
Geofísica internacional (2015) 54-3: 245-254

245

oriGinal paper

Resumen

En este artículo se presentan los resultados
de una estrategia de paralelización para
reducir el tiempo de ejecución al aplicar la
simulación Monte Carlo con un gran número de
realizaciones obtenidas utilizando un modelo
de flujo y transporte de agua subterránea.
Desarrollamos un script en Python usando
mpi4py, a fin de ejecutar GWMC y programas
relacionados en paralelo aplicando la biblioteca
MPI. Nuestro enfoque consiste en calcular las
entradas iniciales para cada realización y correr
grupos de estas realizaciones en procesadores
separados y después calcular el vector medio
y la matriz de covarianza de las mismas. Esta
estrategia se aplicó al estudio de un acuífero
simplificado en un dominio rectangular de
una sola capa. Presentamos los resultados
de aceleración y eficiencia para 1000, 2000 y
4000 realizaciones para diferente número de
procesadores. Eficiencias de 0,70, 0,76 y 0,75
se obtuvieron para 64, 64 y 96 procesadores,
respectivamente. Observamos una mejora
ligera del rendimiento a medida que aumenta
el número de realizaciones.

Palabras clave: Agua subterránea, flujo y
transporte, simulación Monte Carlo, cómputo
paralelo distribuido, Python.

A parallel computing strategy for Monte Carlo simulation using
groundwater models

Esther Leyva-Suárez, Graciela S. Herrera* and Luis M. de la Cruz

Received: August 15, 2013; accepted: January 01, 2014; published on line: June 30, 2015

DOI: 10.1016/j.gi.2015.04.020

E. Leyva-Suárez
Posgrado en Ciencias de la Tierra
Universidad Nacional Autónoma de México
Ciudad Universitaria
Delegación Coyoacán, 04510
México D.F., México

G. S. Herrera*

L. M. de la Cruz
Instituto de Geofísica
Universidad Nacional Autónoma de México
Ciudad Universitaria
Delegación Coyoacán, 04510
México D.F., México
*Corresponding author: ghz@geofisica.unam.mx

Abstract

In this paper we present the results of a
parallelization strategy to reduce the execution
time for applying Monte Carlo simulation with
a large number of realizations obtained using
a groundwater flow and transport model. We
develop a script in Python using mpi4py, in
order to execute GWMC and related programs
in parallel, applying the MPI library. Our
approach is to calculate the initial inputs for
each realization, and run groups of these
realizations in separate processors and
afterwards to calculate the mean vector and
the covariance matrix of them. This strategy
was applied to the study of a simplified aquifer
in a rectangular domain of a single layer. We
report the results of speedup and efficiency for
1000, 2000 and 4000 realizations for different
number of processors. Efficiencies of 0.70,
0.76 and 0.75 were obtained for 64, 64 and
96 processors, respectively. We observe a
slightly improvement of the performance as
the number of realizations is increased.

Key words: groundwater, flow and transport,
Monte Carlo simulation, distributed parallel
computing, Python.

E. Leyva-Suárez, G. S. Herrera and L. M. de la Cruz

246 Volume 54 number 3

Introduction

Stochastic hydrogeology is a field that deals
with stochastic methods to describe and analyze
groundwater processes (Renard, 2007). An
important part of it consists of solving stochastic
models (stochastic partial differential equations)
describing those processes in order to estimate
the joint probability density function of the
parameters (e.g., transmissivity, storativity)
and/or state variables (e.g., groundwater levels,
concentrations) of those equations or more
commonly some of their moments. Monte Carlo
simulation (MCS) is an alternative for solving
these stochastic models, it is based on the idea
of approximating the solution of stochastic
processes using a large number of equally likely
realizations. For example, the pioneering work
on stochastic hydrogeology by Freeze (1975)
applies this method.

The large number of realizations required
by MCS can be very demanding in computing
resources and the computational time can
be excessive. Nowadays there exist many
parallel computing platforms that can be
used to alleviate this problem. Some previous
works have focused in this direction, for
example Dong et al. (2012) describe a
parallelization strategy for stochastic modeling
of groundwater systems using the Java Parallel
Processing Framework (JPPF). This tool is very
powerful and can be used as a GRID middle-
ware (Foster et al., 2001) to distribute tasks
across several computing systems. Dong et
al. (2012) take advantage of this tool to avoid
any modification of MODFLOW and related
programs. However, when the JPPF is used in a
cluster alone, a simply master-worker parallel
model is obtained. They also report that the
combination of two levels of parallelism, using
a parallel solver to reduce the execution time
by an order of two. However, this technique
pays off only for very large grids, over 106
points. In our case, we do not require such
massive grids.

In this paper, we propose a distributed
parallel computing method for stochastic
modeling with the software Groundwater
Monte Carlo (GWMC), a component of the
Groundwater Quality Monitoring (GWQMonitor)
package (Herrera, 1998). GWMC is used
together with an assimilation method called
Ensemble Smoother of Herrera (ESH) in
order to estimate groundwater contaminant
concentration assimilating concentration data.
The best known version of Ensemble Smoother
was developed by van Leeuwen and Evensen
(1996). Herrera de Olivares developed a version
of the assimilation method independently,

and originally she called it static Kalman filter
(Herrera, 1998).

Ground Water Monte Carlo (GWMC)

GWMC is a program written in FORTRAN by
Herrera (1998), and subsequently modified by
Olivares-Vázquez (2002).

It implements Monte Carlo simulation
using a flow and transport simulator in which
hydraulic conductivity is a random field
and the contaminant concentration at the
contaminant source is a time series at each
node. Therefore, multiple realizations of those
two parameters are obtained and for each
realization the flow and transport equations are
solved by the Princeton Transport Code (PTC),
a finite element simulator (Babu et al., 1993).
Finally, different averages of the concentration
solutions are calculated to obtain their space-
time mean vector and covariance matrix. In
this paper, GWMC is parallelized in order to
reduce the program execution time.

Methodology

The methodology implemented in this work is
as follows:

Step 1. The input files for PTC are generated.

Step 2. The input files for GWMC are
generated.

Step 3. A number of realizations of the
natural logarithm of the hydraulic conductivity
field are generated using the sequential Gau-
ssian simulation (SGSIM) program (Deutsch
and Journel 1997). This program generates
standard normal simulated values with a given
correlation spatial structure on a rectangular
mesh.

Step 4. A transformation to get the
hydraulic conductivity field (a lognormal field)
is calculated for each realization using the
Nrm2log program. This program transforms
the standard normal values to a normal
variable with a given mean and variance and
then applies the exponential function to get the
lognormal field.

Step 5. For each node at the source of
contaminant concentration, the same number
of realizations of time series is generated using
the RandTS2 program.

Step 6. If the PTC finite element mesh is
not equal to the SGSIM rectangular mesh, the
SGSIM mesh is mapped into the nearest node
of the PTC mesh.

Geofísica internacional

July - september 2015 247

Step 7. The generated hydraulic conduc-
tivity realization value is assigned to the
corresponding node of the PTC mesh and the
hydraulic conductivity PTC files are substituted
with the new values.

Step 8. The contaminant concentrations
at the source are substituted by the RandTS2
values in the PTC file for the transport boundary
conditions.

Step 9. PTC is executed for each conductivity
and source concentration realization (PTC
solves numerically the flow and transport
equation).

Step 10. Adding over the concentration
solutions obtained in step 8, an auxiliary
vector with the sum of concentrations for each
node and time of interest is calculated and an
auxiliary matrix with the sum of products of
concentrations for each possible pair of space-
time positions of interest is calculated.

Step 11. Combining the information
contained in the auxiliary vector and the
auxiliary matrix the spatiotemporal mean vector
and covariance matrix of the contaminant
concentration are calculated.

Step 12. The ESH is applied to estimate
contaminant concentration.

Steps 6 to 10 are executed by GWMC and
steps 3 to 11 are parallelized in this work.

Python - MPI

Python is an interpreter, interactive and
extensible programming language used in a
wide variety of applications. In particular, for
scientific computing there exist many tools
that ease the development of computational
codes (Milman and Aivazis, 2011). Python can
be combined easily with other programming
languages, like C, C++ and Fortran, and al-
so can be used to exploit high performance
computing architectures by using MPI (Message
Passing Interface) [Gropp et al., 1999] or
CUDA (Compute Unified Device Architecture)
[Kirk and Hwu, 2010]. Currently, almost any
operating system supports Python in such a
way that this programming language provides
portability across many computing platforms.

In this work our main objective is to reduce
the execution time of the complete process
described in section 4. In order to avoid a
complete re-design of our codes, written
mainly in FORTRAN, we decided to use Python

and MPI for Python (MPI4PY) [Dalcin, 2012].
MPI4PY provides an object-oriented approach
for MPI which allows us to distribute tasks using
Python scripts. In the appendix we describe
briefly the scripts developed in this work.

In figure 1 we sketch the parallelization
process. The main idea is to re-use FORTRAN
codes with minimal modifications inside
a Python script. First, we initialize all the
variables and determine the corresponding
inputs for the different executable codes. Part
of this process is done in a client machine,
before the parallel execution. After that, the
client submits a batch task to the cluster. Once
the parallel execution starts, each processor
generates its own input files labeled using
the processor number. With the local inputs
generated, we execute a group of realizations
in each processor. The load balancing is
done by the script, distributing the same
number of tasks for each processor. Each rea-
lization solves the same problem but with
different inputs, so the time required by each
realization is almost the same. Since the num-
ber of realizations can be different for each
processor, we need to use a barrier at the end
of the parallel execution. However, the waiting
time for the last processor is negligible. The
calculation of the space-time mean and
the covariance matrix is done in processor
1, which requires information from all the
processors. Originally, this was done in GWMC.
In our case, we removed the corresponding
FORTRAN code from the program, and we put
it in a separate subroutine that is called at the
end of the script. However this change is very
simple and straightforward. Finally, the last
step (the ESH application) is done as a post
processing step in the client machine.

Application problem

An aquifer of 804.7 by 804.7 m2 is considered
(figure 2a). A contaminant source is located
on the left hand side border and the area is
bounded by a river on the right hand side. This
problem was slightly modified from the one
presented by Herrera and Pinder (2005).

The objective is to estimate the contaminant
concentrations of a moving plume during
a 2-year period. The locations at which
concentration estimates will be obtained are
associated with the nodes of what we call the
estimation mesh shown in Figure 2a. For each
one of these locations, concentrations will be
estimated every 121.7 days; this amounts to
six times during the 2-year period.

E. Leyva-Suárez, G. S. Herrera and L. M. de la Cruz

248 Volume 54 number 3

Figure 1. Parallelization process. Task 3 to 10 are done in parallel, while task 12 is calculated in processor 1.

Figure 2. a) Problem set up with the estimation mesh and boundary conditions for the flow model (h is in
meters), b) Stochastic simulation mesh and boundary conditions for the transport model (modified from Olivares-

Vázquez, 2002).

Geofísica internacional

July - september 2015 249

Flow and transport model

The PTC is used in two-dimensional mode to
solve the flow and transport model. The flow and
transport equations coupled through Darcy’s
law, equations (1), (2) and (3) respectively,
are used to describe the contaminant plume
evolution:

 ⋅ ⋅ = 0
∂

∂
+()K h S h

t
QS

∆ ∆

− (1)

φ
∂

∂
+ ⋅ − ⋅ − − =

c
t

V c D c Q c c() ()0 0∆ ∆ ∆

(2)

 V K h= −

∆

 (3)

where K is the hydraulic conductivity, h is
the hydraulic head, SS is the specific storage
coefficient, Q is a source or sink term, c is the
solute concentration, D is the hydrodynamic
dispersion, c0 is the concentration of the
pumped fluid and f is the effective porosity.
The flow equation (1) describes the water flow
through the aquifer; the transport equation
(2) describes the changes in contaminant
concentration through time for a conservative
solute. Darcy’s law (3) is used to calculate V,
Darcy velocity. Boundary conditions for flow
and transport are included in figures 2a and
2b, respectively. Concentration is given in
parts per million (ppm) and hydraulic head in
meters (m).

The numerical mesh used to solve the
flow and transport equations is called the
“stochastic simulation mesh”; it consists of
40x40 equally sized elements (figure 2b). For
the transport model forty-eight time-steps are
used to simulate a two-year period, 15.2 days
each. For the flow model, all nodes of the left
hand side boundary have a value of h = 50 m,
and all nodes of the right hand boundary have
a value of h = 0 m. The contaminant source is
active during all of this period, with a constant
concentration of c = 50 ppm. Nodes that are
not part of the contaminant source satisfy the

condition
∂

∂
=

c
x

0 . The aquifer is assigned

a thickness of 55 m, a porosity of 0.25, a
dispersivity of 33 m in the x direction and 3.3
m in the y direction.

Stochastic model

As was mentioned before, the hydraulic
conductivity is represented as a spatially
correlated random field; thus, the resulting
velocity and dispersion fields, also become
spatially correlated random fields.

For this example we will assume that the
hydraulic conductivity field has a lognormal
distribution, it is homogeneous, stationary and
isotropic. The mean value of F(x) = 1nK(x) is
3.055 and the semivariogram that represents
its spatial correlation structure is an exponential
model, i.e.:

 γ σ
λF F
F

h h
() exp= − −2 1 (4)

where σ F
2 is the variance of F with value

0.257813, and lF is its correlation scale equal
to 80.467 m.

At each node the contaminant concentration
is represented as a time series (Herrera and
Pinder, 2005), through

 c t t e t() exp(())= − + +14 3 (5)

where e(t) is a zero-mean random perturbation,
normally distributed and with a 0.1948
variance. For each source node, in every
simulation time step, a different random
perturbation is used. The time correlation of
the random perturbations is modeled with the
semivariogram

 γ
λe
e

t t
() . exp= − −0 1948 1 (6)

with le equal to 11 days.

For this example we used 1000, 2000 and
4000 realizations.

Estimation with the Ensemble Smother of
Herrera (ESH)

As was mentioned before, Herrera (1998)
developed the assimilation method
independently of van Leeuwen and Evensen
(1996), it was called static Kalman filter and
later, static ensemble Kalman filter (EnKF) by
Nowak et al. (2010).

Using the ESH we estimate the conservative
contaminant concentration using existing da-
ta for a two-year period. The concentration
estimates are obtained at the nodes of what
we call the ESH-mesh, which is a submesh
of the stochastic simulation mesh, which
consists of 5x5 equally sized elements (this
mesh is shown in figure 2a). For each of these
positions, the concentrations are estimated six
times over a period of two years, equivalent to
121.7 days. To apply the ESH it is necessary to
calculate the space-time covariance matrix of
the contaminant concentration.

()

()

[]

[]

E. Leyva-Suárez, G. S. Herrera and L. M. de la Cruz

250 Volume 54 number 3

Performance

We execute our codes on a HP Cluster Platform
3000SL “Miztli”, consisting of 5,312 processing
cores Intel E5-2670, 16 cards NVIDIA m2090,
with 15,000 GB of RAM, and capable of
processing up to 118 TFlop/s. The system has
750 TB of massive storage.

Parallel metrics

Some of the most commonly used metrics
to determine the performance of a parallel
algorithm are the speedup and efficiency.

The speedup (Sp) is defined as

 Sp T
TN

= 1 (7)

where T1 is the running time of the algorithm
on one processor and TN is the running time of
the algorithm on N processors.

The efficiency (Ep) is defined as

 Ep
S
N
p= (8)

where N is the number of processors in which
the algorithm execution is carried out.

In this paper, these metrics are used to
verify how efficient is the parallelization of
GWMC.

The serial execution of GWMC for one
thousand realizations took on average 24.5
minutes using PTC to solve the flow and
transport equations.

Figure 3. Speedup versus number
of processors for 1000, 2000 and

4000 realizations.

 Realizations Sp Ep Amdahl’s law
 Processors 1000 2000 4000 1000 2000 4000 1000 2000 4000

 1 1 1 1 1 1 1 1 1 1
 2 1.96 1.88 1.90 0.98 0.94 0.95 1.99 1.99 1.99
 4 3.96 3.47 3.75 0.99 0.87 0.94 3.99 3.99 3.97
 8 6.22 7.25 7.12 0.78 0.91 0.89 7.97 7.98 7.88
 12 11.36 9.89 10.30 0.95 0.82 0.86 11.94 11.96 11.73
 16 14.33 13.50 12.49 0.90 0.84 0.78 15.90 15.93 15.52
 24 21.38 17.29 19.34 0.89 0.72 0.81 23.77 23.85 22.92
 32 26.75 26.80 25.04 0.84 0.84 0.78 31.60 31.74 30.09
 48 40.47 39.50 37.62 0.84 0.82 0.78 47.10 47.42 43.79
 64 45.06 48.64 49.07 0.70 0.76 0.77 62.41 62.96 56.70
 80 59.85 0.75 77.52 78.39 68.88
 96 72.18 0.75 92.45 93.68 80.40

Table 1. Speedup (Sp), efficiency (Ep) and Amdahl’s law data with different number of processors for
1000, 2000 and 4000 realizations.

Geofísica internacional

July - september 2015 251

The parallel Python script was executed
for 1000, 2000 and 4000 realizations with
different numbers of processors (see table 1).
We observe that the speedup grows when the
number of processors increases (figure 3).
In figure 4 we see that the efficiency is more
stable for the 4000 realizations case since it
has fewer oscillations. For the 1000 realizations
case, a speedup of 45.06 was obtained with 64
processors and a correspondingly efficiency of
0.70; for the 2000 realizations case, a speedup
of 48.64 was obtained with 64 processors
and a correspondingly efficiency of 0.76;
for the 4000 realizations case, a speedup of
72.18 was obtained with 96 processors and
a correspondingly efficiency of 0.75. The
number of realizations has not much effect in
the speedup and efficiency, since their values
for the three cases for the same number of
processors are similar.

Discussion

The elapsed time, the speedup and efficiency
are limited by several factors: serial fraction
of the code, load balancing, data dependencies
and communications. In our case we have
a minimal part of serial section: at the very
beginning of the code, when the problem is set
up in each processor; and at the end of the
code when we join the results of all processors
to calculate the mean vector and the covariance
matrix. We have a very good load balancing
due to the fact that each processor works on
the same number of realizations. There are not
data dependencies during calculations, except
for the mean vector and covariance matrix
calculations. Finally, the communications
required to complete the calculations are also
at the beginning and at the end of the code.

Almost all the factors that limit the efficiency
of our code, can be taken in to account in the

serial fraction, because are present at the
beginning and the end of the code, i.e. during
the serial part of the execution. Therefore,
using Amdahl’s law (Ridgway et al., 2005) we
can predict the theoretical maximum speedup
of the code beforehand. Amdahl’s law formula is

 Sp
f f p

≤
+ −

1
1() /

 (9)

where f represents the sequential fraction of
the code and p is the number of processors.

The serial fraction is measured in time
units, therefore, when we increase the number
of realizations, the processors will have more
work to do in parallel reducing the serial
fraction as a consequence. This effect can be
seen in the results presented in table 1 and in
figures 3 and 4, where the speedup and the
efficiency are more stable when the number of
realizations is increased.

In figure 5, we compare our speedup
results against Amdahl’s law drawn for 4000
realizations. We observe that our results for
the three cases are in very good agreement
with the predictions of this law. The mean
squared errors of our results, compared with
the Amdahl’s law, are 1.95, 1.86 and 1.43 for
1000, 2000 and 4000 realizations, respectively,
which proofs also the effectiveness of our
approach. Besides, the efficiencies obtained
are also greater than 0.70, in such a way that
our parallel codes are scalable (see Ridgway et
al., 2005).

Amdahl’s law assumes a perfect load
balancing. The definition of load balancing is in
terms of the time ti that each processor takes in
its calculations during the parallel part. A good
balancing is when all the ti’s have the same

Figure 4. Efficiency versus num-
ber of processors for 1000, 2000

and 4000 realizations.

E. Leyva-Suárez, G. S. Herrera and L. M. de la Cruz

252 Volume 54 number 3

value approximately. In terms of these ti’s the
parallel time of the code will be Tp = max{ti : i
= 1, ..., p}. It is reasonable to assume that the
time of the whole process in one processor is T1
= sum{ti : i = 1, ..., p}. Then using the efficiency
we have:

 Ep
T
pT

sum t i p
p t i pp

i

i

= =
={ }
={ }

1 1
1

: ,...,
max : ,..., (10)

Therefore, we can write

 Ep
average t i p

t i p
i

i

=
={ }

={ }
: ,...,

max : ,...,
1

1
 (11)

Hence, if the load balancing is bad, then
the max{ti : i = 1, ..., p} will be high, reducing
the efficiency and speedup. In our case, we
distribute the realizations on the processors
evenly, producing averages and a maximum,
of ti : i = 1, ..., p, with very similar values.

Another important aspect in parallel
applications is the communication between
processors. In the cluster we used, the
connections between processing nodes is based
on Infiniband QDR 40 Gigabits per second
technology. This network reduce drastically the
communications time of our codes, besides we
do not use exchange of information once the
parallel process is initiated, only at the setup of
the problem and at the end of the calculations.
We also tested the same codes on a cluster
with Ethernet interconnection but the results
were not as good as with those obtained with
the Infiniband technology.

Conclusions

In this paper, a parallelization strategy for
Monte Carlo-type stochastic modeling, with
PTC-related programs, has been described. The

software GWMC implements this process for
one processor. Our strategy allows us to re-use
all these codes, with minimal modifications.

The results obtained in parallel show that
the performance is more stable as the workload
for each processor is increased. In particular
we obtained a very good efficiency for 4000
realizations and 96 processors. In this case
we have an efficiency of 0.75 which makes
our codes scalable and useful for large scale
applications. During the development of this
work, we have not installed any complicated
software, we just use the common libraries
installed in the Miztli cluster. In addition,
we made a very simple modification of our
original FORTRAN code to calculate the global
covariance matrix.

We believe that our strategy is simple but
effective for a large number of simulations
and can be applied to study more complicated
problems, where the execution times can be
very large.

We show in figure 5 that the speedup of
1000, 2000 and 4000 realizations has a good
load balancing, because the Amdahl’s law
assumes a perfect load balancing, and the
speedup meets the conditions described in the
discussion section, for this reason, we assume
that our speedup had a good load balancing.

Appendix

In what follows we describe parts of the script
written to parallelize the process described in
section 4.

1) A first step is to create directories to
facilitate the parallelization and storing of the
information. We use the rank of the processor
to define the name of each directory:

Figure 5. The comparative bet-
ween the Amdahl’s law and the
speedup to 1000, 2000 and 4000

realizations.

Geofísica internacional

July - september 2015 253

if os.path.isdir(‘%s’ % t + ‘%d’ % rank):
 shutil.rmtree(‘%s’ % t + ‘%d’ % rank)
os.mkdir(‘%s’ % t + ‘%d’ % rank)
os.chdir(‘%s’ % t + ‘%d’ % rank)

2) Four input files need to be modified, these
are: gwqmonitor.par, sgsim.par, nrm2log.par
and randTS2.par. Each file contains inputs for
codes rndcsim, sgsim, nrlm2log and randTS2
respectively. Modification of file sgsim.par is
shown below:

ofile = open(“sgsim.par”, ‘w’)
i=0
for line in lines:
 i+=1
 if i==21:
 ofile.write(‘%d \n’ % local_
 realizaciones)
 elif i==25:
 j+=2
 ofile.write(‘%d \n’ % j)
 else:
 ofile.write(‘%s’ % line)

ofile.close()

3) All input files are copied in each cluster
node in order to run the programs sgsim,
nrm2log, randTS2 and GWQMonitor. Once the
copy of the input files is done, we execute each
one of these programs. Note that the FORTRAN
executable codes are run using a system call
from the python script:

os.system(‘./sgsim < sgsim.par > sgsim.
OUTPY’)
os.system(‘./nrm2log > nrm2log.OUTPY’)
os.system(‘./randts2 > randts2.OUTPY’)

os.system(‘./gwqmonitor > gwqmonitor.
OUTPY’)

4) For the calculation of the covariance
matrix, we use a barrier to ensure that the
information from the different processors has
been arrived to the memory of processor that
construct the covariance matrix. Calculation of
the covariance matrix is carried out after this
information is gathered.

MPI.COMM_WORLD.Barrier()
if (rank==0):
 def checkfile(archivo):
 import os.path
 if os.path.isfile(archivo):
 os.system(‘rm %s’%archivo)

 os.chdir(‘/home/estherl/NV3-MPI/’)
 checkfile(‘covarianza.out’)
 checkfile(‘media.out’)
 print(“tiempo sgsim = %e “ % (t2-t1))

 print(“tiempo nrmlog = %e “ % (t3-t2))
 print(“tiempo randts2 = %e “ % (t4-t3))
 print(“tiempo gwqmonitor = %e “ % (t5-t4))
 os.system(‘./matriz %d’ %size)
 os.system(‘mv meanvect*.out basura/’)
 os.system(‘mv meanplume*.out basura/’)
 os.system(‘mv covmatrx*.out basura/’)

Observe that the steps 1) to 4) are all
executed by all processors in parallel; it is only
using the rank of each processor that is possible
to assign different tasks to each processor.
Actually, this latter is done in the step 4).

Acknowledgements

The authors gratefully acknowledge Leobardo
Itehua for helping us running the numerical
tests in Miztly and E. Leyva the scholarship
from CONACyT to pursue her Ph.D. studies.

References

Babu D.K., Pinder G.F., Niemi A., Ahlfeld D.P.,
Stothoff S.A., 1993. Chemical transport by
three-dimensional groundwater flows. Tech.
Rep. 84-WR-3, Dep. of Civ. Eng., Princeton
Univ., Princeton, N.J.

Dalcin L., 2012. MPI for Python, Release 1.3.
URL: http://mpi4py.scipy.org/

Deutsch C.V., Journel A.G., 1997. GSLIB.
Geostatistical Software Library and User’s
Guide. Ed. OXFORD UNIVERSITY PRESS,
2a. ed., New York, 1998, 369 p.

Dong Y., Li G., Xu H., 2012, Distributed
Parallel Computing in Stochastic Modeling
of Groundwater Systems. Groundwater
Journal. 51, 2, 293–297 p.

Foster I., Kesselman C., Tuecke S., 2001, The
Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal
of High Performance Computing Fall, 15,
200–222 p.

Freeze R.A., 1975, A stochastic-conceptual
analysis of one dimensional groundwater flow
in nonuniform homogeneous media. Water
Resources Research, 11, 5, 725–741 p.

Gropp W., Lusk E., Skjellum A., 1999, Using
MPI-2: Advanced Features of the Message-
Passing Interface. MIT Press Cambridge,
MA, USA. ISBN 0262571331.

Herrera de Olivares G.S., 1998, Cost Effective
Groundwater Quality Sampling Network
Design, Ph.D. Thesis, University of Vermont.

E. Leyva-Suárez, G. S. Herrera and L. M. de la Cruz

254 Volume 54 number 3

Herrera G.S., Pinder G.F., 2005, Space-
time optimization of groundwater quality
sampling networks. Water Resources
Research, 41, 15 p.

Kirk D.B., Hwu W.-M.W., 2010, Programming
Massively Parallel Processors: A Hands-on
Approach. Ed. Morgan Kaufmann Publishers
Inc., 1rs ed., San Francisco, CA, USA.

Milman K.J., Aivazis M., 2011, Python for
Scientists and Engineers. Computing in
Science & Engineering, 13, 9–12 p. URL:
http://dx.doi.org/10.1109/MCSE.2011.36

Nowak W., De Barros F.P.J., Rubin Y., 2010,
Bayesian geostatistical design: Task-
driven optimal site investigation when
the geostatistical model is uncertain.
Water Resources Research, 46, W03535,
doi:10.1029/2009WR008312.

Olivares-Vázquez J.L. Groundwater Quality
Monitor GUI. User’s Guide. 2002, 26 p.

Renard P., 2007, Stochastic Hydrogeology: What
Professionals Really Need? Groundwater,
45, No. 5, 531–541 p.

Ridgway S.L., Terry C., Babak B., 2005,
Scientific parallel computing. New Jersey,
Princeton University Press, 372 p.

Van Leeuwen P.J., Evensen G., 1996, Data
assimilation and inverse methods in terms
of a probabilistic formulation. Monthly
Weather Review, 124, 2898–2913 p.

