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Resumen

En este artículo se presentan los resultados 
de una estrategia de paralelización para 
reducir el tiempo de ejecución al aplicar la 
simulación  Monte Carlo con un gran número de 
realizaciones obtenidas utilizando un modelo 
de flujo y transporte de agua  subterránea. 
Desarrollamos un script en Python usando 
mpi4py, a fin de ejecutar GWMC y programas 
relacionados en paralelo aplicando la biblioteca 
MPI. Nuestro enfoque consiste en calcular las 
entradas iniciales para cada realización y correr 
grupos de estas realizaciones en procesadores 
separados y después calcular el vector medio 
y la matriz de covarianza de las mismas. Esta 
estrategia se aplicó al estudio de un acuífero 
simplificado en un dominio rectangular de 
una sola capa. Presentamos los resultados 
de aceleración y eficiencia para 1000, 2000 y 
4000 realizaciones para diferente número de 
procesadores. Eficiencias de 0,70, 0,76 y 0,75 
se obtuvieron para 64, 64 y 96 procesadores, 
respectivamente. Observamos una mejora 
ligera del rendimiento a medida que aumenta 
el número de realizaciones.

Palabras clave: Agua subterránea, flujo y 
transporte, simulación Monte Carlo, cómputo 
paralelo distribuido, Python.
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Abstract

In this paper we present the results of a 
parallelization strategy to reduce the execution 
time for applying Monte Carlo simulation with 
a large number of realizations obtained using 
a groundwater flow and transport model. We 
develop a script in Python using mpi4py, in 
order to execute GWMC and related programs 
in parallel, applying the MPI library. Our 
approach is to calculate the initial inputs for 
each realization, and run groups of these 
realizations in separate processors and 
afterwards to calculate the mean vector and 
the covariance matrix of them. This strategy 
was applied to the study of a simplified aquifer 
in a rectangular domain of a single layer. We 
report the results of speedup and efficiency for 
1000, 2000 and 4000 realizations for different 
number of processors. Efficiencies of 0.70, 
0.76 and 0.75 were obtained for 64, 64 and 
96 processors, respectively. We observe a 
slightly improvement of the performance as 
the number of realizations is increased.

Key words: groundwater, flow and transport, 
Monte Carlo  simulation, distributed parallel 
computing, Python.
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Introduction

Stochastic hydrogeology is a field that deals 
with stochastic methods to describe and analyze 
groundwater processes (Renard, 2007). An 
important part of it consists of solving stochastic 
models (stochastic partial differential equations) 
describing those processes in order to estimate 
the joint probability density function of the 
parameters (e.g., transmissivity, storativity) 
and/or state variables (e.g., groundwater levels, 
concentrations) of those equations or more 
commonly some of their moments. Monte Carlo 
simulation (MCS) is an alternative for solving 
these stochastic models, it is based on the idea 
of approximating the solution of stochastic 
processes using a large number of equally likely 
realizations. For example, the pioneering work 
on stochastic hydrogeology by Freeze (1975) 
applies this method.

The large number of realizations required 
by MCS can be very demanding in computing 
resources and the computational time can 
be excessive. Nowadays there exist many 
parallel computing platforms that can be 
used to alleviate this problem. Some previous 
works have focused in this direction, for 
example Dong et al. (2012) describe a 
parallelization strategy for stochastic modeling 
of groundwater systems using the Java Parallel 
Processing Framework (JPPF). This tool is very 
powerful and can be used as a GRID middle-
ware (Foster et al., 2001) to distribute tasks 
across several computing systems. Dong et 
al. (2012) take advantage of this tool to avoid 
any modification of MODFLOW and related 
programs. However, when the JPPF is used in a 
cluster alone, a simply master-worker parallel 
model is obtained. They also report that the 
combination of two levels of parallelism, using 
a parallel solver to reduce the execution time 
by an order of two. However, this technique 
pays off only for very large grids, over 106 
points. In our case, we do not require such 
massive grids.

In this paper, we propose a distributed 
parallel computing method for stochastic 
modeling with the software Groundwater 
Monte Carlo (GWMC), a component of the 
Groundwater Quality Monitoring (GWQMonitor) 
package (Herrera, 1998). GWMC is used 
together with an assimilation method called 
Ensemble Smoother of Herrera (ESH) in 
order to estimate groundwater contaminant 
concentration assimilating concentration data. 
The best known version of Ensemble Smoother 
was developed by van Leeuwen and Evensen 
(1996). Herrera de Olivares developed a version 
of the assimilation method independently, 

and originally she called it static Kalman filter 
(Herrera, 1998).

Ground Water Monte Carlo (GWMC)

GWMC is a program written in FORTRAN by 
Herrera (1998), and subsequently modified by 
Olivares-Vázquez (2002).

It implements Monte Carlo simulation 
using a flow and transport simulator in which 
hydraulic conductivity is a random field 
and the contaminant concentration at the 
contaminant source is a time series at each 
node. Therefore, multiple realizations of those 
two parameters are obtained and for each 
realization the flow and transport equations are 
solved by the Princeton Transport Code (PTC), 
a finite element simulator (Babu et al., 1993). 
Finally, different averages of the concentration 
solutions are calculated to obtain their space-
time mean vector and covariance matrix. In 
this paper, GWMC is parallelized in order to 
reduce the program execution time.

Methodology

The methodology implemented in this work is 
as follows:

Step 1. The input files for PTC are generated.

Step 2. The input files for GWMC are 
generated.

Step 3. A number of realizations of the 
natural logarithm of the hydraulic conductivity 
field are generated using the sequential Gau-
ssian simulation (SGSIM) program (Deutsch 
and Journel 1997). This program generates 
standard normal simulated values with a given 
correlation spatial structure on a rectangular 
mesh.

Step 4. A transformation to get the 
hydraulic conductivity field (a lognormal field) 
is calculated for each realization using the 
Nrm2log program. This program transforms 
the standard normal values to a normal 
variable with a given mean and variance and 
then applies the exponential function to get the 
lognormal field.

Step 5. For each node at the source of 
contaminant concentration, the same number 
of realizations of time series is generated using 
the RandTS2 program.

Step 6. If the PTC finite element mesh is 
not equal to the SGSIM rectangular mesh, the 
SGSIM mesh is mapped into the nearest node 
of the PTC mesh.



Geofísica internacional

July - september 2015     247

Step 7. The generated hydraulic conduc-
tivity realization value is assigned to the 
corresponding node of the PTC mesh and the 
hydraulic conductivity PTC files are substituted 
with the new values.

Step 8. The contaminant concentrations 
at the source are substituted by the RandTS2 
values in the PTC file for the transport boundary 
conditions.

Step 9. PTC is executed for each conductivity 
and source concentration realization (PTC 
solves numerically the flow and transport 
equation).

Step 10. Adding over the concentration 
solutions obtained in step 8, an auxiliary 
vector with the sum of concentrations for each 
node and time of interest is calculated and an 
auxiliary matrix with the sum of products of 
concentrations for each possible pair of space-
time positions of interest is calculated.

Step 11. Combining the information 
contained in the auxiliary vector and the 
auxiliary matrix the spatiotemporal mean vector 
and covariance matrix of the contaminant 
concentration are calculated.

Step 12. The ESH is applied to estimate 
contaminant concentration.

Steps 6 to 10 are executed by GWMC and 
steps 3 to 11 are parallelized in this work.

Python - MPI

Python is an interpreter, interactive and 
extensible programming language used in a 
wide variety of applications. In particular, for 
scientific computing there exist many tools 
that ease the development of computational 
codes (Milman and Aivazis, 2011). Python can 
be combined easily with other programming 
languages, like C, C++ and Fortran, and al-
so can be used to exploit high performance 
computing architectures by using MPI (Message 
Passing Interface) [Gropp et al., 1999] or 
CUDA (Compute Unified Device Architecture) 
[Kirk and Hwu, 2010]. Currently, almost any 
operating system supports Python in such a 
way that this programming language provides 
portability across many computing platforms.

In this work our main objective is to reduce 
the execution time of the complete process 
described in section 4. In order to avoid a 
complete re-design of our codes, written 
mainly in FORTRAN, we decided to use Python 

and MPI for Python (MPI4PY) [Dalcin, 2012]. 
MPI4PY provides an object-oriented approach 
for MPI which allows us to distribute tasks using 
Python scripts. In the appendix we describe 
briefly the scripts developed in this work.

In figure 1 we sketch the parallelization 
process. The main idea is to re-use FORTRAN 
codes with minimal modifications inside 
a Python script. First, we initialize all the 
variables and determine the corresponding 
inputs for the different executable codes. Part 
of this process is done in a client machine, 
before the parallel execution. After that, the 
client submits a batch task to the cluster. Once 
the parallel execution starts, each processor 
generates its own input files labeled using 
the processor number. With the local inputs 
generated, we execute a group of realizations 
in each processor. The load balancing is 
done by the script, distributing the same 
number of tasks for each processor. Each rea-
lization solves the same problem but with 
different inputs, so the time required by each 
realization is almost the same. Since the num-
ber of realizations can be different for each 
processor, we need to use a barrier at the end 
of the parallel execution. However, the waiting 
time for the last processor is negligible. The 
calculation of the space-time mean and 
the covariance matrix is done in processor 
1, which requires information from all the 
processors. Originally, this was done in GWMC. 
In our case, we removed the corresponding 
FORTRAN code from the program, and we put 
it in a separate subroutine that is called at the 
end of the script. However this change is very 
simple and straightforward. Finally, the last 
step (the ESH application) is done as a post 
processing step in the client machine.

Application problem

An aquifer of 804.7 by 804.7 m2 is considered 
(figure 2a). A contaminant source is located 
on the left hand side border and the area is 
bounded by a river on the right hand side. This 
problem was slightly modified from the one 
presented by Herrera and Pinder (2005).

The objective is to estimate the contaminant 
concentrations of a moving plume during 
a 2-year period. The locations at which 
concentration estimates will be obtained are 
associated with the nodes of what we call the 
estimation mesh shown in Figure 2a. For each 
one of these locations, concentrations will be 
estimated every 121.7 days; this amounts to 
six times during the 2-year period.
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Figure 1. Parallelization process. Task 3 to 10 are done in parallel, while task 12 is calculated in processor 1.

Figure 2. a) Problem set up with the estimation mesh and boundary conditions for the flow model (h is in 
meters), b) Stochastic simulation mesh and boundary conditions for the transport model (modified from Olivares-

Vázquez, 2002).
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Flow and transport model

The PTC is used in two-dimensional mode to 
solve the flow and transport model. The flow and 
transport equations coupled through Darcy’s 
law, equations (1), (2) and (3) respectively, 
are used to describe the contaminant plume 
evolution:
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∂
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where K is the hydraulic conductivity, h is 
the hydraulic head, SS is the specific storage 
coefficient, Q is a source or sink term, c is the 
solute concentration, D is the hydrodynamic 
dispersion, c0 is the concentration of the 
pumped fluid and f is the effective porosity. 
The flow equation (1) describes the water flow 
through the aquifer; the transport equation 
(2) describes the changes in contaminant 
concentration through time for a conservative 
solute. Darcy’s law (3) is used to calculate V, 
Darcy velocity. Boundary conditions for flow 
and transport are included in figures 2a and 
2b, respectively. Concentration is given in 
parts per million (ppm) and hydraulic head in 
meters (m).

The numerical mesh used to solve the 
flow and transport equations is called the 
“stochastic simulation mesh”; it consists of 
40x40 equally sized elements (figure 2b). For 
the transport model forty-eight time-steps are 
used to simulate a two-year period, 15.2 days 
each. For the flow model, all nodes of the left 
hand side boundary have a value of h = 50 m, 
and all nodes of the right hand boundary have 
a value of h = 0 m. The contaminant source is 
active during all of this period, with a constant 
concentration of c = 50 ppm. Nodes that are 
not part of the contaminant source satisfy the 

condition 
∂

∂
=

c
x

0 . The aquifer is assigned 

a thickness of 55 m, a porosity of 0.25, a 
dispersivity of 33 m in the x direction and 3.3 
m in the y direction.

Stochastic model

As was mentioned before, the hydraulic 
conductivity is represented as a spatially 
correlated random field; thus, the resulting 
velocity and dispersion fields, also become 
spatially correlated random fields.

For this example we will assume that the 
hydraulic conductivity field has a lognormal 
distribution, it is homogeneous, stationary and 
isotropic. The mean value of F(x) = 1nK(x) is 
3.055 and the semivariogram that represents 
its spatial correlation structure is an exponential 
model, i.e.:

 γ σ
λF F
F

h h
( ) exp= − −2 1  (4)

where σ F
2  is the variance of F with value 

0.257813, and lF is its correlation scale equal 
to 80.467 m.

At each node the contaminant concentration 
is represented as a time series (Herrera and 
Pinder, 2005), through

 c t t e t( ) exp( ( ))= − + +14 3  (5)

where e(t) is a zero-mean random perturbation, 
normally distributed and with a 0.1948 
variance. For each source node, in every 
simulation time step, a different random 
perturbation is used. The time correlation of 
the random perturbations is modeled with the 
semivariogram

 γ
λe
e

t t
( ) . exp= − −0 1948 1  (6)

with le equal to 11 days.

For this example we used 1000, 2000 and 
4000 realizations.

Estimation with the Ensemble Smother of 
Herrera (ESH)

As was mentioned before, Herrera (1998) 
developed the assimilation method 
independently of van Leeuwen and Evensen 
(1996), it was called static Kalman filter and 
later, static ensemble Kalman filter (EnKF) by 
Nowak et al. (2010).

Using the ESH we estimate the conservative 
contaminant concentration using existing da-
ta for a two-year period. The concentration 
estimates are obtained at the nodes of what 
we call the ESH-mesh, which is a submesh 
of the stochastic simulation mesh, which 
consists of 5x5 equally sized elements (this 
mesh is shown in figure 2a). For each of these 
positions, the concentrations are estimated six 
times over a period of two years, equivalent to 
121.7 days. To apply the ESH it is necessary to 
calculate the space-time covariance matrix of 
the contaminant concentration.

(        )

(      )

[                       ]

[                     ]
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Performance

We execute our codes on a HP Cluster Platform 
3000SL “Miztli”, consisting of 5,312 processing 
cores Intel E5-2670, 16 cards NVIDIA m2090, 
with 15,000 GB of RAM, and capable of 
processing up to 118 TFlop/s. The system has 
750 TB of massive storage. 

Parallel metrics

Some of the most commonly used metrics 
to determine the performance of a parallel 
algorithm are the speedup and efficiency.

The speedup (Sp) is defined as

 Sp T
TN

= 1  (7)

where T1 is the running time of the algorithm 
on one processor and TN is the running time of 
the algorithm on N processors.

The efficiency (Ep) is defined as

 Ep
S
N
p=  (8)

where N is the number of processors in which 
the algorithm execution is carried out.

In this paper, these metrics are used to 
verify how efficient is the parallelization of 
GWMC.

The serial execution of GWMC for one 
thousand realizations took on average 24.5 
minutes using PTC to solve the flow and 
transport equations.

Figure 3. Speedup versus number 
of processors for 1000, 2000 and 

4000 realizations.

 Realizations  Sp    Ep   Amdahl’s law
 Processors 1000 2000 4000 1000 2000 4000 1000 2000 4000

 1 1 1 1 1 1 1 1 1 1
 2 1.96 1.88 1.90 0.98 0.94 0.95 1.99 1.99 1.99
 4 3.96 3.47 3.75 0.99 0.87 0.94 3.99 3.99 3.97
 8 6.22 7.25 7.12 0.78 0.91 0.89 7.97 7.98 7.88
 12 11.36 9.89 10.30 0.95 0.82 0.86 11.94 11.96 11.73
 16 14.33 13.50 12.49 0.90 0.84 0.78 15.90 15.93 15.52
 24 21.38 17.29 19.34 0.89 0.72 0.81 23.77 23.85 22.92
 32 26.75 26.80 25.04 0.84 0.84 0.78 31.60 31.74 30.09
 48 40.47 39.50 37.62 0.84 0.82 0.78 47.10 47.42 43.79
 64 45.06 48.64 49.07 0.70 0.76 0.77 62.41 62.96 56.70
 80     59.85     0.75 77.52 78.39 68.88
 96     72.18     0.75 92.45 93.68 80.40

Table 1. Speedup (Sp), efficiency (Ep) and Amdahl’s law data with different number of processors for 
1000, 2000 and 4000 realizations.
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The parallel Python script was executed 
for 1000, 2000 and 4000 realizations with 
different numbers of processors (see table 1). 
We observe that the speedup grows when the 
number of processors increases (figure 3). 
In figure 4 we see that the efficiency is more 
stable for the 4000 realizations case since it 
has fewer oscillations. For the 1000 realizations 
case, a speedup of 45.06 was obtained with 64 
processors and a correspondingly efficiency of 
0.70; for the 2000 realizations case, a speedup 
of 48.64 was obtained with 64 processors 
and a correspondingly efficiency of 0.76; 
for the 4000 realizations case, a speedup of 
72.18 was obtained with 96 processors and 
a correspondingly efficiency of 0.75. The 
number of realizations has not much effect in 
the speedup and efficiency, since their values 
for the three cases for the same number of 
processors are similar.

Discussion

The elapsed time, the speedup and efficiency 
are limited by several factors: serial fraction 
of the code, load balancing, data dependencies 
and communications. In our case we have 
a minimal part of serial section: at the very 
beginning of the code, when the problem is set 
up in each processor; and at the end of the 
code when we join the results of all processors 
to calculate the mean vector and the covariance 
matrix. We have a very good load balancing 
due to the fact that each processor works on 
the same number of realizations. There are not 
data dependencies during calculations, except 
for the mean vector and covariance matrix 
calculations. Finally, the communications 
required to complete the calculations are also 
at the beginning and at the end of the code. 

Almost all the factors that limit the efficiency 
of our code, can be taken in to account in the 

serial fraction, because are present at the 
beginning and the end of the code, i.e. during 
the serial part of the execution. Therefore, 
using Amdahl’s law (Ridgway et al., 2005) we 
can predict the theoretical maximum speedup 
of the code beforehand. Amdahl’s law formula is

 Sp
f f p

≤
+ −

1
1( ) /

 (9)

where f represents the sequential fraction of 
the code and p is the number of processors.

The serial fraction is measured in time 
units, therefore, when we increase the number 
of realizations, the processors will have more 
work to do in parallel reducing the serial 
fraction as a consequence. This effect can be 
seen in the results presented in table 1 and in 
figures 3 and 4, where the speedup and the 
efficiency are more stable when the number of 
realizations is increased.

In figure 5, we compare our speedup 
results against Amdahl’s law drawn for 4000 
realizations. We observe that our results for 
the three cases are in very good agreement 
with the predictions of this law. The mean 
squared errors of our results, compared with 
the Amdahl’s law, are 1.95, 1.86 and 1.43 for 
1000, 2000 and 4000 realizations, respectively, 
which proofs also the effectiveness of our 
approach. Besides, the efficiencies obtained 
are also greater than 0.70, in such a way that 
our parallel codes are scalable (see Ridgway et 
al., 2005).

Amdahl’s law assumes a perfect load 
balancing. The definition of load balancing is in 
terms of the time ti that each processor takes in 
its calculations during the parallel part. A good 
balancing is when all the ti’s have the same 

Figure 4. Efficiency versus num-
ber of processors for 1000, 2000 

and 4000 realizations.
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value approximately. In terms of these ti’s the 
parallel time of the code will be Tp = max{ti : i 
= 1, ..., p}. It is reasonable to assume that the 
time of the whole process in one processor is T1 
= sum{ti : i = 1, ..., p}. Then using the efficiency 
we have:

 Ep
T
pT

sum t i p
p t i pp

i

i

= =
={ }
={ }

1 1
1

: ,...,
max : ,...,  (10)

Therefore, we can write

 Ep
average t i p

t i p
i

i

=
={ }

={ }
: ,...,

max : ,...,
1

1
 (11)

Hence, if the load balancing is bad, then 
the max{ti : i = 1, ..., p} will be high, reducing 
the efficiency and speedup. In our case, we 
distribute the realizations on the processors 
evenly, producing averages and a maximum, 
of ti : i = 1, ..., p, with very similar values.

Another important aspect in parallel 
applications is the communication between 
processors. In the cluster we used, the 
connections between processing nodes is based 
on Infiniband QDR 40 Gigabits per second 
technology. This network reduce drastically the 
communications time of our codes, besides we 
do not use exchange of information once the 
parallel process is initiated, only at the setup of 
the problem and at the end of the calculations. 
We also tested the same codes on a cluster 
with Ethernet interconnection but the results 
were not as good as with those obtained with 
the Infiniband technology.

Conclusions

In this paper, a parallelization strategy for 
Monte Carlo-type stochastic modeling, with 
PTC-related programs, has been described. The 

software GWMC implements this process for 
one processor. Our strategy allows us to re-use 
all these codes, with minimal modifications.

The results obtained in parallel show that 
the performance is more stable as the workload 
for each processor is increased. In particular 
we obtained a very good efficiency for 4000 
realizations and 96 processors. In this case 
we have an efficiency of 0.75 which makes 
our codes scalable and useful for large scale 
applications. During the development of this 
work, we have not installed any complicated 
software, we just use the common libraries 
installed in the Miztli cluster. In addition, 
we made a very simple modification of our 
original FORTRAN code to calculate the global 
covariance matrix.

We believe that our strategy is simple but 
effective for a large number of simulations 
and can be applied to study more complicated 
problems, where the execution times can be 
very large.

We show in figure 5 that the speedup of 
1000, 2000 and 4000 realizations has a good 
load balancing, because the Amdahl’s law 
assumes a perfect load balancing, and the 
speedup meets the conditions described in the 
discussion section, for this reason, we assume 
that our speedup had a good load balancing.

Appendix

In what follows we describe parts of the script 
written to parallelize the process described in 
section 4.

1) A first step is to create directories to 
facilitate the parallelization and storing of the 
information. We use the rank of the processor 
to define the name of each directory:

Figure 5. The comparative bet-
ween the Amdahl’s law and the 
speedup to 1000, 2000 and 4000 

realizations.
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if os.path.isdir(‘%s’ % t + ‘%d’ % rank): 
 shutil.rmtree(‘%s’ % t + ‘%d’ % rank) 
os.mkdir(‘%s’ % t + ‘%d’ % rank)
os.chdir(‘%s’ % t + ‘%d’ % rank)

2) Four input files need to be modified, these 
are: gwqmonitor.par, sgsim.par, nrm2log.par 
and randTS2.par. Each file contains inputs for 
codes rndcsim, sgsim, nrlm2log and randTS2 
respectively. Modification of file sgsim.par is 
shown below:

ofile = open(“sgsim.par”, ‘w’)
i=0
for line in lines:
 i+=1
 if i==21:
  ofile.write(‘%d \n’ % local_ 
  realizaciones)
 elif i==25:
  j+=2
  ofile.write(‘%d \n’ % j)
 else:
  ofile.write(‘%s’ % line)

ofile.close()

3) All input files are copied in each cluster 
node in order to run the programs sgsim, 
nrm2log, randTS2 and GWQMonitor. Once the 
copy of the input files is done, we execute each 
one of these programs. Note that the FORTRAN 
executable codes are run using a system call 
from the python script:

os.system(‘./sgsim < sgsim.par > sgsim.
OUTPY’)
os.system(‘./nrm2log > nrm2log.OUTPY’)
os.system(‘./randts2 > randts2.OUTPY’)

os.system(‘./gwqmonitor > gwqmonitor.
OUTPY’)

4) For the calculation of the covariance 
matrix, we use a barrier to ensure that the 
information from the different processors has 
been arrived to the memory of processor that 
construct the covariance matrix. Calculation of 
the covariance matrix is carried out after this 
information is gathered.

MPI.COMM_WORLD.Barrier()
if (rank==0):
 def checkfile(archivo):
  import os.path
  if os.path.isfile(archivo):
   os.system(‘rm %s’%archivo)

 os.chdir(‘/home/estherl/NV3-MPI/’)  
 checkfile(‘covarianza.out’)
 checkfile(‘media.out’)
 print(“tiempo sgsim = %e “ % (t2-t1))

 print(“tiempo nrmlog = %e “ % (t3-t2))
 print(“tiempo randts2 = %e “ % (t4-t3))
 print(“tiempo gwqmonitor = %e “ % (t5-t4))
 os.system(‘./matriz %d’ %size)
 os.system(‘mv meanvect*.out basura/’)
 os.system(‘mv meanplume*.out basura/’)
 os.system(‘mv covmatrx*.out basura/’)

Observe that the steps 1) to 4) are all 
executed by all processors in parallel; it is only 
using the rank of each processor that is possible 
to assign different tasks to each processor. 
Actually, this latter is done in the step 4).
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