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Resumen
	
Los procesos biológicos han sido propuestos como 
una de las componentes que hacen variar el clima. 
El Dimetilsulfuro (DMS) es el principal componente 
del sulfuro biogénico en la atmósfera. El DMS es 
producido, principalmente, por la biósfera marina 
y juega un papel importante en el ciclo del azufre 
atmosférico. Actualmente se acepta que la biota 
terrestre no sólo se adapta a las condiciones 
ambientales sino que las influencia a través de 
regulaciones en la composición química de la 
atmósfera. En este estudio se utiliza el método 
de ondeletas para investigar la relación entre 
DMS, Nubes bajas (LCC), Radiación Ultravioleta A 
(UVA), Radiación Solar Total (TSI) y Temperatura 
Superficial Oceánica (SST) en la llamada zona 
prístina del Hemisferio Sur. Se encontró que 
las series analizadas presentan diferentes 
periodicidades que pueden ser asociadas con 
fenómenos climáticos de gran escala tales como 
El Niño (ENSO) o la Oscilación Cuasi-Bienal 
(QBO), y/o con la actividad solar. Los resultados 
indican, de manera intermitente pero sostenida, 
una correlación DMS-SST y una anti-correlación 
DMS-UVA; pero DMS-TSI y DMS-LCC tienen una 
relación no lineal. La longitud temporal de las 
series sólo nos permite analizar periodicidades 
menores a 11 años, entonces, nos limitamos a 
analizar la posibilidad de que la radiación solar 
influya en el clima de la Tierra en periodos de 
tiempo menores que el ciclo solar de 11 años. 
Nuestros resultados también sugieren una 
interacción de retroalimentación positiva entre el 
DMS y la radiación solar.

Palabras clave: Dimetilsulfuro, Radiación Solar, 
clima, nubes, retroalimentación, análisis de 
Ondeleta.

Abstract
	
The biological processes have been proposed as 
climate variability contributors. Dimethylsulfide 
(DMS) is the main biogenic sulfur compound in 
the atmosphere; it is mainly produced by the 
marine biosphere and plays an important role 
in the atmospheric sulfur cycle. Currently it is 
accepted that terrestrial biota not only adapts to 
environmental conditions but also influences them 
through regulations of the chemical composition 
of the atmosphere. In the present study we used 
a wavelet method to investigate the relationship 
between DMS, Low cloud cover (LCC), Ultraviolet 
Radiation A (UVA), Total Solar Irradiance (TSI) 
and Sea Surface Temperature (SST) in the so 
called pristine zone of the Southern Hemisphere. 
We found that the series analyzed have different 
periodicities which can be associated with large 
scale climatic phenomena such as El Niño (ENSO) 
or the Quasi-Biennial Oscillation (QBO), and/or to 
solar activity. Our results show an intermittent 
but sustained DMS-SST correlation and a DMS-
UVA anti correlation; but DMS-TSI and DMS-LCC 
show nonlinear relationships. The time-span of the 
series allow us to study only periodicities shorter 
than 11 years, then we limit our analysis to the 
possibility that solar radiation influences the Earth 
climate in periods shorter than the 11-year solar 
cycle. Our results also suggest a positive feedback 
interaction between DMS and solar radiation.

Key words: Dimethylsulfide, Solar Radiation, 
climate, clouds, feedback, wavelet analysis.
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Introduction

The solar activity has been proposed as an external 
factor of Earth’s climate change. Solar phenomena 
such as total and spectral solar irradiance could 
change the Earth’s radiation balance and hence 
climate (Gray et al., 2010). However, biological 
processes have also been proposed as another 
factor of climate change through its impact on 
albedo associated with clouds. One of the most 
important issues regarding the Earth function 
system is whether the biota in the ocean responds 
to changes in climate (Charlson et al., 1987, Miller 
et al., 2003, Sarmiento et al., 2004). According 
to several authors, the major source of cloud 
condensation nuclei (CCN) over the oceans is 
dimethylsulfide (DMS) (e.g., Andreae and Crutzen, 
1997; Vallina et al., 2007).

Dimethy l  Su lphonium Prop ionate in 
phytoplankton cells is released into the water 
column where it is transformed into dimethylsulfide. 
The dimethylsulfide goes through the sea surface 
to the atmosphere as a gas, where it oxidizes 
to form a range of products, among them 
SO2. This compound oxidizes to H2SO4, which 
forms sulphate particles that act as CCN. The 
dimethylsulfide concentration is controlled by 
the phytoplankton biomass and by a web of 
ecological and biogeochemical processes driving 
by the geophysical context (Simó, 2001). Solar 
radiation is the primary driving mechanism of the 
geophysical context and is responsible for the 
growth of the phytoplankton communities. Clouds 
have a major impact on the amount of heat and 
radiation budget of the atmosphere. Clouds modify 
both albedo (short-wave) and long-wave radiation. 
In particular, for low clouds over oceans, the 
albedo effect is the most important result of cloud 
radiation interaction and has a net cooling effect 
on the climate (Chen et al., 1999, Rossow, 1999).

The DMS, solar radiation and cloud albedo 
are hypothesized to have a feedback interaction 
(Charlson et al., 1987; Shaw et al., 1998; Gunson 
et al., 2006). This feedback can be either negative 
or positive. A negative feedback process requires 
a positive correlation between solar irradiance and 
DMS: increases in solar irradiance reaching the 
sea surface increase the DMS, augmenting the CCN 
and the albedo. An overall increase in the albedo 
produces a decrease in the irradiance reaching the 
sea surface and thus cooling occurs. A positive 
feedback requires an anti-correlation between 
solar irradiance and the DMS: decreases in solar 
irradiance produce a decrease of the DMS, the CCN 
and the albedo; a net reduced albedo allows more 
radiation to be absorbed, producing heating. Using 
seasonal and annual time scales, a first attempt 
to find correlations between a global database 
of DMS concentration and several geophysical 
parameters was unsuccessful (Kettle et al., 1999).

Quantitative studies that use data bases 
spanning roughly three decades (Simó and Dachs, 
2002; Simó and Vallina, 2007; Vallina et al., 2007) 
have concluded that the DMS and solar radiation 
have a high positive correlation on seasonal time 
scales for most of the ocean, favoring a negative 
feedback on climate. Another study (Larsen, 
2005), based on a conceptual model, proposed 
a positive feedback. A positive feedback would 
also imply an anti-correlation between Total 
Solar Irradiance (TSI) and cloud cover. Indeed, a 
global anti-correlation between TSI and oceanic 
low cloud cover has been found (Kristjánsson et 
al., 2002; Lockwood, 2005). Furthermore, case 
studies using ultraviolet (UV) light do not allow 
conclusive results regarding the sign of the solar 
radiation-DMS correlation (Kniventon et al., 2003; 
Toole and Siegel, 2004; Toole et al., 2006).

Another study on decadal relation between 
north and south high latitude concentrations 
of Methane Sulphonic Acid (MSA), associated 
exclusively to DMS, and TSI, found that at the time 
scales coincident with the 22-years magnetic solar 
cycle, the north-MSA and TSI follow each other, 
favoring a negative feedback on local climate; but 
at the time scales of the 11-years solar cycle for 
north and south, the MSA-TSI presents an anti-
correlation that has increased since the 1940s 
favoring a positive feedback on local climate 
(Mendoza and Velasco, 2009), this indicates that 
the relations between the variables of interest 
may change with time and location. 

The purpose of the present study is to examine 
in a selected location of the Southern Hemisphere 
and at time-scales shorter than the solar cycle 
the relationship between DMS and climate and 
DMS and solar phenomena, through clouds, sea 
surface temperature (SST) and the UV radiation 
A (UVA). A time series of UV radiation was used 
because this radiation has a role in a number of 
the key processes controlling DMS concentrations 
in seawater. Several studies link the production of 
DMS and UV (e.g. Toole et al., 2006, Kniventon 
et al., 2003), some studies report increases and 
other significant decreases in DMS production, 
also the phytoplankton responds dramatically 
to UV radiation (Toole and Siegel, 2004). These 
studies indicate a relationship between UV and 
DMS in the ocean (Kniventon, 2003).

Region of study and data

The data analysis was performed for the Southern 
Hemisphere between 40º- 75ºS latitude and 
150W-155E longitude. Considering the abundance 
of chlorophyll by regions, this area includes the 
biogeochemical provinces ANTA, APLR, CHIL, 
FKLD, SANT and SSTC (Longhurst, 1995).



Geofísica Internacional

October - December 2013      345

The concept of biogeochemical provinces 
is based on the observation that large ocean 
regions are characterized by coherent physical 
forcing and biological conditions at the seasonal 
scale, which are representative of macroscale 
ocean ecosystems. The boundaries between 
provinces are generally persistent but are also 
spatially and temporally variable, because they 
are linked to physical properties which are known 
to change position seasonally and inter annually. 
The boundaries of Longhurst’s provinces were 
selected subjectively and intuitively on the 
basis of climatological data (mixed layer depth, 
solar irradiance penetration and chlorophyll 
concentrations) and common knowledge on the 
biological properties extracted from scattered 
data in the existing literature (Longhurst, 1995; 
Hardman-Mountford et al. 2008).

Longhurst (1995) recognize four primary 
domains of the global pelagic ecosystem. The 
first one is Polar: the seasonal cycle of sea ice in 
high latitudes results in a brackish surface layer 
in spring and summer as freshwater is released 
from melting winter ice cover; this phenomenon 
occurs most consistently in the marginal ice zone 
and leads to an active bloom as soon as ice break-
up occurs). The second domain is Westerlies: 
the defining characteristic of this domain is 
seasonality in wind stress imposed by the 
westerlies associated with the Aleutian, Iceland 
and Antarctic atmospheric low-pressure cells, 
together with seasonality in the radiation flux at 
the sea surface. The third domain is Trade Winds: 
the Ekman layer of low latitudes is resistant to 
wind deepening and the scale of baroclinicity is 
weeks, rather than years as in higher latitude. 
The fourth domain is Coastal: the characteristic of 
this domain is to embrace the concept of a coastal 
boundary domain as defined for regions where the 
general oceanic circulation is significantly modified 
by interaction with coastal topography and with 
its coastal wind regimen.

These are themselves partitioned into 57 
secondary biogeochemical provinces which we 
have used as the units of our global computation 
of primary production. For the Polar domain we 
use the biogeochemical provinces ANTA (Antarctic. 
Lies between the Polar Frontal Zone and the 
Antarctic Divergence, having two components: 
a zone of permanently open water and a zone 
seasonally carrying pack ice) and APLR (Austral 
Polar. This is a ribbon of westward-moving 
Antarctic Surface Water, up to 300 km wide, ice 
covered in winter but with some open water areas 
in summer, between the Antarctic Divergence 
and the continent). For the Westerlies domain 
we use the biogeochemical provinces SANT 
(Subantarctic. From the Subtropical Convergence 
south to the Antarctic Polar Front, which is the 
southern limit of the Polar Frontal zone and 

which covers ~4º latitude) and SSTC (South 
Subtropical Convergence. The most northerly of 
the annular features of the Southern Ocean. The 
frontal zone is sufficiently dynamic to have an 
associated eddy field and includes several surface 
discontinuity fronts). For the Coastal domain we 
use the biogeochemical provinces CHIL (Chile-
Peru Current Coastal. Defined, like its Benguela 
homologue, as extending from the coastline to 
the offshore anticyclonic eddy field. To the south, 
it is defined by the divergence zone at ~45º S 
and to the north at its separation from the coast 
near the equator) and FKLD (Southwest Atlantic 
Continental Shelf. Argentine shelf and Falklands 
Plateau from Mar de Plata to Tierra del Fuego) 
(Longhurst, 1995).

This area (study region) is the least polluted 
in the world, the so-called pristine zone, and 
then solar effects on biota and climate should be 
more evident. Over 90% of the area is ocean; the 
remaining 10% corresponds to the southern parts 
of Chile, Argentina, Tasmania and New Zealand 
(South Island). The studied period is 1983-2010, 
containing almost 27 years of data.

The DMS data set was obtained from NOAA-
Global Surface Seawater Dimethylsulfide Database 
(http://saga.pmel.noaa.gov/dms). The original 
data series in this database contains the DMS 
measurements collected in the global oceans 
during 1972-2011 and are given as raw data 
samples (Figure 1a). The sequence of data 
presents important gaps in space and time; more 
details are given in Kettle et al. (1999).We can 
take a monthly resolution for the DMS data along 
full year periods, regardless of the polar jet stream 
effects, since this jet blows at an altitude ranging 
from 11 to 16 kilometers, and therefore does not 
have interaction with the DMS concentrations 
(Savitskiy and Lessing, 1979; Gallego et al., 2005; 
Pidwirny, 2006).

We also use the SST time series (Figure 1b), 
obtained from NOAA-Earth System Research 
Laboratory (http://www.esrl.noaa.gov/psd/cgi-
bin/data/timeseries/timeseries1.pl). Used here is 
the Low Cloud Cover Anomaly data (LCC) from the 
International Satellite Cloud Climatology Project 
(ISCCP) (http://isccp.giss.nasa.gov); two series 
of low cloud cover anomalies were obtained: 
Visible-Infrared (VIS-IR) and Infrared (IR) (Figs. 
1c and 1d).

Additionally, we work with the UVA between 
320 to 400 nm, because 95% of wavelengths 
longer than 310 nm reach the surface (Lean 
et al., 1997) and has a large impact on marine 
ecosystems (Häder et al., 2003; Toole et al., 
2006; Hefu et al., 1997; Slezak et al., 2003; 
Kniventon et al., 2003; Häder et al., 2011). We 
use the UVA composite series constructed from 
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the Nimbus 7 (1978-1985), NOAA-9 (1985-1989), 
NOAA-11 (1989-1992) and SUSIM satellites 
between 1992 and 2008 (DeLand et al., 2008). 
The atmospheric attenuated UVA series was 
calculated at sea surface level using the Santa 
Barbara Disorted Atmospheric Radiative Transfer 
(SBDART) program; it was obtained from the 
site http://www.icess.ucsb.edu/esrg/SBDART.
html (Ricchiazzi et al., 1998). The average UVA 
attenuation at surface was estimated to be ~ 5% 
less than at the top of the atmosphere (Figure 1e).

Finally, we work with the PMOD composite 
TSI time series obtained from the Physikalisch 
Meteorologisches Observatorium Davos-World 
Radiation Center (Fröhlich, 2009) (Figure 1f) (ftp://
ftp.pmodwrc.ch/pub/data/irradiance/composite/
DataPlots/ext_composite_d41_62_1204.dat).

The method

Some of the previous efforts on elucidating a 
plausible contribution of DMS on the Earth’s 
climate have been mostly based on correlation 
analysis models. Such analysis suggest certain 
relation between the time series, however, they 
are of global nature and do not provide precise 
information about such relations. Moreover, the 
fact that two series have similar periodicities does 
not necessarily imply that one is the cause and 
the other is the effect, and even if the correlation 
coefficient is very low, there is the possibility of an 
existing relation in spite of a low spectral power of 
one or both time series. Here we apply the wavelet 
method that allows to address such problems.

Wavelet Analysis

In order to analyze local variations of power within 
a single non-stationary time series at multiple 
periodicities we apply the wavelet method using 
the Morlet Wavelet (Torrence and Compo, 1998; 
Grinsted et al., 2004).

The Morlet Wavelet consists of a complex 
exponential, where is the time, is the wavelet 
scale and is the non-dimension frequency. Here we 
use in order to satisfy the admissibility condition 
(Farge, 1992). Torrence and Compo (1998) have 
defined the wavelet power , where is the wavelet 
transform of a time series and is the time index.

We estimate the significance level for each 
scale using only values inside the cone of influence 
(COI). The COI is the region of the wavelet 
spectrum out of which edge effect become 
important and is defined here as the e-folding 
time for the autocorrelation of wavelet power at 
each scale.

This e-folding time is chosen so that the 
wavelet power for a discontinuity at the edge 

drops by the factor and ensures that the edge 
effects are negligible beyond this point (Torrence 
and Compo, 1998).

Wavelet power spectral density was calculated 
for each of the time series described in Section 
2, the black thin lines mark the interval of 95% 
confidence or COI. An appropriate background 
spectrum is either the white noise (with a flat 
power spectrum) or the red noise (increasing 
power with decreasing frequency). We calculate 
the significance levels in the global wavelet 
spectra with a simple red noise model (Gilman 
et al., 1963). We only take into account those 
periodicities above the red noise level.

Furthermore, we find the wavelet coherence 
spectra (Torrence and Compo, 1998; Grinsted et 
al., 2004). It is especially useful in highlighting 
the time and frequency intervals when the two 
phenomena have a strong interaction. If the 
coherence of two series is high, the arrows in 
the coherence spectra figures show the phase 
between the phenomena. Arrows at (horizontal 
right) indicate that both phenomena are in phase, 
and arrows at (horizontal left) indicate that they 
are in anti-phase. It is very important to point 
out that these two cases imply a linear relation 
between the considered phenomena. Arrows at 
and (vertical up and down, respectively) or any 
other angle imply a non-linear or complex relation 
between the two series (Torrence and Compo, 
1998).

We also include the global spectra in the 
wavelet and coherence plots, which is an average 
of the power of each periodicities inside the 
COI (Mendoza et al., 2007; Valdés-Galicia and 
Velasco, 2008; Velasco and Mendoza, 2008). The 
uncertainties of the peaks of both global wavelet 
and coherence spectra are obtained from the peak 
full-width at the half-maximum of the peak.

Analysis and results

The results obtained with the wavelet analysis will 
be presented and discussed in this section.

The global wavelet spectrum

The results of the wavelet method are shown in 
Figure 1, a summary of the periodicities found 
for all the time series is shown in Table 1. The 
DMS global wavelet spectrum (Figure 1a) shows 
significant periodicities ~2 and 4 years. The SST 
global wavelet spectrum (Figure 1b) shows only 
one periodicity close to 1 year. The LCC-IR global 
wavelet spectrum (Figure 1c) presents significant 
peaks ~0.6, 1.5, 2 and 8 years, and the LCCVIS-
IR global spectrum has significant periodicities 
~0.6, 1, 5 and 8 years but taking into account the 
uncertainties these peaks coincide with the LCC-IR 
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peaks. The UVA and TSI global wavelet spectrum 
(Figures 1e and 1f) show that the 11-years 
periodicity has the largest power, however its 
significance is low and partially outside the COI 
due to the short time interval.

The wavelet coherence spectra

The results of the wavelet coherence analysis 
appear in Figure 2 and present the coherence 
analysis between DMS vs SST, DMS vs LCC-
IR, DMS vs LCCVIS-IR, DMS vs UVA and DMS 
vs TSI respectively. For each panel, the time 

Figure 1. Wavelet Analysis. Each panel at the top shows the corresponding time series, at the middle the wavelet 
spectra and at the right the global wavelet spectra. (a) Dimethylsulfide (DMS), (b) Sea Surface Temperature (SST), 
(c) Low Cloud Cover Infrared Anomaly (LCC-IR), (d) Low Cloud Cover Visible-Infrared Anomaly (LCCVIS-IR), (e) Ul-
traviolet Radiation A (UVA), (f) Total Solar Irradiance (TSI). The color code indicating the statistical significance level 
for the spectral plots appears at the bottom of the figure; in particular the 95% level is inside the contours. The red 

dashed line in the global wavelet spectra represents the red noise level.
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series appears at the top, the wavelet coherence 
spectrum appears at the middle and the global 
wavelet coherence spectra is at the right. Table 2 
summarizes the results; the strongest periodicities 
appear in bold number.

The Figure 2a shows that the DMS and 
SST time series have the most persistent and 
prominent coherence ~1 year and tends to be 
in phase, moreover, periodicities ~0.4, 2 and ~4 
years, also notable in the wavelet coherence are 

mainly in phase, the wavelet coherence spectra 
analysis show an intermittent but sustained 
correlation between the analyzed series.

The coherences between DMS and LCC-IR 
and LCCVIS-IR appearing in Figures 2b and 2c 
do not show a definite phase. The Figure 2d 
shows that the DMS and UVA time series have the 
most persistent and prominent coherence ~0.5, 
1 and 3 year and tend to be in anti-phase, the 
anticorrelation (anti-phase) is intermittent but 
sustained; while the peak ~8 years is in phase 
but outside the COI due to the time interval of 
the series.

The Figure 2e shows that the DMS and TSI time 
series have the most persistent and prominent 
coherence ~2 years and tends to be in anti-phase, 
moreover, persistent coherence at ~0.4 and 1 year 
is out of phase and ~8 years is in phase but outside 
the COI due to the time interval of the series.

The periodicities found are between ~0.4 and 
~8 years. Peaks shorter than 1 year may be due 
to seasonal climatic phenomena. The ~2 years 
period can be associated with the Quasi-Biennial 
Oscillation (QBO) in the stratosphere (Holton et 
al., 1972; Dunkerton, 1997; Baldwin et al., 2001; 
Naujokat, 1986; Holton et al., 1980) and with the 
solar activity (Kane, 2005). The QBO dominates 
the variability of the equatorial stratosphere and 
is easily seen as downward propagating easterly 
and westerly wind regimes, with a variable period 
averaging approximately 28 months. The QBO is 
a tropical phenomenon; it affects the stratospheric 
flow from pole to pole by modulating the effects 
of extratropical waves. The QBO is present also in 
other stratospheric parameters not only tropical 
but also extra-tropical weather and other regions, 
as the mesosphere and troposphere. There is an 
established body of literature (Roy and Haigh, 
2011; Labitzke, 2012; Weng, 2012), initiated by 
the pioneering work of Labitzke (1987), which has 
identified the influence of solar activity on the QBO.

In particular, it was found that by segregating 
the meteorological data by the QBO phase a clear 
signal of the 11-year solar cycle was revealed. 
More specifically, that the January-February 
temperature at 30 hPa over the North Pole tends 
to be warmer during the west phase of the QBO 
at high solar activity (HS/wQBO) and also during 
the east phase at low solar activity (LS/eQBO). 
Consistently, cold polar temperatures occur during 
LS/wQBO and HS/eQBO (Labitzke and van Loon, 
1992). Other results suggest that solar variability, 
modulated by the phase of QBO, influences zonal 
mean temperatures at high latitudes in the lower 
stratosphere, in the mid-latitude troposphere 
and sea level pressure near the poles (Roy and 
Haigh, 2011).

Table 1. Summary of periodicities.

	 Periodicity (Yr)		  TSp

		  Dimethylsulfide (DMS)

	 1.8 ± 0.2		  1988-1994
			   1998-2003

	 3.7 ± 0.4		  1988-1994
			   2001-2006

		 Sea Surface Temperature (SST)

	 1 ± 0.5		  1983-2010

		  Low Cloud Cover (IR)

	 0.6 ± 0.1		  1986-1987
			   1998-2002

	 1.5 ± 0.5		  1998-1999

	 1.8 ± 0.2		  1996-2002

	 3.5 ± 0.5		  1995-2002

	 4.5 ± 0.5		  1993-2003

	 8.2 ± 0.8		  1994-1999

		  Low Cloud Cover (VIS-IR)

	 0.6 ± 0.1		  1987-1988
			   1994-1996

	 1 ± 0.5		  1986-1988
			   1994-1996
			   1998-2000

	 5 ± 0.3		  1990-2000

	 8.2 ± 0.3		  1995-1999

		 Ultraviolet Radiation A (UVA)

	 11 ± 3		  1995-1999

		 Total Solar Irradiance (TSI)

	 11 ± 3		  1995-1999

TSp= Time Span inside the COI. The periodici-
ties on or above the red noise level in the global 
wavelet plots appear in bold numbers.
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The periodicities ~3 and 4 years could be 
related to the El Niño-Southern Oscillation (ENSO) 
(Nuzhdina, 2002; Njau, 2006) and to a sunspot 
periodicity (Polygiannakis et al., 2003).

The ENSO is the result of a cyclic warming 
and cooling of the surface ocean of the central 
and eastern Pacific, it occurs at irregular intervals 
between 2 and 7 years in conjunction with the 
Southern Oscillation, a massive seesawing of 
atmospheric pressure between the southeastern 
and the western tropical Pacific.

The ENSO leads to changes in ocean temperature 
that influence salinity changing environmental 
conditions for marine ecosystems. These changes 
affect fish populations, marine phytoplankton 
and chlorophyll. The direct influence of ENSO is 
reflected in the ocean, marine biota and climate. 
Recent work suggest an ENSO- like response to 
the 11-year solar cycle that includes a La Niña 
like pattern assigned to solar maximum conditions 
(Bal et al., 2011). The solar activity has obvious 
influence on some large scale climatic phenomena, 
such as ENSO. Kirov and Georgieva (2002) found 

Figure 2. Wavelet Coherence Analysis. Each panel at the top shows the corresponding time series, at the middle the 
wavelet coherence spectra and at the right the global wavelet coherence spectra. (a) DMS vs SST, (b) DMS vs LCC-IR, 
(c) DMS vs. LCCVIS-IR (d) DMS vs UVA, (e) DMS vs. TSI. The color code indicating the statistical significance level 

for the spectral plots appears at the bottom of the figure; in particular the 95% level is inside the contours.
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Table 2. Summary of wavelet coherence results.

	 Relation.	 Periodicity (Yr)	 TSp	 Phase

	 DMS vs SST	 0.4 ± 0.1	 1987-1989	 OUT
			   1994-1996	 IN
			   1997-1999	 IN
			   2003-2005	 IN
			   2006-2008	 OUT
		  0.9 ± 0.2	 1986-1989	 IN
			   1992-1996	 IN
			   1996-1999	 IN
			   2004-2008	 IN
		  2 ± 0.1	 1987-1991	 IN
			   1999-2003	 CHP
		  4.4 ± 0.3	 1990-1996	 IN

	 DMS vs LCC-IR	 0.4 ± 0.1	 1986-1987	 OUT
			   1988-1993	 ANTI
			   2003-2004	 CHP
			   2005-2007	 ANTI
		  0.8 ± 0.3	 1987-1990	 ANTI
			   1994-1996	 OUT
			   2007-2009	 IN
		  1.9 ± 0.2	 1987-1992	 ANTI
			   1996-2000	 OUT
		  3.2 ± 0.1	 1991-2004	 IN
		  5 ± 0.1	 1994-2001	 ANTI
		  8 ± 3	 1995-2000	 ANTI

	 DMS vs LCCVIS-IR	 0.5 ± 0.1	 1994-1996	 IN
			   1997-1998	 OUT
		  1 ± 0.2	 1987-1992	 CHP
			   1993-2000	 CHP
			   2005-2008	 OUT
		  5 ± 1	 1990-2004	 CHP
		  8 ± 3	 1995-2000	 ANTI

	 DMS vs UVA	 0.5 ± 0.1	 2001-2003	 ANTI
			   2004-2007	 ANTI
		  1.3 ± 0.1	 1991-1996	 ANTI				  
			   1999-2003	 ANTI
		  3 ± 0.9	 1989-1997	 ANTI
		  8 ± 3	 1994-2003	 IN

	 DMS vs TSI	 0.4 ± 0.1		
			   2002-2003	 OUT
			   2003-2005	 OUT
		   0.7 ± 0.3	 1992-1996	 OUT
			   1997-1998	 OUT
		  1.7 ± 0.3	 1986-1990	 OUT
			   1991-1994	 IN
			   1996-2003	 ANTI
		  8 ± 3	 1994-2000	 IN
                                                                                                                                                      
The strongest periodicities appear in bold numbers. TSp= time span inside the COI.                              
IN= in phase; ANTI= in anti-phase; OUT= out of phase; CHP= changing phase.



Geofísica Internacional

October - December 2013      351

that solar activity influenced both the intensity and 
occurrence frequency of the ENSO.

Mufti and Shah (2011) found a significant 
positive correlation between the SST anomalies 
and sunspot indices in both the 11-year and 22-
year bands. Similar results showing correlation 
between solar activity and El Niño are also shown 
by Weng (2005). The influences of solar activity 
on the different natural processes are broad 
and extensive. However, large scale climatic 
phenomena, including ENSO, North Atlantic 
Oscillation (NAO), Atlantic Oscillation (AO), QBO) 
and Pacific Decadal Oscillation (PDO), present also 
periodicities that coincide with the solar activity 
cycles (Velasco and Mendoza, 2008), and also 
affect natural processes directly (Labat, 2010).

The periodicities ~5 years can be a harmonic 
of the 11-years solar cycle (Djurović and Páquet, 
1996) and the periodicity ~8 years could be 
related to the 11-years sunspot cycle (taking into 
account the uncertainties). Summarizing, our 
results indicate a consistent correlation between 
DMS and SST and an anticorrelation between 
DMS-UVA. Between DMS-TSI we notice mainly 
an out of phase situation implying a nonlinear 
relationship. And the relation between DMS and 
LCCIR and LCCVIS-IR presents undefined phases 
indicating that the relation is also non-linear. The 
anticorrelation between UVA and DMS indicate a 
positive feedback, as discussed in other works 
(Larsen, 2005) or as implied by the findings 
of other papers (Mendoza and Velasco, 2009; 
Lockwood, 2005; Kristjánsson et al., 2002).

Conclusions

We studied the relationship between DMS and 
SST, LCC-IR, LCCVIS-IR, UVA and TSI using the 
Wavelet Method. We found dominant periodicities 
that coincide with those of large scale atmospheric 
phenomena or solar activity, for instance, the 
periodicities ~2 years can be associated to 
the Quasi-Biennial Oscillation (QBO) in the 
stratosphere as this atmospheric phenomenon 
is related to solar activity, those periodicities ~3 
and ~4 years could be associated to the El Niño-
Southern Oscillation (ENSO) as large scale climatic 
phenomena seem also influenced by solar activity, 
and the periodicities ~5 years can be associated 
a harmonic of the 11-year solar cycle. The results 
of the wavelet analysis show an intermittent but 
sustained correlation (phase) between DMS-SST 
and an anticorrelation (anti-phase) between 
DMS-UVA, these two cases indicate a linear 
relationships because the coherence of the series 
is high. The relations between DMS and TSI and 
LCC imply nonlinear relationships. The time-span 
of the series allow us to study only periodicities 
shorter than 11years, then we limit our analysis 
to the possibility that solar radiation influences 

the Earth climate in periods shorter than the 
11-year solar cycle. Our results also suggest a 
positive feedback interaction between DMS and 
UVA solar radiation.
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