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Resumen
	
Con el fin de implementar esquemas de recuperación 
secundaria y mejorada en formaciones terrígenas 
complejas como los depósitos turbidíticos, el 
conocimiento de la distribución espacial de los 
granos de lutitas es un elemento crucial para la 
predicción del flujo de fluidos. Debido a que la 
interacción de los granos de lutitas con el agua 
puede provocar que éstas modifiquen su tamaño 
y/o forma, lo que causaría taponamiento de los 
espacios porosos y consecuentemente impacto en 
el flujo. En el presente trabajo, se propone una 
metodología para la simulación estocástica de la 
distribución espacial de granos obtenida a partir 
de imágenes de microscopio electrónico de barrido 
de muestras de rocas siliciclásticas. El objetivo de 
la metodología es obtener modelos estocásticos 
que permitan investigar el comportamiento de los 
granos de lutitas bajo diferentes condiciones de 
interacción físico-químicas y regímenes de flujo, y 
que sirvan de referencia para obtener propiedades 
petrofísicas (porosidad y permeabilidad) efectivas 
a escala de núcleo. Para la simulación estocástica 
espacial de los granos se utiliza el método 
plurigaussiano, el cual se basa en el truncado 
de varias funciones aleatorias Gaussianas 
estándar, lo cual permite manejar de manera 
adecuada la proporción de cada categoría y las 
relaciones de dependencia espacial cuando se 
tiene más de dos categorías o clases de grano. 
Los resultados muestran que los medios porosos 
estocásticamente simulados utilizando el método 
plurigaussiano reproducen adecuadamente las 
proporciones, las estadísticas básicas y tamaños 
de las estructuras de los poros presentes en las 
imágenes de referencia estudiadas.

Palabras clave: Geoestadística, medios porosos, 
monogaussiano, plurigaussiano, distribución 
espacial, rocas siliciclásticas.

Abstract
	
In order to implement secondary and enhanced 
oil recovery processes in complex terrigenous 
formations as is usual in turbidite deposits, a 
precise knowledge of the spatial distribution of 
shale grains is a crucial element for the fluid flow 
prediction. The reason of this is that the interaction 
of water with shale grains can significantly modify 
their size and/or shape, which in turn would 
cause porous space sealing with the subsequent 
impact in the flow. In this work, a methodology 
for stochastic simulations of spatial grains 
distributions obtained from scanning electron 
microscopy images of siliciclastic rock samples 
is proposed. The aim of the methodology is to 
obtain stochastic models would let us investigate 
the shale grain behavior under various physico-
chemical interactions and flux regimes, which 
in turn, will help us get effective petrophysical 
properties (porosity and permeability) at core 
scale. For stochastic spatial grains simulations a 
plurigaussian method is applied, which is based 
on the truncation of several standard Gaussian 
random functions. This approach is very flexible, 
since it allows to simultaneously manage the 
proportions of each grain category in a very 
general manner and to rigorously handle their 
spatial dependency relationships in the case of 
two or more grain categories. The obtained results 
show that the stochastically simulated porous 
media using the plurigaussian method adequately 
reproduces the proportions, basic statistics and 
sizes of the pore structures present in the studied 
reference images.

Key words: Geostatistics, porous media, 
monogaussian, plurigaussian, spatial distribution, 
siliciclastic rock.
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Introduction

The porous media characterization is a fundamental 
problem in areas of knowledge such as soil 
sciences, hydrogeology, oil reservoir, etc. Owing 
to the fact that the more precise knowledge one 
has about the porous media structure, the better 
the accuracy in predicting effective petrophysical 
properties such as porosity, permeability, capillary 
pressure and relative permeabilities.

In particular, in the oil industry understanding 
the petrophysical properties concerning the 
rock formation is a crucial element in reservoir 
management, since it allows us to accurately 
model the mechanisms that govern the recovery 
of hydrocarbons and consequently serve to 
propose and implement optimal secondary and 
enhanced recovery processes.

The aim in this work is to model the spatial 
grains distributions in rock samples from siliciclastic 
reservoir formations. As it is well known, the 
siliciclastic rocks are of sedimentary origin, 
usually formed in situ and were generated by 
erosion processes, transportation and deposition. 
Sedimentary rocks are formed by a packed grain 
structure that constitute the solid matrix and a 
pore system that is the space not occupied by 
the grains. The grains of the siliciclastic rocks 
are composed mainly of minerals such as quartz, 
clays, feldspars and other heavy minerals.

Usually the characterization of porous media is 
reduced to the study of just two categories (see 
section Stochastic Porous Media Reconstruction 
Methods), i.e. it is modeled as two phase media 
consisting only by rock matrix and pore space and 
ignoring the complex mineralogy distribution of 
grains that constitute the porous matrix.

Clay swelling occurs when water-base filtrates 
from drilling, completion, workover or simulation 
fluids enter the formation. Clay swelling can be 
caused by ion exchange or changes in water 
salinity. However, only clays that are directly 
contacted by the fluid moving in the rock will react. 
The nature of the reaction depends on the structure 
of the clays and their chemical state at the moment 
of contact. The most common swelling clays are 
smectite and smectite mixtures that create an 
almost impermeable barrier for fluid flow when they 
are located in the larger pores of a reservoir rock.

The clay swelling yields a direct impact in 
the reduction of pore space, and consequently 
in the porosity, but at the same time the spatial 
modification of porosity produces an alteration 
of the rock permeability. This is considered as a 
type of formation damage in which absolute rock 
permeability is reduced because of the alteration 
of clay equilibrium.

The absolute permeability is a fundamental 
petrophysical property of rocks and it is defined 
as the ability to flow or transmit fluids through 
a rock, conducted when a single fluid, or phase, 
is present in the rock. The permeability can be 
related with the pore space connectivity.

In this paper a novel and general methodology 
for stochastically reconstruction of mineralogy 
distribution applying the plurigaussian simulation 
method which far as we know it is first introduced 
to simulate the spatial grain distribution. In 
particular, the proposed methodology is applied to 
the clay spatial distribution in rock samples from 
heterogeneous siliciclastic formations to evaluate 
the variation of their petrophysical properties, 
such as porosity and permeability during a 
swelling process.

A brief historical review of stochastic 
reconstruction methodologies for porous media 
in the first section of this paper is presented. 
After that, the data and methodology used for the 
reconstruction of the mineralogy of the porous 
medium are described. Subsequently, details 
of the geostatistical analysis of the data are 
shown. The results of the stochastic simulations 
are discussed in the following section and finally 
the conclusion and further work are given in last 
section.

Stochastic porous media reconstruction 
methods: a brief review

The stochastic approach has been used for porous 
media reconstruction at pore scale in the past 
20 years. The stochastic models that have been 
developed are basically geostatistics, which model 
the spatial dependency structure present in the 
rock structure. In particular, to represent porous 
media from sedimentary rock samples has been 
modeled the spatial distribution of grains (rock 
matrix) and pores (pore space). It is possible 
to generate a 3D model of the pore space by 
statistical information produced by analysis of 
2D thin sections.

In their works, Adler et al. (1990) and Adler 
and Thovert (1998) applied the truncated 
Gaussian or monogaussian simulation method (Xu 
and Journel, 1993; Galli et al., 1994) for a porous 
media reconstruction from image analysis of 2D 
thin sections of Fontainebleau sandstone. In the 
truncated Gaussian method a Gaussian random 
function is generated and thresholded to retrieve 
the binary phases (pore space and rock matrix) 
with the correct porosity and correlation function. 
This method can also be extended to include more 
phases, such as clay.

A greater flexibility can be achieved by using 
the method of simulated annealing (Yeong and 
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Torquato 1998a,b; Manwart et al. 2000; Talukdar 
and Torsaeter 2002; Capek et al. 2008, Politis et 
al. 2008). Rather than being restricted to one- 
and two-point correlation functions, the objective 
function used can be made to match additional 
quantities such as multi-point correlation 
functions, lineal-path function or pore size 
distribution function. Incorporating more higher-
order information into the objective function, such 
as the local percolation probability, would most 
likely improve the reconstruction further, but that 
would also increase the computational cost of the 
method significantly. Although this reconstruction 
procedure has been more successful, the resulting 
images do not always capture the connectivity of 
pore space.

Another reconstruction methods preserving the 
pore size distribution, is the superposed spheres. 
Dos Santos et al. (2002) developed the method 
for reconstruct a medium upholding this statistic. 
The method calculates the number of spheres 
in order to reconstruct a given porous media, 
saving it is the porosity. Each sphere superposes 
neighboring spheres according to a user defined 
parameter. This method presents good results for 
connectivity, although it does not preserves the 
autocorrelation function.

Thovert et al. (2001) and Hilfer and Manswart 
(2001 and 2002) introduced a method that is a 
hybrid between the statistical and object-based 
methods. They verified their method using a 3D 
Fontainebleau sample and reported that the local 
percolation probability was found to be significantly 
better in comparison with the traditional simulated 
annealing. Here, local percolation probability is 
applied to characterize the porous media topology 
as a measure of connectivity (Vogel, 2002).

In their work, Casar-González and Suro-Pérez 
(2000, 2001 and 2003) applied the indicator 
simulation method and a hybrid between the 
multiple-point statistics and simulated annealing 
method. They verified their method using a 
carbonate rocks and reported that the results are 
statistically equivalent to the real porous media, 
i. e. both approaches reproduce correctly the 
histogram and the spatial variability.

Strebelle (2002) suggested a statistical 
algorithm in which the multiple-point statistics 
were inferred from exhaustive 2D training images 
of equivalent reservoir structures and then used 
to reconstruct the reservoir, adhering to any 
conditioning data. This method was applied 
successfully to both fluvial and more complex 
patterned reservoirs. The ability to reproduce 
any pattern makes this method highly attracti-
ve for reconstructing complex porous media like 
carbonates.

Okabe and Blunt (2005 and 2007) have used 
this algorithm to reconstruct a 3D Fontainebleau 
sandstone from a 2D training image. Although 
the granular structure is not as well reproduced 
as in object-based methods, the local percola-            
tion probability is significantly better reproduced 
than that achieved by other methods such as 
Gaussian field techniques.

In previous works about porous media 
reconstruction, those have been modeled as two 
phase media consisting only by rock matrix and 
pore space and ignoring the complex mineralogy 
distribution of grains that constitute the porous 
matrix. This approach possesses the disadvantage 
that it does not consider the mineralogical 
composition of the rock and consequently, 
these models cannot account for the chemical 
interaction of fluids with minerals present in the 
rock and even more they do not consider the 
dynamic alteration of petrophysical properties 
resulting of diagenetic processes.

In this paper we are proposing to apply the 
plurigaussian simulation method to simulate 
the spatial distribution of the mineralogical 
heterogeneity in the porous matrix. The choice 
of plurigaussian method is based on its flexibility 
to represent complex spatial dependencies of 
multiple phases. To our knowledge this method 
has not been applied before for this purpose. 
In particular, here we present the application 
to a case study for the distribution of clays in 
siliciclastic rocks. Such a model could be used 
to quantify the dynamic modification of the 
petrophysical properties of siliciclastic rocks when 
occur the swelling phenomenon of clays.

Data and methods

The main goals of this work are to model the 
geometry of the pore space by simulating 
grain spatial distribution from images taken 
in siliciclastic rock samples, as well as, the 
spatial distribution of clays present in the solid 
matrix, using spatial stochastic simulations. The 
procedure is applied in two successive stages. First 
are simulated two categories: matrix and the pore 
space, and subsequently is made the simulation 
of the mineralogy of interest.

For simulating the clay spatial distribution, we 
can consider two cases: the first case (case 1) 
is made under the assumption that clay present 
in the rock are allogenic, i.e., clay fragments 
are originally formed in other location but were 
transported and deposited in the pore space, 
therefore, clays occupy a portion of the pore 
space; while in the second case (case 2), clay is 
considered authigenic, which means that the clay 
was formed together with the rock and it is part 
of the rock matrix composition.
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The images used as input data are obtained 
by scanning electron microscopy in backscatter 
electron mode. The sample preparation is 
similar to the one used for preparation of thin 
sections using light microscopy and consists of 
the following: the sample was impregnated with 
epoxy resin and polished on one side once the 
epoxy has hardened.

The process of extracting pores, clays and 
rock matrix from images of scanning electron 
microscopy is simpler, compared to the process for 
thin sections. A color thin section image contains 
three gray-level images in RGB space, while in 
scanning electron microscopy only one gray-level 
image is involved. In images of scanning electron 
microscopy, the rock matrix can be subdivided 
into ranges associated with different minerals 
using the atomic density contrast. For example, 
the pore space is associated with the darker gray 
tone because of the fact that the epoxy resin 
possesses smaller atomic density compared with 
the minerals contained in the matrix.

In the porous-media stochastic model are 
considered three categories: pore space, clay 
grains and rock matrix, where in the rock 
matrix category are included the rest of (no 
clay) mineralogies. A segmentation procedure 
developed by Fens (2000) enables automatic 
extraction of pore, clay and rock matrix categories. 
This procedure is based on fitting three Gaussian 
functions to the gray-level histogram. In images 
of scanning electron microscopy the gray-values 
represent atomic density. Prior to processing and 
analyzing, these gray-values have to be calibrated 
which takes place using a set of standards with 
known gray-values. This calibration is essential 
to make quantitative use of the data provided 
by the analysis. The calibration standards used 
here are taken from Fens (2000) and consisted of 
artificial reservoir rock samples that contain only 
quartz and epoxy.

The total gray-value range in images of 
scanning electron microscopy can be divided 
in sub-ranges. In Figure 1 the color bar below 
the histogram shows the division in these sub-
ranges representing pores, clays, quartz, feldspar 
and the heavy minerals. Two-level thresholding 
is used to extract the pixels in each range of 
gray-values. Thresholding is an image-to-image 
transformation, in this case a transformation 
from a gray-value image to a binary image (Fens, 
2000).

In the case study presented, we used an image 
of a sandstone block obtained with the procedure 
described above (Figure 2), which was taken of the 
PhD thesis of T. Fens (Fens, 2000). The image size 
is 2 x 2 mm with a resolution of 256 x 256 pixels, 

with a pixel size equal to 0.0078 mm. In the image 
of Figure 2 the same five categories are clearly 
visible: quartz, clays, feldspars, heavy minerals 
and pore space. In what follows this image will 
be referred as the reference image.

According to the objectives of this work, the 
reference image was initially segmented in three 
categories: pore space, clays and rock matrix; the 
last one grouped in single category: quartz, heavy 
minerals and feldspars (Figure 3). The resulting 
image has the same size as the reference image 
and will help us compare the simulations obtained 
in the latter stages of the modeling procedure. 
For the case 1, the reference image is segmented 
in two categories: black and white; where in 
black is represented rock matrix and in white are 
combined pore space and clays (Figure 4). For the 
case 2 is, it is applied the same procedure, but now 
in black are grouped rock matrix and clays while 
pore space is represented in white (Figure 5).

Additionally, the Euler characteristic is 
calculated to compare the connectivity presented 
in reference image versus simulations obtained. 
The Euler characteristic gives positive values for 
poorly connected structures and negative values 
for more connected structures (Vogel, 2002; Wu 
et al. 2006).

The calculation the Euler characteristic is 
a function of pore size (diameter), complete 
methodology for calculation of this characteristic 
is presented in Vogel (2002).

The exploratory analysis of the data is an 
essential phase in any practical statistical analysis. 
In general, it is a combination of statistical and 
graphical techniques that allows verifying the 
hypothesis that has to fulfill data sample to apply 
any statistical procedure. In a geostatistical 
analysis, it is required that the data sample fulfills 
the following:

a) Data sample is normally distributed or at 
least symmetrical.

b) Data sample must not show a significant 
trend; at least the intrinsic hypothesis has 
to be satisfied.

c) There are not distributional neither spatial 
outliers.

A series of techniques that are recommended 
to verify the above assumptions are listed below

1. Basic statistics (mean, median, variance, 
quartiles, skewness).

2. Graphics (histogram, box plot, scatter plot, 
QQ plot).
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Figure 1. Image of a shaly sandstone (top) and the gray-value histogram calculated from an image (bottom) (Fens, 
2000).
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Figure 2. Reference image: quartz (orange), clays (green), pore space (blue), feldspars (dark green) and heavy 
minerals (white) (Fens, 2000).

Figure 3. Segmentation of the Figure 2, rock (black), clays (green) and pore space (white).



Geofísica Internacional

July - September 2013      235

Figure 5. Binary representation of the Figure 3, in black rock matrix and clays and in white pore space.

Figure 4. Binary representation of the Figure 3, in black rock matrix and in white pore space and clays.
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Once the results of the application of these 
techniques are analyzed decisions can be taken 
to modify the data (applying transformations, 
excluding observations, etc.) to meet the main 
assumptions as far as possible or simply to take 
into account those assumptions that are not 
satisfied when the analysis is done (Armstrong 
and Delfiner, 1980).

The variographic or structural analysis is the 
most important part of the geostatistical analysis. 
Its aim is to model the underlying spatial structure 
in the data sample. In accordance to the degree 
of stationarity existent the data analyzed, a 
variogram or a covariance function can be used 
to determine the structure of spatial dependence. 
In this paper we use the variogram because it 
is less restrictive from the point of view of the 
degree of stationarity. In summary, a variographic 
analysis consists of the estimation of the sample 
variogram and to finding the variogram model 
that better fits it.

The variogram function is defined as follows:
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The most common variogram estimator γ̂ (h) 
is given by:
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where N(h) is the number of observations pairs 
(Z(x) and Z(x+h)) and h = ||h|| is the separation 
distance between them.

Geostatistical simulations consist in generating 
multiple realizations Zs(x) of a random function 
statistically equivalent, which means that each of 
the realizations has the same statistical properties 
that are attributed to the random function

 
Z(x). 

In practice we do not know with certainty the 
statistical properties of the random function Z(x), 
therefore usually we only generate realizations 
that are at least statistical equivalent to the first 
and second-order moments present in the sample 
values of the random function

 
Z(x).

Stochastic simulation method

A random function Z is a family of random variables 
Z(x) where x belongs to d or some subset of it. In 

the one dimensional case, we prefer to speak of 
a stochastic process. In this work, the resulting 
segmented image can be viewed as a discrete or 
categorical random function. There are a large 
variety of simulation methods of categorical 
random functions, grouped into two families: the 
object models and the cells models (Chilès, 1999; 
Lantuejoul, 2002).

In object models each category is associated 
with a certain geometric shape (object) and are 
based on Poisson point processes, while in the cells 
models, a cell can take the value of one category 
and are based on the truncation of Gaussian 
random functions. Here we will use the second 
family of simulation methods to investigate the 
application.

The implementation of simulation of cells 
requires to characterize the discrete random 
function in terms of the spatial relationship of 
their categories, for which geostatistical analysis 
is done which consists of getting the proportions of 
occurrences of each category, the basic statistics 
and its variogram or the semivariance function, 
which is a dependence measure or spatial 
autocorrelation.

The proportions are calculated by dividing the 
sum of pixels of a given category between the 
total of pixels of the image, while the variogram 
is estimated by considering the value of the lag 
or interval equal to the size of the image pixel.

The proportions and the variogram obtained by 
categories are used as parameters in the spatial 
stochastic simulation method that is chosen.

Here, as a stochastic simulation method for 
simulating mineralogy distribution is applied the 
truncated plurigaussian simulation method (Galli 
et al., 1994; Le Loc’h and Galli, 1997; Armstrong 
et al., 2003). This method is a generalization of 
the truncated Gaussian simulation method, also 
known as monogaussian simulation method (Xu 
and Journel, 1993; Galli et al., 1994). These 
methods are used to simulate categorical or 
discrete variables, such as geological facies. The 
principle of these methods consists on firstly 
to simulate one or several standard Gaussian 
random functions along the study domain and 
afterwards they are truncated following certain 
spatial relationship rules in order to produce a 
categorical variable.

The truncated Gaussian simulation method is 
based only one Gaussian random function and it 
is summarized in Figure 6. The image (top-left) 
represents the standard Gaussian random function 
with a Gaussian model, the image (top-right) 
shows the histogram of a standard Gaussian 
distribution with two cut-offs, -0.67 and 0.12, 
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and their respective proportion (25%, 30% and 
45%). The image on the bottom, values below 
-0.67 are green facies, values above 0.12 are red 
facies and intermediate values are yellow facies. 
This image also shows the main limitations of the 
truncated Gaussian method: the anisotropy is the 
same for all facies and the yellow facies can touch 
the other two facies, but the green facies and the 
red facies never touch. If three or more facies 
were simulated in this way, they would occur in 
a fixed order, i.e., the method makes a hierarchy 
of phases when we have three or more phases.

The truncated plurigaussian method is used 
in the case of three or more phases and when 
not have a ordering between them. This method 
overcomes the limitations of the truncated 
Gaussian method, that is to say, while the 
truncated Gaussian only use one Gaussian 
random function in the truncated plurigaussian 
any number of Gaussian random functions may 
be used.

Figure 7 illustrates the truncated plurigaussian 
method for the case of two Gaussian random 
functions Z1(x) and Z2(x), the two Gaussian random 
functions used are presented at the top. The 
Gaussian random function on the left has its long 
range in the 45° while the other Gaussian random 
function has its long range in the 135°. The spatial 
relationships and contacts between units are 

defined by a truncation rule, this truncation rule is 
symbolized by a flag. The bottom (left) show the 
flag, which shows that there are five facies, where 
the facies 1,2,3,4 and facies 1,2,4,5 are in touch 
at the same time and the facies 3 cannot enter 
in contact with the facies 5. The flag also tells 
us the proportion of each facies in the resulting 
simulation. The final simulation is obtained by 
modeling the horizontal axis of the flag by the first 
Gaussian random function, while the vertical axis 
of the flag is modeled using the second Gaussian 
random function. i. e. If Z2<Z2B and Z1<Z1A, the 
facies is coded as green; if Z2>Z2B, the facies is 
classified as blue; if Z2<Z2A and Z1<Z1A, the facies 
is orange; if Z2>Z2A, Z2<Z2B and Z1<Z1B, the facies 
is coded as red and if Z2>Z2A, Z2<Z2B, Z1>Z1A and 
Z1>Z1B, the facies is yellow.

The truncated Gaussian method was used in 
the first stage, for the second stage there are 
three phases where all the phases considered 
are in contact with each other simultaneously 
therefore this method was discarded.

To perform the second stage, the truncated 
plurigaussian method was chosen because this 
method through the flag can control the contacts 
and proportions of more than two categories in 
a suitable way, which is the case of the present 
work.

Figure 6. The truncated Gaussian method. Standard Gaussian random function has a Gaussian model (top- left), 
the histogram of a standard Gaussian distribution (top- right) and facies realization generated by truncated Gaussian 

method (bottom).
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the data exploratory analysis, several statistical 
parameters were computed (Table 1 and Table 
2); these will be used to see to what degree the 
simulations reproduce the statistics of the original 
information. This analysis concluded that the data 
have no outliers or trend, which was important to 
identify because it affects the computation of the 
variogram and, therefore, the model fit.

Variograms were calculated and subsequently 
a model was adjusted to each one of them using 
weighted least squares. The model with the lowest 
sum of squares errors was chosen and it was 
validated using cross validation. The leave-one-
out method (Journel and Huijbregts, 1978) was 
used for cross-validation; which involves removing 
each one of the samples and estimating the value 
at that point using the kriging equations and the 
variogram model obtained. As a result, a map 
of the differences between actual and estimated 
values is obtained.

The variograms were calculated under the 
assumption that the information has no trend or 
anisotropy. These assumptions were corroborated 
by obtaining the variograms, because they do 
not have a quadratic growth and comparing the 
variograms in different directions, they do not 
show significant differences in sill, nor in range.

Figures 8, 9 and 10 show variograms for pore 
space (case 1 and case 2) and clays. To every 
variogram obtained a model was adjusted, the 
collection of which are presented in Table 3.

Truncated plurigaussian simulation method 
requires the following steps:

1. Determination the thresholds at which 
the different standard Gaussian random 
function are truncated and the variogram 
model for each Gaussian random function.

2. Simulation of a realization of each Gaussian 
random function with the variogram model.

3. Application of the thresholds to the 
Gaussian realizations to obtain truncated 
plurigaussian simulation.

A detailed description of the mathematical 
fundaments underlying the truncated Gaussian 
and plurigaussian methods can be found in 
Armstrong et al. (2003) and Lantuejoul (2002).

Geostatical analysis

The monogaussian and plurigaussian method 
was applied using the reference image. During 

Figure 7. The truncated plurigaussian method. Standard Gaussian random function  Z1(x) has a Gaussian 
model (top- left), standard Gaussian random function Z2(x) has a spherical model (top- right), example of 
a truncation rule for five facies (bottom- left) and Facies realization generated by truncated plurigaussian 

method (bottom-center).

Table 1. Proportions of each category.

Category	 Figure 4	 Figure 5	 Figure 3

Pore space	 34.60%	 19.90%	 19.90%
Rock	 65.40%	 80.10%	 65.40%
Clays			   14.70%
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Table 2. Basic statistics of the reference image.

Table 3. Fitted models variograms for the three variable.

Figure 8. Estimated 
and fitted variogram 
model of pore space 

variable (case 1).

Figure 9. Estimated 
and fitted variogram 
model of pore space 

variable (case 2).

	 Variable	 Model	 Nugget	 Sill	 Practical Range (mm)
	
	 Pore space (case 1)	 Exponential	 0.013	 0.210	 0.081
	 Pore space (case 2)	 Exponential	 0.000	 0.160	 0.075
	 Clays	 Exponential	 0.027	 0.091	 0.135

	 Statistics	 Figure 4	 Figure 5	 Figure 3

	 Minimum	 0.000	 0.000	 0.000
	 First  quartile	 0.000	 1.000	 1.000
	 Medium	 1.000	 1.000	 2.000
	 Third quartile	 1.000	 1.000	 2.000
	 Maximum	 1.000	 1.000	 2.000
	 Mean	 0.661	 0.799	 1.460
	 Variance	 0.224	 0.160	 0.649
	 Standard Deviation	 0.473	 0.400	 0.806
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Figure 10. Estimated 
and fitted variogram 
model of clays variable.

Figure 12. Estimated 
and fitted variogram 
model of the simulation 
of pore space (case 1).

Figure 11. Pore space simulation (case 1).
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Simulation results

For simulating the first stage (case 1), we used the 
proportions of Figure 4 and the pore space model 
of Table 4. The simulation result is shown in Figure 
11. Figure 11 shows on the right the flag used in 
the simulation. The flag only have two divisions 
(pore space “white” and rock “black”); the division 
indicates the proportion of the category in the final 
simulation (left).

In the second stage, consider the proportions 
of Figure 3. The flag used is shown in Figure 13 
(right). The model used in the first Gaussian 

random function is the same as that used in stage 
1; for the second Gaussian random function, we 
used the clays model (Table 3). The simulation 
result of this stage is shown in Figure 13.

The right of Figure 13 shows the flag, where 
according to the proposed case, first the pore and 
rock matrix is formed and then the clays, i.e. in 
the simulation of the first stage (Figure 11), the 
clays are integrated within the pore space. This 
is done by including another category within the 
category that was occupied by the pore space in 
the flag of the first stage. The final simulation is 
shown at the left of Figure 13.

Figure 13. Clay distribution 
simulation (case 1).

Figure 14. Estimated 
and fitted variogram 
model of the simulation 

of clays (case 1).
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Table 5. Fitted variograms models for the outcomes of the simulation.

Table 4. Proportions of the reference image and the simulations of case 1.

Table 6. Basic statistics of the reference image and the simulations of case 1.

Figure 15. Pore space simulation (case 2).

	 Category	 Figure 4	 Figure 11
	 Mean of simulation

				    10	 100
	 Pore space	 34.6%	 34.11%	 33.89%	 33.8%
	 Rock	 65.4%	 65.89%	 66.11%	 66.2%

	 Category	 Figure 4	 Figure 13
	 Mean of simulation

				    10	 100
	 Pore space	 19.9%	 19.57%	 19.39%	 19.5%
	 Rock	 65.4%	 65.89%	 66.11%	 66.2%
	 Clays	 14.7%	 14.54%	 14.5%	 14.3%

	 Variable	 Model	 Nugget	 Sill	 Practical
					     range (mm)

	 Pore space (case 1)	 Exponential	 0.06	 0.16	 0.12
	 Clays (case 1)	 Exponential	 0.06	 0.066	 0.2

	 Category	 Figure 4	 Figure 11	 Figure  3	 Figure 13

	 Minimum	 0.000	 0.000	 0.000	 0.000
	 First quartile	 0.000	 0.000	 1.000	 1.000
	 Medium	 1.000	 1.000	 2.000	 2.000
	 Third quartile	 1.000	 1.000	 2.000	 2.000
	 Maximum	 1.000	 1.000	 2.000	 2.000
	 Mean	 0.661	 0.659	 1.460	 1.463
	 Variance	 0.224	 0.224	 0.649	 0.640
	 Standard Deviation	 0.473	 0.474	 0.806	 0.800
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Figure 4 is the reference image of the simulation 
of the first stage (Figure 11). Table 4 (column 2 and 
3) shows the proportions of the reference image 
and the simulation. The simulation adequately 
reproduces the image proportions, basic statistics 
(Table 6) and the variogram models (Table 5 
and Figure 12), when models are reproduced, 
indicating that the simulation reproduces properly 
the sizes of the structures.

The result of the second stage (Figure 13) is 
compared with the reference image (Figure 3). 
Table 4 (columns 4 and 5) and Table 6 show the 
proportions and basic statistics of the reference 
image and the simulation.

Figure 15 shows the simulation of the first 
stage (case 2), the ingredients of the simulation 

with the proportions of Figure 5 and the pore space 
model (Table 3).

Table 7 (columns 2 and 3) and Table 8 show 
respectively the proportions and basic statistics 
of the reference image and the simulation. 
Variogram models for the simulation are presented 
in Table 9 and Figures 16 and 18.

The simulation of the second stage (Figure 
17) is comparable to Figure 3. Table 7 (column 4 
and 5) and Table 8 present the proportions and 
statistics of the image and the simulation. In both 
phases of this case the proportions, statistics 
and the sizes of the structures, present in the 
reference images, are well reproduced.

Figure 16. Estimated 
and fitted variogram 
model of the simulation 
of pore space (case 2).

Figure 17. Clay distribution 
simulation (case 2).
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Figure 18. Estimated 
and fitted variogram 
model of the simulation 

of clays (case 2).

Table 7. Proportions of the reference image and the simulations of case 2.

Table 8. Basic statistics of the reference image and the simulations of case 2.

Table 9. Fitted variograms models for the outcomes of the simulation.

	 Category	 Figure 4	 Figure 15
	 Mean of simulation

				    10	 100
	 Pore space	 19.90%	 18.8%	 18.52%	 18.44%
	 Rock	 80.10%	 81.2%	 81.48%	 81.56%

	 Category	 Figure 4	 Figure 17
	 Mean of simulation

				    10	 100
	 Pore space	 19.90%	 18.8%	 18.52%	 18.44%
	 Rock	 65.40%	 67.48%	 67.69%	 67.8%
	 Clays	 14.70%	 13.72%	 13.79%	 13.76%

	 Category	 Figure 5	 Figure 15	 Figure  3	 Figure 17

	 Minimum	 0.000	 0.000	 0.000	 0.000
	 First quartile	 1.000	 1.000	 1.000	 1.000
	 Medium	 1.000	 1.000	 2.000	 2.000
	 Third quartile	 1.000	 1.000	 2.000	 2.000
	 Maximum	 1.000	 1.000	 2.000	 2.000
	 Mean	 0.799	 0.812	 1.460	 1.487
	 Variance	 0.160	 0.153	 0.649	 0.626
	 Standard Deviation	 0.400	 0.391	 0.806	 0.800

	 Variable	 Model	 Nugget	 Sill	 Practical range (mm)

	 Pore space (case 2)	 Exponential	 0.03	 0.121	 0.105
	 Clays (case 2)	 Exponential	 0.061	 0.062	 0.27
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Table 9 shows the Euler characteristic 
values obtained for the reference figure and 
all simulations. In the table 9 all the values are 
greater than or equal to zero, so that it can be 
concluded that both the reference image as the 
simulations are similarly connected.

Figures 19, 20 and 21 compare the Euler 
characteristic of the reference images with their 

respective simulation. The figures show the plots 
of the Euler characteristic versus the diameter 
measured in pixels of the reference images and 
their respective simulation. In the three cases 
a very close qualitative behavior is observed. 
This fact could be interpreted that the simulation 
method reproduces quite well the connectivity 
behavior of reference images.

Figure 19. Comparison 
the Euler characteristic 
presented in Figure 4 

versus Figure 11.

Figure 20. Comparison 
the Euler characteristic 
presented in Figure 5 

versus Figure 15.

Figure 21. Comparison 
the Euler characteristic 
presented in Figure 3 
versus Figures 13 and 17.
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Conclusions

This work is part of a line of research that attempts 
to investigate the impact of the interaction of 
reservoir fluids within themselves and/or injected 
chemicals on the petrophysical properties of the 
rock (porosity, permeability, relative permeability, 
etc.; and consequently in the patterns of fluid flow 
through the rock), and the changes in occupied 
volume by the clays at pore scale.

The results presented are preliminary. However 
it has been found that the simulations using the 
plurigaussian method adequately reproduces 
the proportions, basic statistics and sizes of 
the structures present in the studied reference 
images. Moreover, apparently the plurigaussian 
method reproduces the connectivity present in 
the corresponding reference image.

Although the work presented is restricted to 
2D images, the methodology can be extended to 
3D to achieve the reconstruction of the geometry 
of the porous medium, allowing a more adequate 
estimation of petrophysical properties.

As a future work it should be considered to 
combine the plurigaussian method with other 
methods, as might be a multipoint geostatistical 
simulation method (Okabe and Blunt, 2005 and 
2007).
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