boundary points located on the lines A.,= Canst, 
the boundary conditions are approximated in the same 
manner. Of course, the number of inner grid points varies 
from line to line. We see that the differential equation (1), 
and the boundary conditions (30)-{31) are approximated to 
second order in the geometric variables. 

9. NUMERICAL SCHEME OF TilE MOOEL 

Recalling (49), (50), (52) and (53), we can show that 

each of the matrices A: is positive semidefinite: 

T lt. T A,.T ~ 0 , (m =I, 2) . (54) 

Here T is the column vector with components T;j. and the 
superscript r is the transposition symbol. Thus the finite­
difference approximations (46) and (47) conserve the posi­
tive semidefiniteness of the differential operators A"' (m=I, 
2). Therefore the application of the spliuing method in the 
construction of numerical schemes is justified. 

Suppose that we are required to solve the equation (1) 
within a given time interval. The interval is divided into 
equal subintervals (t,. .1,t,.) of small length 't= t,.- t,..1• Since 

the matrices A;" do not commute, the symmetric variant of 

the splitting method described at the end of section 7 will 
be applied to obtain the 2nd order difference scheme within 
each double subinterval/,.= (t,.. ~ot,.. 1 ): 

r[n - !]- T[ n - 1] = -~A1" {r[ n - !] + T[ n -tl} 
r[ n +t] - r[ n -~] = -~~ {r[n +~] + r[ n - !]} + 2~ F(n) 

T [n + I) - r[n +!] = -iAt'' {r[ n + 1] + r[ n + ~]} . (55) 
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Here T[n-1] and T[n+l] are the column vectors with the 
components T;j(t11_1) and T;1{t 11• 1), respectively; F[n] =t 

(F;,{t11• 1)+F;/t11_1)} is the forcing approximation; and T[n-
1/2] and T[n+ 1/2] are the auxiliary vectors (n = 1, 3, 5, ... ). 
Each of the 1-D equations in (55) is solved by using the 
Crank-Nicholson scheme. The solution T[n-1] for the 
previous interval I 11 _1 is taken as the initial condition for 
the interval I 11• The initial vector T[O] has components 
TO (),,Oj) (see Eq.(4)). 

Multiplying the first equation (55) by the vector 

{r[n-1]+ r[n -I]r from the left, and talcing into account 

(54) we find 

If F[n] = 0 then the inequalities such as (56) are valid 
for each of the three equations (55). Since T7T = 111112 
where IITII is the Euclidean norm, these inequalities lead to 

(57) 

that is, scheme (55) is stable to initial perturbations for 
any time step f. 

Let us multiply equations (55) from the left by the row 
vector V7 whose components V;j equal the values a2~;t 
MJsinOj in the inner nodes of the grid domain. Summing 
all results yields a finite-difference variant of the balance 
equation (35). Hence the scheme (55) is balanced. More­
over, when JJ.=O for the forcing F[n)=O and U11=0 at the 
boundary S, then the scheme (55) has the two conservation 
laws: 

"T..(t 1)V .. = "T. .(t 1)V .. L.J 1) 11+ 1) L.J 1,) 11- I) 
(58) 

i,j i,j 

liT( n + 1JII =liT( n - 1JII (59) 

Although the scheme (55) is absolutely stable for an 
arbitrary time step -r, its magnitude is evidently limited by 
the requirements of the approximation. For the original 
equation (1), the approximation problem was discussed by 
Adem (1971). The spliuing method imposes additional re­
strictions on the choice of f. Numerical experiments by 
Marchuk and Skiba (1976, 1978, 1992) with the global 
thermodynamic model show that a 6-hour time step will 
provide a good approximation for the scheme (55). This 
scheme is solved without iterations by the direct method 
(factorization), and can be readily generalized to the 3-D 
heat transport model (Skiba, 1993). 

10. CONCLUSIONS 

Two mathematical problems have been formulated for 
the Adem ocean thermodynamic model intended for calcu­
lating the SST anomalies in closed or open oceanic basins. 
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Special attention has been given to setting physically and 
mathematically appropriate boundary conditions (30)-(32) 
for the open basin model, where anomalous heat flow takes 
place across the boundaries. These conditions can be ob­
tained from the generalised state of the problem. In the no­
diffusive limit ()1.=0), the boundary conditions are trans­
formed to natural conditions for the pure advection prob­
lem. As a result, both problems are well-posed in the sense 
of Hadamard, that is, either solution is unique and stable lo 

initial perturbations. Since the model operator is non-nega­
tive, application of the splitting method in the construc­
tion of finite-difference schemes is justified. This methrod 
reduces the original 2-D problem to solving a few simple 
1-D problems. The implicit numerical algorithm does r Jt 
require iterations: it is solved by the direct method of fa· -
torization and is readily generalized to 3-D heat transp<U 
problems. 

The numerical scheme is implicit, balanced, uncOn<ll­
tionally stable, of second-order approximation in the spat e 
and time variables, and affordable even for the 3-D prol"~­
lem. It has two conservation laws (see (58) and (59)) when 
F=O, and the model operator is skew-symmetric, i.e., in 
the nondiffusive case (Jl. = 0) when the orthogonal projec­
tion of the velocity vector on the outer normal is zero at 
the boundary of the basin. The spherical coordinate system 
permits the numerical algorithm to be applied to an 
oceanic basin n of arbitrary form, size and location. 

A method based on the solution of the eigenvalue prob 
lem has been suggested to estimate the rate of decay of 
SST anomalies in the absence of heat forcing. The method 
js applicable for an oceanic domain n of arbitrary shape. It 
can also be used for selecting a model diffusion coefficient 
J.1. such as to bring the ra te of dissipation of the SST 
anomalies given by the model into coincidence with the 
observed values in n. 
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