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Resumen

Los modelos numéricos viscoelasticos, basados en
el concepto de mecanismos de dispersion, toman
en cuenta las variables de memoria y algunos
pardmetros de dispersién, a saber los tiempos de
relajacidon de tension. En la practica de la geofisica,
el factor de calidad Q se usa normalmente para
describir una propiedad de atenuaciéon de medios
viscoelasticos. Para el modelado numérico, es util
saber qué dependencia existe entre el factor Q y
los tiempos de relajacion.

En lugar de derivar la dependencia teéricamente,
en el reciente trabajo, esta se evalia de los
resultados de un experimento numérico para la
estimacion del factor Q de datos sintéticos de
reflexién. Para obtener los sismogramas sintéticos,
un nuevo modelo 3D numérico de propagacion de
las ondas en medios viscoeldsticos se desarrolld,
difiriendo de los anteriores en que utiliza los
valores medios de pardmetros de relajacién en
los casos de mecanismos de dispersién multiples
y aplicando una nueva modificacién del limite
absorbente PML. Para la estimacidon del factor
Q, se usaron métodos numéricos con la opcion
manual de ventanas espectrales. Estos métodos
se adaptaron para los datos de reflexiéon. La
férmula desarrollada de la dependencia de Q en
los tiempos de relajacidn es cualitativamente
buena en la gama amplia de los tiempos de
relajacion.

Palabras clave: medios viscoelasticos,
mecanismo de dispersidn, tiempos de relajacion,
modelo numérico, PML, factor de calidad Q.
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Abstract

Viscoelastic numerical models, based on a
concept of dissipation mechanisms, take into
account memory variables, and some dissipation
parameters, namely stress and strain relaxation
times. In geophysical practice, the quality factor
Q is widely used for describing an attenuation
property of viscoelastic media. For numerical
modeling, it is useful to know what dependence
exists between the factor Q, and the relaxation
times.

Instead of deriving this dependence theoretically,
in recent work, it is evaluated from results of
numerical experiment for estimating the factor
Q in synthetic reflection data. For obtaining the
synthetic seismograms, a new 3D numerical
model of wave propagation in viscoelastic media
is developed, differing from previous ones by
utilizing average values of relaxation parameters
in cases of multiple dissipation mechanisms, and
by applying a new modification of PML absorbing
boundary. For the estimation of factor Q, numerical
methods are used with manual choice of spectral
windows. These methods are adapted for surface
reflection data. The developed formula of the
dependence Q on relaxation times is qualitatively
good in a wide range of relaxation times.

Key words: viscoelastic media, dissipation
mechanism, relaxation times, numerical model,
PML, quality factor Q.
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Introduction

Viscoelastic properties of oil-gas reservoirs cause
high attenuation of seismic waves. Mathematical
models of wave propagation in viscoelastic
media can be useful for investigation of seismic
attenuation in oil-gas reservoirs. The attenuation
can be introduced into an elastic model in different
ways. One of the most theoretically interesting
is the method of dissipation mechanisms
(Carcione et al., 1988; Robertsson et al., 1994;
Xu and McMechan, 1998; Mikhailenko et al.,
2003; Sabinin et al., 2003). It supposes that
the viscoelastic property can be described by
action of some dissipation mechanisms which
are characterized by stress and strain relaxation
times, and by type of interaction.

In the practice, it is more convenient to have
lesser number of parameters for describing
attenuation, for instance, one - the quality factor
Q. Definition of the dependence between the
relaxation times and the factor Q will facilitate an
application of the models. It is known that the QO
factor is nearly independent on frequency (Knopoff,
1964) in seismic spectrum, and it can be composed
by some (>1) dissipation mechanisms with suitably
fitted values of relaxation times (Emmerich, 1992;
Blanch et al.,, 1995; Xu and McMechan, 1995,
1998). But nobody did comparison the composed
input values of factor Q with the output values
obtained from viscoelastic modeling. This issue
may be also connected namely with a problem of
correct definition of the factor Q.

Below, an attempt is made to derive the
formula for dependence of the factor Q on
relaxation times by estimating directly the factor
QO output from synthetic seismograms computed
by the viscoelastic numerical model. For the
correct modeling, I revised the numerical model
Virieux (1986), and Robertsson et al. (1994),
and added to it my modification of the absorbing
boundary layer by Collino and Tsogka (2001).
Additionally, I developed a methodology of
correct estimation of factor Q in surface reflection
data for using this typical problem of seismology
in numerical experiment.

Viscoelastic Model

In the linear theory of viscoelasticity, for the
standard linear solid model of relaxation, stress
o depends on strain g by the following modlﬁed
Hooke s law:

o +TGG'U = G,.jk,(gk, +7,.€,) (1)
where G, - the stiffness tensor, 7 and 7_the strain
and stress relaxation times.
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Following Liu et al. (1976), one can derive the
Boltzmann’s after-effect equation directly from

(1):
o, *¢(1)=Gyey (2)

where * denotes the convolution in time, and ¢(t)
is the specific creep function. For one dissipation
mechanism,

¢() =[1-7 exp(~/7,)]10(?)
(3)

where 0 - the Heaviside function, and == I-1 /7,
provided t >t . For small r<<t, it corresponds
to the hyperbollc creep function ‘used by Lomnitz

(1957).

By taking the time derivative of (2), and
substituting the dependence of strain on the
particle velocity

1
& = E(ai"j +8].v,.)
(4)
one can get:

G, *¢ =L, (5)

where following Carcione (1993), and Xu and
McMechan (1995) :

=(A+2u)oy,+Ad,v,, j#i,
Li=p(dv,+3v),i#/,
where A and u - Lame elastic constants,

{i=x,z; j=x,z} for two-dimensional viscoelastic
media, and <{i=x,y,z; j=x,y,z} for three-
dimensional viscoelastic media.

By expanding in the convolution the time

derivative of ¢ (see Robertsson et al., 1994), one
can get from (5):

(l—r)dij =L, -1, (6)

where r, - the so-called memory variable:

t1, =exp(—t/7,)0()*c (7)

By taking the time derivative of (7), one can
get the equation for the memory variable:

T+ =1 (8)

Combining (6) and (8), one can obtain a more
convenient form of (6):
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6,=L,+(.-7

Adding Newton’s second law

pv,=0,0; (10)

yields the system of equations (8)-(10) for the
seismic wave propagation in the viscoelastic
media, which governs the stress O, the particle
velocity v, , and the memory variable r, in the
area of modeling for the case of one d|55|pat|on
mechanism.

In the case of 7 =1 , the system (8)-(10)
becomes the system for elastic media.

By substituting £, =0,—-(z,—7,)r;, one can
transform (9) into the equation for elastic media
E =L, and obtain from (8):

I_/’
1,0, +0, = ‘L'SEI.J. +Eij (11)

The equation (11) is similar to equation (1),
and can be derived directly from it by defining
E, =G,z¢, . Therefore, the value E has a sense

of the elastic part of the stress o. Thus, the
equation (11) governs an effect of viscosity, and
it is an equation on only time.

Possibly, we ought to consider two sets of
relaxation times: for shear and compressional
waves, and modify the equations (8) and (9) by
a way following Carcione (1995), for example.
But Xu and McMechan (1995) simplified the
problem by supposing equal relaxation times
for shear and compressional waves. Another
way of simplification is to consider cases of
multiple dissipation mechanisms which can
be transformed to the case of one dissipation
mechanism, as below.

Extention of the model to N dissipation
mechanisms

For the general case of N dissipation
mechanisms which differ only by values of 7_,

and 7., we should write equations (1) and (2)
for each n-th dissipation mechanism as follows:

Gm’j + TGnGnij = Gijkl (Snkl + Tengnkl)

(12)

Gn[j *¢n(t) = Gijklgnk/ (13)

Values of total o, and g, over N dissipation
mechanisms depend on scheme of interactions
(interconnections) of the mechanisms: which
mechanisms interact as parallel or as sequential,

and which groups of mechanisms interact with
other groups as parallel or sequential.

Really, the scheme of interactions of
mechanisms is not known beforehand, and the
problem of modeling does not need such fine
developing.

For three simple cases below, it is possible
to reduce the system of equations for N
mechanisms to the case of one mechanism. They
are: 1) N mechanisms interacting sequentialy,
2) N mechanisms interacting in parallel, and
3) two independent groups: one including N,
mechanisms interacting sequentialy, and the
second including N, mechanisms interacting in
parallel, N,+ N,=N. These are general enough
cases.

For the case 1), the creep function can be re-
presented as follows (for details see Appendix A):

$(0)=[1-1+Y 7, exp(~t/7,)10()
=l (14)

If introduce the average values of relaxation
times:

N N
N en’ o‘ N on?

n= n=

o |qﬁ|

)

then, from (5) with (14), one can derive (for
details see Appendix B) similar equation to (6):

(1-7)6, =L, ~TR, (15)

where R is the average memory variable, which
can be found from the following similar equation
to (8):

TR +R =L, (16)

For the case 2), the equation (5) becomes as
follows:

G, =¢,*L, (17)

in which the creep function is (see Appendix A,
and Carcione, 1995)

¢ = [1+#ifln exp(~t/7,,)10(7)

n=l1

(18)

T
where 7, == —-1.
n

on

For the case 3), the equation (5) is valid for the
first group, and the equation (17) is valid for the
second group.
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In the case 2), from (17) with (18), and in
the case 3), from (5) with (14), and from (17)
with (18), one can derive the same equations
(15) and (16) for the stress, and for the average
memory variable (see Appendix B).

Consequently, (if use is done the average
memory variable and the average values of
relaxation times), one may clearly see that
the equations for the considered cases of
N mechanisms (15)-(16) are equivalent to
equations (6) and (8) for the case of one
dissipation mechanism.

From this equivalence, it follows that, for a
fixed geometry of the problem, the value of Q

depends only on values of 7, and 7, and on the
source of seismic wave.

Anyway, the solution of equation (11),
which is similar to (1), is basic for the case of
N mechanisms. Therefore, we will consider the
equations for one dissipation mechanism (8) and
(9) as the basic equations, and for this case,
will calculate the dependence of factor Q on the
average relaxation times of the media.

Solution method for the model

The system of equations (8)-(10) is solved by
the finite-difference method with using the PML
for boundary conditions. The finite-difference
scheme has the following form:

T R)+ Ri=L,(v)), (19a)

n+l n

O; —0, p
—=L,(v)+(z, ‘L’)R

v ", (19b)

p———L=00/"+0,0/", j=i,

(19¢)
where

L.(v")=(A +2/)0" +lja V!

JJ?

Lij(vin):‘aiai pov, j#i

//l’

Here ij=1,2,3 - are the indexes of direction,
n=0,1,2... — the mesh index in time, Ar — the time
increment. Space derivatives are defined as
follows:

Q)
N
Il

—_

= 27u, +27u, —uk+2)/(24hi),
2= 2Tu,  +27u, —u,,, )/ (24h,),

Q(
<
Il
—~
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where i, - the space step in the i-direction, and
k — the space mesh index in the i-direction. If
an inner boundary of the area coincides with
a middle line between the nodes, the average
coefficients L, ,1 and u for the inner boundary
are calculated as follows:

B =20 (g + 1)
My =20 ey Ly + Hyyy)

The scheme (19) is written for a fixed grid
(kO Ik0 JkO .K;n=0,1,2,..), and
has the order of apprOX|mat|on O (A2, h". It is
practically equivalent to the “staggered” scheme
used by Virieux (1986), and by Robertsson et al.
(1994), but it operates only with integer values of
indexes, as classical schemes, what is achieved
by appropriate shift of “staggered” indexes.

The equation (19a) can be solved by implicit
scheme. It gives:

R =[AtL, (v)+7, R "]/ (At+7,)
(20)

The necessary stability condition for the scheme
(19)-(20) in the 3D case is:

At+2t, At

V3.5V,
At+27, h '

where h=\[3/(h7+h7 +h7).

If applying the Ricker wavelet for a
seismic source, the following condition is used
additionally:

max (Ax, Ay, Az,)<min(V)/(16f),
‘ (21)

where f - the Ricker wavelet frequency. This
condition provides the undamaged form of
PP, PS, and SS waves in seismograms. The
coefficient 16 is empirical and can be explained
by 4-point approximation of space derivatives
and 4-slope form of the Ricker wavelet. It should
not be less than 4 points at each slope. Other
authors suggest different values of the coefficient
for schemes of different accuracy: 10 - Virieux
(1986), 12 - Moczo et al. (1997), 15-20 - Xu
and McMechan (1998).

Above, v, and V. are velocities of the
compressmnal and shear waves used in definition
of the Lame constants.

In the nodes of the PML absorbing layer, the
equations (19b)-(19c) are modified by Collino
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and Tsogka (2001). Indeed, I apply another
formula for absorbing sink (S ) in the left hand
side of the modified equations (19b,c). It forms
the implicit (not centered) scheme with the
finite-difference time derivative (Sabinin et al.,
2003):

Sa:du"'”, (22)

where u — the same variable that is in the finite-
difference time derivative of the corresponding
equation of the system (19).

The parameter d in (22) is calculated by a
new formula (k = x, y, z — index of direction):

)+ exp(— aﬁ) 2]

my my
baV,

m (e’ —e™ —2a)

=dy, [exp(a

dOk =

(23),

where m— the thickness of PML in mesh steps in
k-th direction, n— number of the node across the
PML, 1<n,<m, , a, b — matching coefficients
(approximately, a=1, b=10). The formula (23)
is not sensitive to values of the parameters «,
b. The PML thickness m, is recommended to be
20, or more.

Advantage of the finite-difference scheme
(19)-(23) is its convenience for parallel
computations what are easily done with
instructions of Open MP.

Estimation of factor Q

For obtaining dependence of the quality
factor Q on relaxation times, let us consider a
formula by Liu et al. (1976), which is valid under
the assumption that t_ and t_ do not depend on
frequency o=2nf at the speC|ﬁed bandwidth:

10(w) = w1, + 1
ot

Taking an integral from this expression over
some interval of frequency, one can get the
formula

(1 ‘L')b

T

o2

(24)

tQ=ar,

where the constant coefficients ¢, and b are to
be evaluated from a numerical experiment. The
formula (24) is derived without the assumption
t<<1 used by Blanch et al. (1995).

From different methods of estimation for
factor Q (see, for example, Tonn, 1991), two
methods seem as more reliable.

The Spectral Ratio method (SR) will be applied in
the following form. From the theory, the ratio of
spectral amplitudes of waves reflected from the
bottom and from the top of target layer can be
expressed as follows:

s = j =5, exp(=pr),

1
where A, A, - amplitudes of spectra of reflection
waves from top and bottom of the target layer in
the same ray path, r is a travel distance, and B is
an absorption coefficient.

Futterman (1962) defined the quality factor
0 as

2_” =1-¢%, (25)
0
where
abr
7f

fis frequency, and 7, is a travel time. It means
that O>2n.

From the other hand, one can approximate
a logarithm of the same spectral ratio by a line
function over a proper interval of f by the least
squares method:

In(s)=-n/f+n,
It means, that estimated d in the interval is:

d=nlt, (26)

The art of application of this method consists
in proper choice of a window for impulse in the
time domain, and a window (interval) for the
least squares method in the spectral domain.

For the Ricker wavelet which will be used
further, the time window must include all three
phases of the impulse up to visible noise at
the edges. It is a visible width of impulse at the
seismogram.

The spectrum of the Ricker impulse has a

shape of a bell, and a logarithm of the spectral
ratio has a near line part (see Fig. 1). The spectral
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window should be chosen inside this line part. It
can be made manually. For automatic choice, by
observing synthetic seismograms, it was found
that a good choice is the window between 0.8 of
the peak frequency for the bottom spectrum and
the peak frequency for the top spectrum.

The second method used is the Centroid
Frequency Shift (FS) method (Quan and Harris,
1993). Here the coefficient n for the formula (26)
is calculated by the following formulas:

angt, b:;Ab ,

:lZ'fA“ fb:lZfAbﬂ
f Iy

=—Z(f LA, n=sHt—L

% (27)

where s depends on the shape of spectra, for
Gaussian spectra s=/ (Quan and Harris, 1993).

The FS method operates with integral values,
therefore it is less sensitive to the noise than the
SR method, but it is more sensitive to the shape
of spectra.

Because of influence of errors on the shape of
spectra, it is used the same spectral window for
the FS method as for the SR method.

For estimating Q from equations (25)-(26),
the value of travel time t, must be calculated, too.

Figure 1. Spectra and a logarithm of its ratio.
b: bottom, t: top.
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To calculate t, in a multilayered reservoir, a
system of non-linear equations can be derived

by the ray-tracing method (see Appendix C).

If the target layer is the second from the
surface, then the calculations become simpler.
Ray paths for this case are presented in Figure
2. One can see that

I r,

05a =" 5o (28)

1 2

where indexes 1, and 2 denote the number of
layer from above, Vis V,, r, is the path from a
source to the top of target layer for the impulse
reflected from the top, r, is the same for the
impulse reflected from the bottom, r, is the
path inside the second layer from the top to the
bottom of target layer, and Ar is time between
the reflected impulses at the trace.

For reflection data, the receivers are at the
surface, therefore t, is twice more than travel
time between points x , and x, .

Using Snell’s law, one excludes the velocity V,
of the target layer from (28):

z

- z,8in 0, ’ (29)

cosf, cosb,sinb,

where p=0.5A1V,+/x; +z} , x, is the half of
the offset, z, z, are thicknesses of the layers,

and 0,, 0, are travel (incidence) angles.

Denoting the offset value of refraction point
for the bottom ray as x (see Fig. 2), one obtains:

source receivers

—
[

I
=]

V.|

] X X

Figure 2. Scheme of P-wave reflections in a three-
layer medium.
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(x, = X)(pyJx* + 2 —xx,—z))=xz) (30)

The non-linear equation (30) is solved
numerically. The obtained value x is used to
calculate the travel time t,=2r/V, of the ray
inside the target layer. From (28),

T, :At+2(\/x§+zl2 —\/x2+212)/V1,
(31)

where V is V of the upper layer. The value Az can
be calculated by the correlation function between
the impulses at the trace.

Difference between At and t, is illustrated in
Figure 3. The difference increases with offset
significantly.

An advantage of the method (30)-(31) is

the exclusion of the unknown velocity V, from
consideration.

As can be also seen from Fig. 2, for more
exact estimating the factor Q, one should use
the wave reflected from the point x at the top
of target layer to calculate spectral amplitude A,
but not from the point x, which is commonly used
for this purpose. Knowing value x from (30),
one may obtain this wave (or its spectrum) by
interpolation from waves (or spectra) of adjacent
traces, with taking into account different values
of geometrical spreading.

Another possible problem in estimating Q
of the target layer is how to exclude from the
consideration the coefficients of reflection and
refraction at the boundaries of the viscoelastic
target layer. It will be the best result in the
estimation of Q if the spectral amplitudes will

0.2 ]

0.1

0.0 0.1 0.2 03 0.4 0.5 0.6 sin’p

Figure 3. Travel time Ty and difference At of arrival
times calculated in one of the variants for different
incidence angles.

differ only because of viscoelastic attenuation
inside the layer. Really, the reflection and
refraction at the boundaries of the layer may
also act:

A_/f _ ARF, B,

AtR Ath ,
where Af- real amplitude, R - coefficient of
reflection, P - coefficient of refraction.

If R and P would depend on f then they
influenced on value of Q. However, practice shows
that influence of reflection/refraction coefficients
on the estimated values of Q is less than difference
in estimated values Q caused by different smart
choices of the time and spectral windows.

Both methods SR and FS give close values Q
but FS insufficiently less.

Numerical simulation

I use the developed numerical model for
obtaining the synthetic seismograms of waves
reflected from the top and bottom boundaries of
a horizontal viscoelastic layer. Then I estimate
the factor Q from the seismograms with different
T, and t_, and put these values into the left-hand
side of the formula (24) to estimate the values of
the coefficients a, b of the formula (24) by least
squares method.

The computation of synthetic seismograms
by the viscoelastic model was performed at a
workstation which gave possibility to parallelize
calculations into 24 threats. But it was too slow
for a 3D model. For economy, a 2D problem was
chosen for the numerical experiment, as follows.

At the earth surface, there was one wave
source, and a set of equally spaced (every
100 meters) receivers (the common source
point observation system). The area of width
5000 m and depth 2250 m consisted of three
homogeneous layers, the target viscoelastic
layer was the second, beginning at the depth
1500 m, and had the thickness 400 m. The other
layers were considered as elastic, with 1 =0.

The density, and the elastic velocities of
compressional and shear waves were as in Table 1.

Table 1. Media parameters.

Layer V,m/sec V.m/sec p kg/m?
1 3500 2000 2000
2 3800 1600 2500
3 2000 1200 2000
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Seismic wave source of explosion type was the
Ricker wavelet in time, its frequency f was set to
15, 30, 45, and 60 Hz, duration of the impulse -
160, 80, 53.3, and 40 ms correspondingly.

The mesh sizes of the finite-difference grid
were h=5m, h=2.5m, and the time step was 0.2
ms. The PML thickness was equal to 40 nodes.
The PML was not mounted at the earth surface
where the source was set.

The typical seismogram of v_ obtained for
this 2D problem is shown in Figure 4. First two
fronts of PP-waves were used for estimating the
factor Q. PP waves reflected from the bottom
of area (1400-1500 ms), and direct waves
reflected from the vertical sides of area are not
visible. It means a good effectiveness of applied
modification of PML absorbing boundaries.

For comparison, the 3D problem was
computed in the variant of f = 30 Hz, = 0.7, and
7_= 0.625ms. The 3D area had and additionally
y-direction with thickness 2000 m. The receivers
were spaced in the middle line. For saving time of
computation, a rough grid was used: h =h =20m,
and the time step 0.4ms. S

The seismogram of v obtained for the
3D problem is shown in the Figure 5. Visible
distortions are caused by the roughness of grid

The Figure 5 corresponds to the variant of Figure
4. Values of factor Q calculated for seismograms
of Figures 4, and 5 are practically the same, and
are equal to 14.8.

The comparison is good enough to decide
to apply more economical 2D model in the
numerical experiment.

Numerical results

Factor QO was calculated with the SR method
for all offsets and did not show any stable or
significant dependence on the offset. Existing
errors were caused by small distortions of waves
by interference with waves reflected from the
sides of area, and by errors in setting the time
windows.

Difference in Q on offsets was up to 6% of
magnitude for small values 7 (<0.0002), and up
to 12% for large values 7_(>0.01), with 0.5%-
3% for a middle values, what can be adopted as
an error for the estimation of Q.

Difficulty in calculation of the factor Q is that
the linear part of logarithm of spectral ratio which
one can see in Figure 1 is not clearly present for
extreme values of relaxation times. For example,
it is a curve for large values t_. Therefore, this
gave unreliable values of Q sometimes.

TtAaR=23 (B

LR -

Lk ¥
EREEE

ER R

b

Figure 4. Seismogram of direct P, and reflected PP, and PS waves (v ) for the 2D problem.
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1 '] F- n i E] [ & (3

Figure 5. Seismogram of direct P, and reflected PP waves (v ) for the 3D problem.

Table 2. Computed values of Q for f=15, and different values of 7, and t_.

NI g 20 40 80 160 320
0.05 172 61 265 63.3 115 190
0.1 107 34.1 25.5 35.4 64.2 115
0.2 68.7 24.2 16.9 21.5 36.8 66

0.3 57 16.9 13.5 15.9 26.8 46.6
0.4 51.4 14.3 10.4 13.1 21.3 37.5
0.5 48.3 12.7 9.35 11.3 18.1 31.6
0.6 47.5 11.5 8.6 10.4 15.1 25.8
0.7 43.4 10.7 8.0 9.9 14.1 23.9
0.8 33.9 10.3 7.7 9.4 13.2 21.3
0.9 31.9 10.1 7.4 9.1 12.1 19.6
0.95 29.9 9.7 6.8 8.8 11.6 18.6

Table 3. Computed values of Q for f=30, and different values of 7, and t_.

NIT) 10 20 40 80 160 320
0.05 201 59.9 48.7 73 128 236
0.1 115 43.7 31 40.6 72 132
0.2 67 22.5 17.9 23.3 39.6 72.2
0.3 51.8 14.8 13.14 17.3 28.3 52.5
0.4 47.7 11.5 10.65 14.7 22.6 39.2
0.5 42.6 9.73 9.72 12.4 19.3 33.3
0.6 41 8.46 8.85 11.7 17.5 29.9
0.7 39.6 7.97 8.2 11.2 15.6 26.1
0.8 38.4 7.38 7.81 9.55 14.7 23.8
0.9 37.8 7.02 7.35 9.44 13.8 22.5
0.95 37.2 7.02 7.31 9.08 13.2 21.4
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Table 4. Computed values of Q for f =45, and different values of 7, and t_.

NI 10 20 40 80 160 320
0.05 196 84 76 74 128 221
0.1 128 43 32 41.8 72.2 131
0.2 73 18.6 18.5 24.2 41.1 71.4
0.3 55.6 12.8 13.45 17.4 30.6 52.8
0.4 46.8 10 11.4 14.8 24.5 41.2
0.5 43 8.9 9.8 14.4 21 36.2
0.6 41.8 7.8 9.1 12 17.7 31,3
0.7 41 7.4 8.5 11.3 16.8 27.8
0.8 40 7.0 8.0 10.4 15.1 P
0.9 39.9 6.8 7.5 9.85 14.35 23.4
0.95 39.7 6.7 7.2 9.77 13.8 PN

Table 5. Computed values of Q for f =60, and different values of t, and t_.

TQ/(f"T") 10 20 40 80 160 320
0.05 197 79 61.2 74.8 129 211
0.1 128 34.4 35.2 44.5 78.8 132
0.2 71 16.8 20.1 23.5 43.7 75.5
0.3 55.5 11.7 14.2 21.4 31.7 55.9
0.4 48.8 9.45 11.84 17.4 26.9 44.8
0.5 47 8.1 10.4 15.4 22 36.6
0.6 46 7.5 9.4 13.1 18.5 31.6
0.7 44 7.15 8.9 11.9 17.4 28.5
0.8 42.3 6.88 8.35 11.3 16.1 26.2
0.9 41.4 6.7 8.2 10.6 15.2 22.6
0.95 41.1 6.65 7.7 10.1 14.7 21.4

The results of calculation of factor Q in a wide
range near normal incidence are presented in
Tables 2-5 for the source frequencies of f=15,
30, 45, 60 Hz respectively.

As equations (8), (9) depend on t and t_, so
the values Q in the Tables 2-5 are presented
depending on these parameters. Also, the
results depend on the frequency of the source
significantly.

It was found that equation (24) does not
match satisfactory to Tables 2-5. Instead, the
following similar equation was derived for this:

1/d=A/(xy)+By/x-Cy, (32)
where d depends on Q by formula (25), x=1“,

y=[3/(fz_)1". Values 0=0.7, and B=1.2 represent a
near optimal choice.

The obtained coefficients A, B, and C of (32)
are presented in Table 6 with values of relative
estimation error by (32).
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One can compare values Q calculated by (32)

forﬁ =45 in Table 7 with values from Table 4.

For practical use, one can apply Tables 2-5, or equation
(32), or derive an own approximation formula.

Table 6. Coefficients for equation (32).

f A B C Rel. error
15 100.4 0.0079 0.0040 0.138
30 108.1 0.0096 0.0058 0.138
45 113.2 0.0091 0.0045 0.135
60 113.9 0.0089 0.0036 0.156
Discussion

Some authors (Blanch et al., 1995; Xu and

McMechan, 1998) guess that the constant value
Q over some interval of spectral frequency, which
one can usually see, is equal to a near constant
value Q on an average graphic consisting of the
separate theoretical graphics Q (as by Liu et
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Table 7. Estimated values of Q by (32) for f=45.

N37,) 10 20 40 80 160 320
0.05 189 90.7 56.1 60.3 106 228
0.1 118 56.9 35.4 37.4 64.3 136
0.2 73.6 36.1 22.6 23.3 38.5 79.5
0.3 56.2 27.9 17.6 17.7 28.3 57.1
0.4 46.5 23.3 14.9 14.7 22.6 44.7
0.5 40.2 20.4 13.1 12.7 19.0 36.7
0.6 35.8 18.3 11.9 11.4 16.4 31.0
0.7 32.4 16.8 10.9 10.4 14.5 26.7
0.8 29.8 15.5 10.2 9.58 13.0 23.4
0.9 27.7 14.6 9.66 8.97 11.8 20.7
0.95 26.8 14.1 9.42 8.71 11.3 19.5

al., 1976) for N>1 dissipation mechanisms with
different relaxation times. As one can see from
(25), this method of obtaining constant Q fails in
the case of one dissipation mechanism. Contrary,
the experimental formula (32) does not depend
on the number of dissipation mechanisms.

Although the formulas (25) - (27) of methods
for estimating factor Q are simple, they have
several sources for errors. At first, it is a non-
linear form of the “line” part of the logarithm of
spectral ratio which can be clearly seen in field
data. It is necessary smoothing seismograms
with noise, and developing new methods of
Q-estimation for synthetic seismograms obtained
at large 7_.

Second, insignificantly different sizes and
positions of time windows can give significantly
different spectra what is caused by increased
role of noise at the edges of impulses. Suitable
automatic algorithms for generating the time
windows are needed.

Third, a correct estimation of the travel time
is needed as one can see from Figure 3.

Finally, a good estimation for the usually
unknown impulses reflected from the top of

target layer in the point x of Fig.2 is necessary.

Errors from these four sources can give
significantly incorrect values Q, up to 50% and
more.

I have solved these problems for synthetic
seismograms in case of fine spacing the receivers
and not large values 7. As the result, Q values
calculated here do not depend on offset what
must be theoretically for isotropic media, because
factor Q is a property of medium only. This is
a good criterion for correctness of methods for
estimating Q. If one sees a factor Q depending

on offset (see for example Dasgupta and Clark,
1998), it means that the medium is anisotropic or
there are the errors in algorithm of estimating Q.

As known, PML absorbing boundary does
not exclude completely reflections from the
boundaries of area for finite-difference problems.
The modification of PML presented here decreases
the reflections in comparison with classical PML
by Collino and Tsogka (2001) due to lucky choice
of exponent functions for approximation (23).

Errors of the approximated formula (32)
for dependence Q on relaxation times are in
agreement with errors of estimating Q. For
example, if it is excluded the first and ultimate
columns from Table 2, then the error of estimation
by (32) becomes twice less.

Conclusion

A numerical 3D model for seismic wave
propagation in viscoelastic media is developed,
which differs from the previous (Robertsson et
al. 1994) by modification of the finite-difference
scheme, and by including the improved variant
of PML absorbing boundary.

It is shown that the numerical model for
one dissipation mechanism can be directly
applied to three simple schemes of interaction
of N dissipation mechanisms by using average
relaxation times.

The synthetic seismograms are obtained for
3D, and 2D variants of a reservoir which show

close values of factor Q in the viscoelastic layer.

The methodology of estimation of factor Q for
surface reflection data is developed which differs
from previous by more exact calculation of travel
times for reflected waves, and by manual choice
of spectral windows.
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The viscoelastic model and the method
of (Q-estimation are applied to obtaining
experimental dependences of factor Q on
relaxation times. The approximate formula is
suggested for such dependence.

Appendix “A”
Creep functions for Ndissipation mechanims

From the theory of viscoelasticity, for
one mechanism of the standard |linear
solid, the stress response can be written as
G =k, +k exp(—=kit/n)]0(t), where k and n
are coefficients in stress expressions for elastic
and viscose elements: o= ke, and o=n¢ (see
Fig. Al).

For N mechanisms interacting in parallel, one can
write:

G= i[an +k,, exp(—k,t/1,)0(1).

n=1

Figure Al. Scheme of standard linear solid.

In this case, the scheme of interactions of
mechanisms is equivalent to a parallel scheme

N
. — 1 .
with equal values kz—wzkzn for elastic
elements. n=l

Therefore, defining the relaxation times for each
mechanism as

1 1
Ton =M, /kln7 Ten :nn(k_+k_)’
2

In

T
£ —1), and
T

on

one obtains k,, =k, (
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N
G =l N1++ Y (E2 ~1)exp(~t/7,,)].

n=1 T

on

This definition is equivalent to formula (18)
for the creep function.

For N mechanisms interacting sequentialy,
one can write by analogy:

Y1 1 1
J = Z[k— T ———exp(=k,t/n,)P)
n=1 2n

1n In

The scheme of interactions is equivalent
to a sequential scheme with equal values
N

2/k=%(1/k,+1/k,) for elastic elements.

n=1

Defining the relaxation times for each
mechanism as

Tsn:nn/kln’ To‘n:nn/(kln+k2n)l
one obtains L=%(1—Tﬂ), and
N
=24 Y - Eexp(r /7, )]
n=1 en

what gives formula (14) for the creep function.

Appendix “"B"
Model equations for N
mechanisms

dissipation

By expanding the time derivative in the
convolution in (5), with using the formula (14),
one can get:

N
o zLif_%zTn(mn_dif)' (B1)
n=1

1 .
where m, =—exp(—1/1,,)0()*c; .
. i

&En

By taking the time derivative of m , one can
get:

T mnz—mn+6ij_ (B2)

&n

Substituting this equation into (B1) gives:

M,=6,-L, (B3)

g
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N

-1 _
where MZ./. = Z(rsn T,,)m, .

n=1

The equation (B1) can be rewritten in the form

N
1 -
N ;[(1 Tn )GU L[/ Tnmn] . (B4)
As it follows from (6), the equality in brackets
inside the sum of (B4) is valid for each dissipation
mechanism, i.e., for each value of index n.
Therefore, one can multiply it by t  inside the
sum what gives the equation:

1760'[/. = fL,LU. —Mij ) (B5)

Defining R, =M, /(TT,), one obtains
equations (15) and (16) from (B5) and (B3).

In the case of parallel mechanisms, the time
derivative in the convolution in (17) is expanded
with using the formula (18) that gives:

N

Oy =L if _# (mln

(B6)

lj

where m,, =

—exp(—t/7,,)0()* L, .

on

By taking the time derivative of m, , one can
get:

Tcmmln = _mln + Lij

(B7)

Substituting this equation into (B6) gives

Z(Tw Ty,

The equation (B6) can be rewrltten in the
form

equation (B3) in which M..

N
¥ [6,=L,+7,L,~t,m] (B8
n=l1

The equality in brackets inside the sum of
(B8) is valid for each dissipation mechanism,
i.e., for each value of index n. Therefore, one can
multiply it by T  inside the sum what gives the
equation (B5). As above, (B3) and (B5) lead to
(15) and (16) by defining Rl,j M/(T‘L'g)

In the case 3), by the same way, one can
obtain the equation (B3) with the definition

ij = %[Z(T‘sn To‘n )m + Z(Ten To‘n )mln
For the first group, the equation

Ny

2[(1_Tn)dlj = Llj _Tnmn] (Bg)
n=l1

is valid which can be multiplied by t_ inside the
sum, and for the second group, the equation

Ny

Z[d;‘j = L;'/ +Tlnng _Tlnmln] (B10)

n=1

is valid which can be multiplied by t_ inside the
sum. After these multiplications, the sum of
(B9), and (B10), divided by N, gives again the
equation (B5).

Unfortunately, in the case of N parallel
mechanisms, some authors use instead of (17)
and (18) the widely known formulae (Carcione
et al, 1988; Carcione, 1993; Robertsson et al.,
1994; Xu and McMechan, 1998; Komatitsch and
Tromp, 2002, Mikhailenko et al., 2003):

G, =¢,*L,

)

¢,()=[1+ irln exp(—t/7,,)10(1),

In this case, one will obtain the equation

(B3) W|th definition M ——Zrlnmln, where
v
N
n=1 T

Instead of (B5), one will obtain the similar
equation:

6, =(+NB)L,—AM,, (B11)

N
where B = %Zrln . In essence, A and B are
average value

Scarcely likely, (B11) looks better than (B5).
Equation (B11) depends explicitly on number
of relaxation mechanisms N, but (B5) does
not. For example, it is easily seen in the case
of proportional values ¢ =27 for all relaxation
mechanisms.
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Independence on N of (B5) is more correct
from the point of view of Physics. Therefore, I
use and recommend the creep functions ¢, and
#,, but not ¢,.

Appendix “C"
Travel time estimation for multilayered
media

Suppose that there are n layers above the target
one. Then (see Fig. 2),

=zig(B), (c1)
i=1

where z_ is the thickness of i-th layer, and B, is the
incidence angle in it.

sin(f3,)
V.

1
from (C1), one can derive a nonlinear equation
for obtaining it (V is the ray velocity):

From Snell’s law, 9y = is a constant, and

aZ
’ ,/1 a0V2 )

Consequently, knowing a, from (C2), one can
calculate a half of the travel time for upper ray:

t, =
i ©

By analogy, for the down ray, one can write:

i (C4)

sin(a;)

i

where g =
for it.

, and o, is the incidence angle

The half of the travel time for down ray in the n
upper layers

n z,
vy

From definitions,

z
05At=t¢t —t, + —— Cc6
o V cos(a) (C6)

where z, V, and a without indexes belong to the
target layer.
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From (C6) with (C4), using substitution w=x x,
one finds out a nonlinear equation for calculating
value a:

2+ 2
f+05A =1 +2E W)
w

Finally, knowing a, one calculates ¢, from (C5),
and the travel time in the target layer

T, =2(t, 1)+ At
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