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RESUMEN 
La aceleraci6n estocastica de particulas es fundamentalmente un proceso de difusi6n en el espacio fase de energfa. A pe

sar del comportamiento estadfstico del proceso de difusi6n, se establece una tendencia promedio de ganancia de energfa de 
caracter determinlstico, que es usualmente designada como aceleraci6n sistematica. En el caso particular de la Ffsica de Ra
yos C6smicos, a menudo se considera solamente Ia tasa de aceleraci6n sistematica, ignorandose los efectos de dispersi6n en 
el espacio de energfa, los cuales son identificados como una tasa fluctuacional de aceleraci6n. Sin embargo, ha sido de
mostrado por varios autores que, dependiendo de las propiedades de Ia turbulencia involucrada en la aceleraci6n, la tasa de 
aceleraci6n sistematica puede ser ineficiente en algunos casos, e incluso ser nulificada por procesos competitivos de per
dida de energfa, de tal forma que Ia producci6n de partfculas energeticas es debida exclusivamente a los efectos de dispersion 
en energfa. En este trabajo se calcula separadamente Ia contribuci6n de am bas tasas de cambio de energfa, para evaluar su im
portancia en Ia producci6n de partfculas energeticas. Se consideran dos mecanismos de aceleraci6n, el proceso Fermi y Ia 
aceleraci6n resonante por turbtrlencia magnetos6Ii.ica (cuando el arm6nico S=O). Se resuelve anaHticamente Ia ecuaci6n de 
transporte para el caso estacionario y para el caso dependiente del tiempo. Se encuentra que Ia contribuci6n de los efectos de 
dispersion en energfa al espectro de particulas al nivel de sus fuentes no puede ser considerada como una mera fluctuaci6n en ~ 
el flujo de partfculas, sino que representa en algunos casos una importante sobre-producci6n de partfculas y en otros casos 
una importante depresi6n de particulas en el espectro de aceleraci6n. La relevancia de esos efectos de difusi6n en energfa de
pende principalmente de Ia eficiencia del proceso acelerador, Ia correlaci6n entre Ia poblaci6n inicial de partfculas con el es
pectro de velocidades de Ia turbulencia, y de Ia proporci6n relativa entre las diferentes clases de interacciones de las partfcu
las con los agentes aceleradores. Se establecen los Hmites bajo los cuales los efectos de difusi6n en energfa podrfan ser ig
norados relativos a Ia tasa de aceleraci6n sistematica. Se concluye que, con algunas excepciones, en el caso estacionario el 
espectro de energfa derivado exclusivamente con base en Ia tasa sistematica no describe el flujo real de las partfculas acclera
das, y que el apelativo de tasa fluctuacional de aceleraci6n no es apropiado. El calculo de flujo de radiaci6n secundaria con 
base al espectro de las partfculas aceleradas debe de tomar en consideraci6n Ia limitante de considerar unicamente Ia tasa de 
aceleraci6n sistematica. 

PALABRAS CLAVE: Ffsica de Rayos C6smicos, aceleraci6n estocastica, tazas sistematicas y difusivas de aceleraci6n. 

ABSTRACT 
Stochastic particle acceleration is essentially a diffusion process in energy phase space. In spite of the statistical be

havior of the diffusion process, there is an average energy gain tendency of deterministic nature which is usually called 
Systematic Acceleration. In practice only the systematic acceleration rate has been considered, ignoring effects of the dif
fusion process, usually identified as a fluctuational acceleration rate. However, depending on the nature of the phase veloc
ity spectrum of the turbulence, or on competitive energy loss processes, the average systematic acceleration rate may be
come inefficient and even null, so that energetic particle production is due only to the energy spread effects (diffusion in 
energy). We calculate separately the contribution of both energy change rates, in order to evaluate the importance of parti
cle production by each. We consider the classical Fermi process and turbulent acceleration by magnetosonic waves (for the 
case in which S=O in the resonance condition). The transport equation is solved analytically for the steady state and for the 
time-dependent situation. We find that the contribution of fluctuational acceleriltion to the source solar particle spectrum 
cannot be considered as mere particle flux fluctuations, but may represent an important overproduction in some cases and 
particle depression in others. The relevance of energy spread effects is related to the efficiency of the energy gain: the na
ture of the initial particle population relative to the velocity spectra of turbulence, and thus the relative proportion among 
the different kind of interactions of particles with acc!lerating agents. We discuss the conditions under which diffusion in 
energy effects should be ignored relative to the average energy gain rate. With some exceptions in the stationary case, en
ergy spectra derived on the basis of systematic acceleration alone cannot describe the real particle flux. This must be taken 
into account in calculations of the flux of secondary radiation. 

KEY WORDS: Cosmic ray physics, stochastic acceleration, systematic and diffusive acceleration rates. 

1. INTRODUCTION 

Energetic particle motion in generating sources is de
fined by electric charge and momentum and controlled by 
the local em fields. The fields are composed of an average 
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field, on some scale, plus a turbulent component on a 
smaller scale, associated with waves in the plasma. 
Turbulent fields cause random scattering of particles from 
the paths they would have taken in the mean em fields 
alone. Elementary interactions of particles with turbulent 
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fields may result in a change in particle energy. This 
stochastic effect on the energetic particle distribution has 
been studied by means of continuity equations, usually 
called transport equations, and in particular the diffusion
convection equation. There are several ways to derive this 
equation in order to study the evolution of the energy dis
tribution of the accelerated particles (e.g. Jones, 1991). The 
most common methods are derived from the collisionless 
Boltzmann transport equation and from the Chapman
Kolmogorov equation. In the former a quasi-linear formal
ism is established, by assuming that the particle distribu
tion function has an average part plus a smaller fluctuating 
part. In the second method, expected values and mean 
square deviations of the particle momentum along the un
perturbed path of one particle are usually calculated. Both 
formalisms may lead to a generalized Chandrasekhar equa
tion which, once adapted to the specific case of the genera
tion of energetic particles, becomes a Fokker-Pianck type 
equation. One way to do so, within the frame of t?e 
Boltzmann-Vlasov formalism, is from the momentum dif
fusion equati~n 

which is usually derived from the transport equation in 
phase space 

where the divergence of the streaming in space is assumed 
to vanish (V . S=O), and the adiabatic compression and par
ticle continuous energy losses are ignored within the 
streaming in momentum space Jp (e.g. Forman and Webb, 
1985). 

Equation (1) is valid for isotropic plasma turbulence 
and assumes that the particle phase-space density f(p,r,t) is 
spatially homogeneous and isotropic. The momentum-dif
fusion coefficient D(p)=<.1p>2/.1t describes the effect of 
plasma turbulence on particles; Dp is the small change in 
momentum undergone by a particle during each random 
interaction with the turbulence. In such an isotropic parti
cle distribution the number density N(E,t) may thus be re
lated to the phase-space density by N=47tp2f(dp/dE}, so that 
(1) may be expressed in the form of a Fokker-Planck equa
tion (e.g. Tsytovich, 1977), 

iJN (E,t) 
dt =-*[(1ft) N(E,t)] 

+; fir[(Jf)N(E,t)J (3) 

where the first Fokker-Planck coefficient describes the av
erage energy change, as a kind of systematic energy change 
rate 

(4) 
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and the second Fokker-Pianck coefficient is the diffusion in 
energy space around the average energy change rate, 

( ilf/-) = 1i D (p) (5) 

The meaning of these two coefficients is the following: 
particles gain and lose energy through the stochastic ele
mentary interactions with turbulent agents moving with 
average velocity higher than the characteristic velocity of 
particles, but on the average there is a net energy gain. In 
spite of the statistical (rather than secular} behavior of the 
process, this net energy gain may be seen as a unidirec
tional systematic energy increase at the average rate 
<dE/dt>. Because of the stochastic nature of the elementary 
accelerating interactions, the energy change .1E is not nec
essarily the same for particles of the same energy E: some 
of them may even decrease their energy in a given interac
tion, but there is a spread in the energy change around the 
average, which results in a dispersion of energy for parti
cles of the same energy after each elementary interaction. 
This dispersion is determined by the variance of the particle 
energy at the rate of (dE2/dt). 

Back to eq. (3), in cosmic ray physics several terms are 
added depending on the specific problems to be solved (e.g. 
Ginzburg, 1958). In the case of source particle acceleration 
we usually add the particle injection into the acceleration 
process Q(E,t), the probability of particle disappearance 1/t 
from the acceleration volume by escape or nuclear trans
formations, and a rate of deceleration by different processes 
of energy losses (-dE/dt) (usually considered together with 
the term of systematic acceleration). As a first approxima
tion,we neglect this last factor in this paper: 

iJN J~·t) = -i-[( 1ft) N(E,t)] 

+1~[ ( ilf/-) N(E,t)] 

N(E,t) Q(E ) 
r(E,t) + ,t (6) 

where the s~cond term of the right side represents diffusion 
in energy space. The importance of this term has been dis
cussed in connection with suprathermal particle generation 
(e.g. Davis, 1956; Ginzburg and Syrovatskii, 1964). Its 
meaning derives from the fact that, even when the average 
energy gain is zero, energy diffusion produces particle ac
celeration. Schatzman (1966) derived the flux of particles 
produced by the diffusion term in equation (3), when the 
average energy loss within Jp in eq. (2) equals the average 
energy gain, so that the first term in eq. (3) becomes zero. 
In the particular case of ion sound wave turbulence, it has 
been argued that the acceleration of non-relativistic parti
cles is determined only by energy diffusion (e.g., Lacombe 
and Manganey, 1969). In the case of Fermi acceleration, 
Ginzburg and Syrovatskii (1964) and Melrose (1980) have 
pointed out that the ratio of the numerical coefficients in 



(4) and (5) is usually in the order of 4:1, though obviously 
it changes from one mechanism to another. However, this 
ratio relates only to the numerical coefficients of the rates 
<dE/dt> and <dE2 /dt> and not to the ratio between the two 
complete terms of the right side of (3). For an evaluation 
of the effect of these terms on the density of the accelerated 
particles and their energy distribution, equation (3) or (6) 
needs to be solved. Therefore, the relative effect of both 
terms in eq. (3) could vary greatly depending on the as
sumptions on the acceleration mechanism, the accelerating 
turbulence involved and the initial assumptions (mainly 
the initial particle population). 

Depending on the acceleration efficiency of the process, 
the deviations of the parameters from their average value 
may be considered to some extent as fluctuations about 
their characteristic values, which may result in fluctuations 
of the acceleration parameters. For instance, fluctuations of 
the mean magnetic field strength and/or matter density in 
the source entails fluctuations of the hydromagnetic veloc
ity and of the power spectrum of the associated turbulence. 
Since the em fields are randomly distributed there may be 
significant deviations of the characteristic average value of 
the mean free path of interaction of particles with the ac
celerating agents, and considerable resulting deviations in 
the permanence of particles in the acceleration volume with 
respect to the characteristic mean confinement time. All 
these deviations may result in fluctuations of the character
istic acceleration efficiency, which in tum entails fluctua
tions around the average acceleration rate. To some extent 
these fluctuations are included in the effect of the energy 
diffusion rate (d£2/dt). However, the effect of these devia
tions on the energy spectrum of the accelerated particles, 
which is derived by solving (3) or (6), does not only result 
in fluctuations in the number density but may, in some 
cases, determine the particle production. In fact, while it is 
often argued that some turbulence may be ineffective in ac
celerating particles, as only energy diffusion is produced, 
we shall see that (at least in the two cases considered for 
solar particle production) diffusion in energy may lead to a 
significant particle production, which turns out to be in 
some cases the largest contribution as compared to the sys
tematic acceleration rate. 

Until now, the relative importance of the systematic 
and diffusion rates in the generation of energetic particles 
has been discussed on qualitative grounds, for the specific 
case of~ = 1, with a certain tendency to neglect the diffu
sion rates. However, for any acceleration process, the dil'fu
sion term is proportional to the momentum transfer be
tween the particles and the medium. Thus, for very ener
getic events, such as stellar flares, this effect may play an 
important role in the formation and regulation of the shape 
of the particle energy spectrum and the flux magnitude. 

In an earlier paper (Gallegos-Cruz and Perez-Peraza, 
1987), it was found tha,t even in the extreme case when ~ = 
1, the contribution of the energy spread term cannot be 
seen in terms of simple fluctuations within the frame of 
energy distributions of particle flux. It is an important en-
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ergy-dependent effect modulated by several factors. We 
shall now consider the general case (for any value of~). by 
solving the complete transport equation in the steady-state 
and time-dependent cases, and comparing these solutions 
with the solutions obtained when the energy diffusion term 
is neglected. The relative importance of the systematic and 
the diffusive terms is quantitatively evaluated as follows. 

Primary particle acceleration in astrophysical sources 
appears from the non-relativistic background material. 
Even secondary acceleration stages of local energetic parti
cles, (e. g. in solar sources) may start out with an impor
tant population of non-relativistic or trans-relativistic par
ticles, before the particles reach very high relativistic ener
gies. Under the non-ultrarelativistic approach it is difficult 
to draw direct conclusions about the relative effect of the 
systematic and diffusive energy change rates on the particle 
flux generated, because the dependence of the two right- . 
hand terms in eq. (3) on E and ~ differs from each other. 
Also, because the initial energetic level of acceleration 
(i.e., the kind of initial particle population in a given sce
nario) modulates the relative contribution of (4) and (5) in 
the particle flux, any quantification in this regard must. be 
considered within the frame of specific scenarios. As an if: 
lustration, in section 3.1 we propose two general scenarios 
for solar particle generation, each with a specific initial 
particle population. Two different acceleration processes are 
worked out for both scenarios. The mathematical expres
sions derived for the particle energy distributions are pre
sented in section 3.2. Results are given in section 4 and 
discussions and conclusions are provided in sections 5 and 6. 

2. THE RATES OF SYSTEMATIC AND 
DIFFUSIVE ACCELERATION 

Charged particles are accelerated via individual behavior 
when each particle undergoes separately the same mecha
nism, or via collective behavior when an important num
ber of particles accelerates together (Schatzman, 1966). 
Since the density of the accelerated particles in the case of 
individual behavior is relatively low, their mutual interac
tions are disregarded in the context of the Boltzmann equa
tion (which allows for binary collisions), so that particle 
acceleration in these cases is studied as a collisionles.s 
problem. In the collective behavior, energy is transferable 
from a set of particles through a given kind of plasma 
oscillations or shock waves to another group of particles, 
and the study of particle acceleration is usually simplified 
by hydromagnetic approaches. The accelerating force via 
electric fields may be either secular (deterministic process) 
or random (stochastic process). Particle acceleration in so
lar sources, such as flares, has been associated with both 
fast, impulsive and unidirectional acceleration events where 
particles gain energy systematically, and slow random 
events where particles gain and lose energy in elementary 
interactions with random em fields. In the latter case, due 
to statistical and thermodynamical equilibrium, there is on 
the average a net energy gain. Since each particle is ran
domly accelerated, and undergoes small energy changes, the 
accelerating elementary interactions of individual particles 
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may be treated as independent events. The behavior of the 
accelerated particle flux is thus adequately represented by a 
stochastic process. 

Stochastic particle acceleration in nature is associated 
with plasma turbulence. Turbulence has a tendency to relax 
through energy deposition on the particles by means of en
ergy transfer processes of a statistical nature. To quantify 
such an energy deposition several processes have been pro
posed, such as the betatron mechanism (Swann, 1933), the 
Fermi mechanism (Fermi, 1949), the magnetic pumping 
mechanism (Berger eta/, 1958) and others. Turbulence 
may be generated by a wide range of instability factors, 
(e.g., microinstabilities in plasma boundaries), or by ex
panding shock waves during their passage through the 
plasma, as is the case of solar flares, etc. Among a wide 
variety of waves that may co-exist in a magnetized plasma, 
hydromagnetic turbulence is of particular importance in the 
context of charged particle acceleration. In fact several au
thors (e.g. Kulsrud and Ferrari, 1971, Achterberg, 1981) 
have shown that an adequate characterization of the MHD 
turbulence allows for the derivation of specific acceleration 
mechanisms within the frame work of a general theory of 
wave-particle interaction. 

The conditions for the occurrence of energy deposition 
on the particles and the amount of transferred energy vary 
widely, depending on the nature of particle flux and their 
energy distribution, the wave spectrum of the turbulence, 
and the physical conditions of the medium. The three 
above mentioned mechanisms may be interpreted in terms 
of particle interactions with small-scale MHD turbulence 
(Kulsrud and Ferrari, 1971). In particular, the Fermi mech
anism has evolved from the original model where magnetic 
inhomogeneities behaved as magnetic mirrors, o more re
cent interpretations in terms of resonant wave-particle in
teractions, e.g., interaction with a weak turbulent field of 
isotropic magnetosonic wave superposition (Fisk, 1976), 
or resonant dispersion with a turbulent field of MHD 
waves (Achterberg, 1979; Eilek 1984, etc). However, the 
dynamics of statistical particle collisions is more easily 
characterized by collisions with magnetic irregularities than 
in a context of wave-particle theory, which strictly speak
ing involves non-linear processes. Therefore, both to illus
trate and distinguish Fermi acceleration from wave-particle 
interactions and particle collision with magnetic inhomo
geneities, we refer to the "classical" Fermi process when 
we are dealing with interactions where the accelefl6ting 
agents are as hard spheres with masses much larger than 
those of the particles (e.g., Parker and Tidman, 1958) pro
vided that the gyroradius of the particles is smaller or equal 
than the size of the magnetic irregularities. The latter are of 
the order of the interaction mean free path (rg $; L =A). 
This is a relatively inefficient process as compared to ac
celeration by resonant wave-particle interactions, where 
even particles of rg>> L may interact with effective energy 
interchange if the resonant condition between particles and 
waves is fulfilled, so that a much higher interaction fre
quency and thus a higher acceleration efficiency is expected. 
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2.1. The classical Fermi process 

The original Fermi process seems to be very inefficient 
in the interstellar medium since the acceleration efficiency 

·increases with decreasing size of the accelerating agents 
(a- 1/L). At that level, particle.s are accelerated by collid
ing with large-scale moving magnetic irregularities (e.g. 
Unsold, 1951, Melrose, 1980). However, it is well known 
that high energy particles are produced in solar flares with a 
high efficiency: typically 10%-50% of the flare energy is 
transferred to charged particles. In very localized regions of 
solar flares, it has been shown (Melrose, 1975; Perez
Peraza, 1975; Schatten eta/, 1977; Mullan, 1980) that 
small-scale inhomogeneities make the Fermi process 
highly efficient. The reason why the classical Fermi mech
anism may not operate in solar events is the lack of selec
tivity in the mass spectrum of accelerated particles (e.g. 
Eichler, 1979), which is contradicted by the wide observa
tional variety of relative abundances of heavy nuclei and 
isotopes and proton/electron ratios from one solar event to 
another. However, the lack of intrinsic selectivity of the 
acceleration process is a restriction not only on the Fermi 
process but on other mechanisms as well. Rather than_be
ing directly related to the acceleration mechanism, these
lectivity of particle abundances · might be associated with 
the physical structure of the source during particle local 
transport and ejection from the source, or even with the 
simultaneous energy losses during acceleration while parti
cles interchange charge with the source matter (Perez
Peraza, 1981, Perez-Peraza eta/, 1982). 

The average acceleration rate of the Fermi process may 
be directly obtained from the corresponding diffusion coef
ficient, 

(7) 

where ~ is a parameter related to the probability of a given 
type of collision between particles and magnetic irregulari
ties. Depending on whether the interaction is head-on or 
catch-up, and on the size, hardness and shape of the mag
netic irregularities, the value of~ will fall within the range 
of 0.25 $; ~·~ 2 (Ginzburg and Syrovatskii, 1964). 
However, ~ is not necessarily limited to that range 
(Melrose, 1980). For ~ = 4/3, D = (a/3) (p2/~) as often 
stated in the literature. Thus, according to eqs. (4) and (7) 
the average energy gain rate in its simplest form is 

A(E) =<dE!dt> = aff3W = (413)apc (8) 

with W = E + mc2 = particle total energy, and 

at = ~(u2flv) = ~(llr)(ulv) = (413) a (9) 

where t is the acceleration time, u is the random velocity 
of the magnetic inhomogeneities, 't is the mean flight time 
between collisions, and l is the mean free path of particles 



between magnetic mirrors. According to Melrose (1975) 
and Mullan (1980) l < 100 Km in the solar corona, and ac
cording to Perez-Peraza (1975) l- 1 Km at the chromo
spheric level. 

For the energy diffusion rate, according to eqs. (5) and 
(7) we have · 

D(E) = <d£2/dt> = (112)CXf f33W2=(2aJ3) f33W2 (10) 

2.2 Resonant acceleration by magnetosonic 
wave turbulence 

In a magnetized plasma, such as the solar atmosphere, 
when two restoring forces (the magnetic pressure arid the 
plasma pressure) act together, magnetosonic waves are pro
duced. Energy transfer between waves and particles takes 
place when a resonance is established between some of the 
properties of the waves and the particles: the resonant wave 
properties are the wavelength A. or the frequency u and the 
phase velocity V 41; the resonant properties of the particles 
are the velocity v and the gyrosynchrotron frequency (()i. 
The magnetosonic fast mode is often associated with accel
eration of suprathermal particles (e.g. Eilek, 1979; Achter
berg, 1981; Melrose, 1993), and the magnetosonic slow 
mode may be associated with localized heating of thermal 
particles (e.g. Barnes, 1966; Kaplan and Tsytovich, 1973). 

Energy transfer from the turbulence to a number of res
onant particles is essentially by means of non-linear Lan
dau damping, the resonant condition may be found, for ins
tance, in Canuto et al, 1978, p. 312). For practical purpo
ses, linearized approaches to the Landau damping are often 
used, in which case the resonant condition for the harmonic 
S=O is given by the inequality I v - V 41l t < 1t/k = A./2, i.e., 
only those particles in a given initial distribution that have 
not yet traveled a half-wavelength relative to the wave are 
able to undergo a resonant energy interchange (Cheng 
1974, p. 233). The width of the resonance central peak nar
rows with time. For a given initial population (for ins
tance a Maxwellian one) of charged particles, those with 
Vmp > Y41 (where Vmp is the most probably velocity of the 
distribution) which satisfy the above resonant condition, 
give energy to the waves, and those with Vmp ~ V 41, that 
satisfy the resonant condition, receive energy from the wa
ves by Landau damping. Thus the net energy interchange is 
strongly dependent on the relative number of resonant ~ar
ticles with v >~ Y41, i.e. on the sign of(()ffi}v)v=V+ (where 
f is the initial velocity distribution of charged particles). A 
net particle energy gain takes place when the wave-particle 
interactions occur in the energetic region of the particle 
spectrum where (()ff()v) < 0. For the case of interactions 
between the fast magnetosonic mode and suprathermal par
ticles an equivalent resonance condition which is often used 
in the literature (e.g. Achterberg, 1981) is the relation ro
sn- k" v" = 0, (where k" and v" are the wave vector and 
particle velocity in the direction parallel tothe mean mag
netic field), so that for S = 0, the resonant condition that 
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must be satisfied is kVa- k" v" = 0, where Va is the Alf
ven velocity. Since it usually happens that Va ~ Y41 and 
(k/k") > 1, it turns out that only particles with a compo
nent v" > V a are susceptible to acceleration. 

By analyzing a typical "diffraction pattern" of resonance 
(e.g. Cheng 1974, p. 233) it is found that out of the cen
tral peak of resonance (delimited around V 41 = the most 
probable velocity in the wave phase distribution of the 
Kolmogorov spectrum), there are subsidiary peaks due to 
particles that have traveled into neighBoring half-wave
lengths of the wave potential. These particles rapidly be
come spread out in phase, so that in principle they contri
bute little on the average to the new particle distribution, 
once the initial distribution is obliterated. However, it 
must be kept in mind that resonant particles may include 
both trapped and non-trapped particles in the wave poten
tial, since the resonance peaks are independent of the initial 
amplitude of the wave. Resonance and particle trapping in 
the wave potential wave are unrelated phenomena. 

From this discussion it follows that two kinds of wave
particle energy interchanges may be distinguished: a sys
tematic energy interchange corresponding to the centrm 
peak of resonance, and a diffusive interchange related to 
subsidiary resonance peaks, whose particles may diffuse 
out or into different resonant energetic bands. 

Let us derive the systematic and diffusive energy change 
rates. The corresponding momentum coefficient diffusion 
is (e.g. Achterberg, 1981), 

Dp = ~ap2 (11) 

so that for~- 1, according to eq. (4), 

A( E)=< dE I dt >= ( av I p2 )t(p4
) 

= 4af3cp = 1 af32 W = a,f32W (12) 

where Urn= 4a, ~ = v/c and c = light velocity. Likewise, 
according to eq.(5) and (11) . 

D(E) = <d£2/dt>= 2v2Dp = 2af32c2p2 = 2a{31W2 

= (a,/2)· fi4W2 ~13) 

where the acceleration efficiency am is (e.g., Tverskoi, 
1967; Tystovich; 1970, Eilek, 1981) 

(14) 

W(k) is the turbulent wave spectrum, usually considered as 
a Kolmogorov spectrum - k-r, where the index y repre-
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sents the type of involved turbulence, B is the strength of 
the magnetic field, km and kM define the wavelength range 
of the magnetosonic turbulence, with k = 2TC/A. = the 
wavenumber vector. 

3. SOLUTIONS OF THE TRANSPORT 
EQUATION FOR SPECIFIC SCENARIOS 

Equation (6) is complicated to solve by analytical 
methods. However, it is always possible to transform this 
kind of differential equation into an equation which avoids 
the first derivative in energy. The reduced form may be 
solved under certain restrictions by the WKBJ method, as 
shown in Appendix C. Obviously, the solution depends on 
the features of the problem, in this case the generation of 
energetic particles at the level of localized sources. 
Therefore, the general solutions must be adapted to specific 
scenarios of source generation phenomenon. 

3.1 Scenarios 

First, we assume that the particle generation process 
takes place in the frame of a thin geometry, that is, the ac
celeration efficiency is high enough to ignore the collisio
nal deceleration efficiency of the medium. Even when this 
is not true everywhere, and a thick geometry prevails 
sometimes in localized solar particle sources, this assump
tion avoids complications. What we are trying to do is 
study the effects of energy diffusion relative to the so called 
average systematic energy change. Also for the sake of 
simpliCity we assume that the parameter 't is time and 
energy independent. 

In the case of solar flare particle generation, most 
events are commonly observed to be associated either with 
one or two acceleration stages. Therefore we consider the 
following two scenarios. First, particles are impulsively 
accelerated from the thermal background up to high ener
gies, with injection at time t = 0. We assume that this ac
celeration stage is ruled by the above-mentioned stochastic 
processes, though this may not be necessarily true: in the 
literature it is usually associated with direct DC electric 
field acceleration. The second scenario occurs when parti
cles of the thermal background are preliminary accelerated 
to moderately high energies and an important fraction of 
this population is continuously injected into an adjacent 
volume, where the stochastic process reaccelerates them up 
to high energies. It is usually assumed that the primary ac
celeration step in this scenario is deterministic and is asso
ciated with magnetic reconnection in a magnetic neutral 
current sheet. We also suppose that the continuous injec
tion is independent of time q(E,t) = q(E)S(t), where 6(t) is 
a step function such that S(t) = 1 for t > 0, and S(t) = 0 
fort~ 0. According to Perez-Peraza et al (1978), the en
ergy spectrum from neutral current sheet acceleration is 
given by 

q(E) = 9.1 x J0-2 nVd (EIEct114exp[-1.12(EIEcf14] 

316 

(partleV err? s sr) 

where E denotes particle kinetic energy, Ec = (eLBV d 
mlf2/2c)2f3, n =number particle density, L =length of the 
neutral current sheet, m, e are the particle mass and the 
electronic charge respectively and V d = 0.057 Va is the dif
fusion velocity between the magnetic field lines and matter 
according to the model by Priest (1973). By changing units 
we have 

q(E) = 1.27xl04 NrdB(ml n)112(~] 
£314 

exp[ -z.n(f;(
4

]{~) (15) 

where NTd is the total number of particles in the diffusion 
volume. This was evaluated by setting q(E) = 1 part/eV in 
E = Eo (the threshold energy for stochastic acceleration). 

For the second scenario, it is assumed that only parti
cles injected from the preliminary acceleration step which 
fulfill the threshold conditions of the stochastic process 
participate in the secondary acceleration stage. We exclude 
the particles of the local thermal population that might ful
fill the resonant condition and threshold energy for stochas
tic acceleration. This is an idealization of the real physical 
situation in order to simplify the mathematical analysis. 
For both scenarios we consider two different assumptions: 
a kind of "smoothed situation" for the generation phe
nomenon, where, to some extent, a steady-state situation is 
established, and a more dynamic situation, where the gen
eration process is strongly time-dependent (non-stationary). 
For the first scenario, and for the second stage of the sec
ond scenario, both the classical Fermi mechanism and tur
bulent acceleration by magnetosonic waves are considered. 

3.2 Energy spectra without energy diffusion 

This assumption is obtained by setting <dE2/dt> = 0 in 
equation (6), 

JN(E.{) _g_[(dE) ] N(E,t) 
dt +dE at N(E,t) + r(E,t) == Q(E,t) 

(16) 

The solution of this equation determines the contr~bution 
of the systematic energy gain in the generation of energetic 
particles. 

3.2.1 Stationary Solution 

The solution of eq. (16) when Q(E,t) = q(E) and t(E,t) 
= 't is as follows 

N(E) = NL{£0 ) exp( -t * /r) I A( E) 



+A"' (E) J:( E')exp[ ( t''- t ')I <]dE' (17) 

where Eo is the threshold energy imposed by the intrinsic 
interaction pro~rties of the acceleration mechanism, NL is 
the initial population in the acceleration volume evaluated 
at the specific energy value Eo, A(E) = <dE/dt> is the sys
tematic acceleration rate (without energy losses) discussed 
in Section 2, A(Eo) is the same rate evaluated for Eo and·t* 

= t dE' /A (E'), is the acceleration time from the thresh-
Eo 

old injection value up to energy E. The first term in eq. 
(17) is the contribution of particles of local matter to the 
energy spectrum (1st scenario) and the second term, quanti
fies the contribution of particles from a preliminary accel
eration stage to the stochastic acceleration process (second 
scenario). 

3.2.l.la. First Scenario with Fermi 
Acceleration 

The solution in this case is obtained by evaluating t in 
the first term of (17) with the specific rate A(E) = ac~ W 
as given in eq. (9) 

-a!?r f 

(18) 

where NLT(Eo) = 27tNoEo112exp(-EoiKT)/(7tKT)3f2 is the 
number of thermal particles of specific energy Eo, No is 
the net number of thermal particles with E:2£o, able to par
ticipate in the acceleration process and KT is the 
Boltzmann thermal energy. 

3.2.l.lb. Second Scenario with Fermi 
Acceleration 

From the second term of eq. (17) it follows, that 

(19) 

where the threshold energy Eo refers now to particles of the 
suprathermal injection spectrum q(E), since the local parti
cles were excluded. 

Fluctuational acceleration 

3.2.1.2~. First Scenario with Turbulent 
Acceleration 

In this case t* is evaluated with eq. (12), A(E) = a.m~2W. 
From the first term of eq.q 7) we find 

(20) 

3.2.1.2b. Second Scenario with Turbulent 
Acceleration 

From the second term of eq. (17) we have, 

(21) 

Here again the acceleration threshold value Eo is in the 
domain of q(E). 

3.2.2. TIME DEPENDENT SOLUTION 

The solution of equation (16) in this case may be 
derived by the Laplace transform method (e.g. Melrose, 
1976), which yields the following result 

N(E,t) = N LT(E; )A(E; )exp( -t I -r) I A( E) 

+A-1(£) rE q(E')exp((t*'-t*)t-r]dE' 
JE0 

(22) 

where the initial particle energy Ei (t) is derived from the 

acceleration time t= J ~; dE'/A(E'), with Eo<Ei<E, such 

that at t = 0, Ei(t) = Eo. Here, NLT(Ei,O) is a pulse of parti
cles of the thermal distribution evaluated from Ei up to in
finity at t = 0. Here again, the first and second terms in eq. 
(22) correspond to the first and second scenarios. 

3.2.2.la. First Scenario with Fermi 
Acceleration 

Setting the acceleration rate (II) as A(E) = ac (W2-
m2c4)112, the aceleration time is t = ([W+ (W2-m2c4)I12)/ 
[W;+ (W2i- m2c4)112)} ltaf, with W; = mc2(1-~2;)·If2 and ~;= 
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[1+(~-2 -1)exp(2at)]·ll2, so that the spectrum may be writ
ten in the short form 

(23) 

where wi is defined within the local thermal distribution 
with Wi = Wo at t= 0. 

3.2.2.1 b. Second Scenario with F.erm i 
Acceleration 

By substitution oft* and t"'' in the second term of eq. (22), 
we obtain, 

N(E,t)= ( a1pw( 
1 

iE E' [W'+(W'2-m2c4)Jt2r af-r dE' 
q( ) W (W2 2 4)1t2 

Ei + -m c (24). 

where Ei is in the domain of the injection spectrum q(E) 
with Ei = Eo at t = 0. 

3.2.2.2a. First Scenario with Turbulent 
Acceleration 

In this case we evaluate the acceleration time t(E) in the 
first term of eq. (22) by setting Wi = (m2c4+ (W2-
m2c4)exp(-2(l,y,))1!2, thus, the spectrum is 

N(E t)= 2TcN~ E112(J3/W;]exp[-(;_+_§_)] 
, (nKT) 12 ' n2W -r KT 

p (25) 

where J3i = /3(Wi). 

3.2.2.2b. Second Scenario with Turbulent 
Acceleration 

Following the same procedure as in eq. (24) we obtain 

( 2 )-I rE ( )[ W2-m2c4 ]- 2dm-r , 
N(E,t)= amtJ W JEi q E; W'2-m2c4 dE 

(26) 

3.3 Energy spectra with energy diffusion 

In this case we are dealing with the solution of equation 
(6) including the term of energy spread, i.e., the second 
term of the right hand of (6). 

318 

3.3.1. Stationary solution 

By setting oN(E,t)/ot = 0 in equation (6), we obtain the 
reduced form which is solved by the WKBJ method 
(appendix A). The result is 

l/2 " • Part iE } 
-a E' D1~~ E") dE (Energy) 

(27) 

where Eo:::;; E':::;; E, a= (1/'t) + F = (1/'t) + (dA(E)/dE -

(d2/dE2) D(E). 

The approximation made by introducing F in a leads 
to an analytical solution of the corresponding integrals: for 
the range of the relevant parameters Cl't and Eo values in 
solar particle production, the deviation of the approxima
tion from the numerical solution for protons (e.g. Miller et 
al, 1990) is about 1% and 5% for electrons. The intrinsic 
relative error of the WKBJ method (relative to a solution 
with terms of third order or higher) is less than 0.1% for 
protons and 1% for electrons (Figure 11). 

3.3.1.la. First Scenario with Fermi 
Acceleration 

The energy spectrum in this case is obtained by substi
tuting A(E) and D(E) in the first term of eq. (27), so, that 
according to appendix A (equation A.17) 

. (28) 

where NLT is the number of particles defined by the evalua
tion of the thermal spectrum at the specific energy Eo. and 
J(Eo,E) = tan·l~l/2- tan· 1 ~0 112 + (1/2)1n [(1+~1/2)(1-

~1/2)/(1-~112)(1+~oll2 )] 

3.3.l.lb. Second Scenario with Fermi 
Acceleration 

From the second term of eq. (27) the following spec
trum is obtained: 



(29) 

where J(E',E) is similar to J(Eo ,E) as defined in (28), but 
with W = ~o-

3.3.1.2a. First Scenario with Turbulent 
Acceleration 

Introducing in eq. (27) the corresponding A(E) and D(E) 
we obtain, according to equation (A.18) of appendix A. 

(30) 

where NLT has the same meaning as in eq. (28). 

3.3.1.2b Second Scenario with Turbulent 
Acceleration 

From the second term of eq. (27) we find in this case, 

(31) 

3.3.2. Time-dependent solution 

By applying Laplace transforms in equation (6), and 
following the procedure of Appendix B, the non-stationary 
solution is 

exp{-at'+_l r~1dE'--h[ rE dE" l2}d.E·(...f!l!:L) 
2 jEo 4t jE.D112(E") . Energy 

(32) 

Fluctuational acceleration 

where P1=- A(E)/D(E) + (2/D)(dD/dE). The first term in 
(32) represeilts the contribution of local particles to the ac
celeration spectrum (first scenario), and the second term is 
the contribution of the injected particles from a preliminary 
acceleration stage (second scenario). As in the previous 
cases Eo in the first term is defined within the thermal po
pulation, whereas in the second term it is defined within 
the injected energetic spectrum q(E). The analytical solu
tion of the integrals in time has been given in Perez-Peraza 
and Gallegos-Cruz (1994). 

3.3.2.1a First Scenario with Fermi 
Acceleration 

Introducing in the first term of eq. (32) the correspond
ing expressions for AEE) and D(E), and using the same in
tegration as in eq. (A.l7) of Appendix A, the resulting 

· spectrum is 

( )

//2 /12 

N(E,t)= 4Tr~tt /{pu4 exp(-at) 

rE N(E' O){f3
14 

[ ( ) ] 
JEo ~'312 exp - ~ 12(£',£) dE' 

(33) 

where J(Eo ,E) is as defined in eq. (28) and N(E',O) is the 
initial particle thermal distribution at t = 0, given as 
N(E',O) = [21tNo/(nKT)312] exp(-E'/kT), KT =Boltzmann 

thermal energy and No= r N(E',O)dE' (as in eq. 18} is 
Eo . 

the total number of particles of the Maxwellian distribu
tion with E ~ Eo participating in the acceleration process. 

3.3.2.1b Second Scenario · with Fermi 
Acceleration 

From the second term of eq. (32) we obtain 

3.3.2.2a. First Scenario with Turbulent 
Acceleration 

By introducing the rates A(E) and D(E) in the first term 
of eq. (32), and using Appendix B, we obtain: 

f}( E' ,OYJ "''w m' ex1-zJ.J [ 1 n(J.~.) r }dE' 
(35) 
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3.3.2.2b. Second Scenario with Turbulent 
Acceleration 

In this case from the second term of eq. (32) we obtain 

81ram ' , "3314 '1 514 ( rl/2 J.' 1E N(E.t}= f31512p1mwmw514 -[lfr q(E )/3 w 
. o 0 0 Eo 

(36) 

4. RESULTS 

For a quantitative evaluation of the relevance of energy 
diffusion during particle acceleration in the formation of 
the energy spectrum, we define the ratio (R) between the 
complete energy spectrum when the systematic rate and the 
rate of diffusion in energy are included, and the energy 
spectrum when only the systematic rate is included. Thus, 
if R = 1, the effects of the spread around the average energy 
gain are not relevant in the formation of the spectrum. If 
the contribution of these effects is ignored the particle flux· 
is underestimated by- 50%. If R >> 1, there is a strong 
particle overproduction per energy band due to dispersive 
effects relative to the average acceleration rate. If R << 1, 
then the spread around the average rate leads to a relative 
depression per energy band of particle flux. If ignored, the 
flux in particle spectra is strongly overestimated. The ratio 
R as defined makes our results independent of the initial 
number of particles that participate in the acceleration pro
cess (i.e., the number No in the first scenario through the 
Mawellian distribution, and the factor nV din theinjection 
spectrum q(E) in the second scenario). No differences in ab
solute flux are evaluated with R, but only relative differ
ences in flux in different energy bands. 

For turbulent magnetosonic wave acceleration the ini
tial threshold injection condition may be taken roughly as 
v > v., Eo= E(V.), therefore, for purposes of comparison 
in the first scenario, we also take for the Fermi mechanism 

the value Eo= {1/2)m v; and we calculate V. with B = 50 
gauss and n = IQIO cm-3. Also in the first scenario, for the 
nonstationary case where the parameter temperature appears 
explicitly, we arbitrarily use T = (2.5- 5)xl08 K as in Ta
bles 1 and 2. For the second scenario we assume that the 
preliminary acceleration stage takes place in a ma~netic 
neutral current sheet, where B = 500 gauss, L= 109 em, and 
n = 1012 cm-3. For Eo which appears in the spectra of the 
second scenario, we arbitrarily use (l-50)KeV for electrons 
and (10-50) Kev for protons, as in Tables 1 and 2. As for 
the acceleration timet which appears in the derived spectra 
for the nonstationary case, we use typical times for solar 
particle acceleration as found in the literature (0.1s-60s). 
Whenever there is -a value in the column for the time t in 
Tables 1 and 2, we are dealing with the nonstationary case; 
otherwise the columns and curves refer to the stationary 
case. 
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Tables 1 and 2 summarize the parameters used in the 
calculations. The analysis applies to the following eight 
cases: 

(1) The stationary case of the first scenario, with R = 
eq.(28)/eq.(l8) for the Fermi process (Figures 1a, 3a 
and 3b) . 

(2) The stationary case of the second scenario for the Fermi 
process, R = eq. (29)/eq. (19), (Figures lc, Sa, 5b and 
Sc). 

(3) The stationary case of the first scenario, for turbulent 
acceleration by magnetosonic waves, R = eq. (30)/eq. 
(20) (Figures 2a, 7a and 7b). 

(4) The stationary case of the second scenario for turbulent 
acceleration by magnetos<lnic waves R = eq. (31)/eq. 
(21) (Figures 2c, 9a, 9b and 9c). 

(5) The non-stationary case of the first scenario for Fermi 
acceleration, R = eq. (33)/eq. (23) (Figures 1b, 4a, 4b, 
4c and 4d). 

(6) The non-stationary case of the second scenario for the 
Fermi process, R = eq. (34)/eq. (24) (Figures 6a, 6b 
and 6c). 

(7) The non-stationary case of the first scenario for turbu
lent acceleration by magnetosonic waves, R = eq. 
(35)/eq. (25) (Figures 2b, Sa, 8b, 8c and 8d). 

(8) The non-stationary case of the second scenario for tur
bulent acceleration by magnetosonic waves, R = eq. 
(36)/eq. (26) (Figures lOa, lOb and IOc). The results 
are given in two categories: global findings and fine 
structure findings. 

4.1. Global findings 

(1) R is energy-dependent and may vary between 1 and sev
eral orders of magnitude (Figures 1-10). 

(2) For a gi~en scenario and acceleration process, the ef
fects of the energy spread are more important in the 
nonstationary case than in the stationary case. This can 
be seen in curves 1 a/1 b, or 2a/2b of Figure 1. 
However, for some sets of parameters in the stationary 
case, there are values of R - 1, then the incomplete 
solution can be approximated within an order of mag
nitude to the complete solution. 

(3) For either case (stationary or nonstationary), the diffu
sion in energy is more important in the first scenario, 
when low energy particles are involved, than in the 
second scenario. This is more noticeable for the high
energy portion of the spectra, as can be seen in Figures 
1a/1c, or 2b/2d. 



Fluctuational acceleration 

Table 1 

Parameters in the Fermi Acceleration Process 

p A R A 

FIG. C'URVE SCENARIO E L E c T 

ap-1) t(S) T( °K) Eo 

a 1st 

b 1st 

1 c 2nd 

d 2nd 

3 a 1st 0. 164 0.5 
b 1st 0.198 0.5 

a 1st 0. 194 0.5 5xl0 8 

4 b 1st 0.014 0.5 5x10 8 

c 1st 0. 194 0.5 2.5x 10 8 

d 1st 0.194 0.5 5x10 8 

a 2nd 0.186 0.5 
5 b 2nd 

0.052 0.5 
c 2nd 0.186 0.5 

a 2nd 0.194 0.5 
6 b 2nd 0.104 0.5 

c 2nd 0. 194 0.5 

(4) The importance of diffusion in energy for spectrum 
formation is markedly similar for both acceleration 
processes, though slight differences occur at the high 
energy end of the spectrum. 

(5) The energy diffusion effects are similar for electrons and 
for protons, except for a shift in energy due to the dif
ference in mass. 

4.2. Fine structure findings 

(1) The effects of energy diffusion tend to be minimize~ in 
the formation of the energy spectrum (R ~ 1) as the 
acceleration efficiency, a, increases (within the limits 
discussed in Appendix C). Thus, if R < 1 in a given 
energy range, R increases with a, but if R > 1 then R 
decreases with increasing a. 

(2) The effects of diffusion in energy in the time-dependent 
case tend to be minimized (R ~ 1) as the acceleration 
time elapses, with some tendency toward the steady
state situation. This can be seen in curves 4a/4d, 6a/6c, 
8a/8d and I Oa/10c. 

M E T E R s 
R 0 N 5 p R Q I 0 N s 

(eV) t(S)a(S- 1) T ( S} T ( °K) E
0 

(eV) t(S) 

0.19 0.5 
0.19 0.5 5x10 8 0.1 

0.19 0.5 5x10 4 

0.95 0. 1 0.1 

0.164 0.5 

0.124 0.5 

0. 1 0.194 0.5 5x10 8 0.1 

0.1 0.096 0.5 5x10 8 0.1 
0. 1 0.194 0.5 2. 5)(108 0.1 

12. 0.194 0,5 5x10 8 0.25 

10 4 0.194 0.5 5xl0 4 

10 4 0.096 0.5 5xl0 4 

10 3 0.194 0.5 10 4 

0.5 0.75 0. 1 0.1 

0.5 0. 10 0. 1 0.1 

0.25 0.75 0. 1 17. 

(3) In the first scenario, there is a minimization of energy 
diffusion effects (R ~ 1) at relatively high energies, as 
the background temperature T increases. This can be 
seen in curves 4a/4c and 8a/8c. 

(4) In the second scenario, the effects of diffusion at low 
energies are minimized (R ~ 1) as the initial threshold 
injection value Eo decreases. This can be seen in curves 
Sa/Sc and f/af)c. 

5. DISCUSSION 

In spatial diffusion, particle encounters with em i'nho
mogeneities produce changes in the direction they would 
have followed along the background magnetic field lines if 
no inhomogeneities had been present. Similarly, diffusion 
in energy space during particle acceleration may be seen as 
a change of direction in the energy gain process, relative to 
the deterministic energy change process for a systematic 
energy gain rate, in the absence of energy spread. A change 
of direction in energy space means a slowdown or a speed
ing-up in effective energy gain rate relative to an average 
acceleration rate (here designated as the systematic rate). 
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Table 2 

Parameters in Magnetosonic Wave Acceleration 

p A R A M E T E R s 

FIG, CURVE SCENARIO E L E C T R 0 N S P R 0 T 0 N S 

a(S"
1

) T(°K) 
I 

T(°K) T(S) E ( eV) t(S) a(S" ) T (S) E ( eV) t( S) 
m 0 0 

a 1st 0.188 0 . 5 

b 1st 0.188 0.5 5x108 0.15 
2 c 2nd 0.235 0.4 3x104 

d 2nd 0.188 0.5 0.15 

7 a 1st 0.082 0.5 0.082 0.5 
b 1st 0.132 0.5 0.048 0.5 

a 1st 0.116 0.5 5xl08 0.1 0.194 0.5 5x108 0.1 
b 1st 0.078 0.5 5x108 0.1 0.156 0.5 5x108 0.1 

8 
1st 0.116 0.5 8 0.1 0.194 0.5 4x108 0.1 c 2.5xl0 -

d 1st 0.116 0.5 5xl08 0.07 0.194 0.5 5xl08 0.15 

a 2nd 0.194 0.5 104 0.24 0.4 3x104 

9 b 2nd 0.074 0.5 104 0.037 0.4 3x104 

c 2nd 0.194 0.5 5x104 0.24 0.4 104 

a •2nd 0.198 0.5 

10 b 2nd 0.116 0 . 5 
c 2nd 0.198 0 .5 

Diffusion in energy implies the escape of particles from 
some energy bands (R < 1) and their accumulation in other 
energy bands (R > 1) relative to the distribution from an 
unidirectional systematic acceleration rate. Thus, energy 
diffusion may lead to particle loss if some particles diffuse 
to low energy bands below the acceleration threshold Eo. 
On the other hand, it may also lead to energetic particle 
generation, because particles of subsidiary resonant bands 
may diffuse into the central resonant band associated to the 
average phase velocity of each resonant wave, so even par
ticles from energy bands below Eo may diffuse into bands 
above Eo when the variance of the frequency of resonant 
wave-particle interactions is very high. .. 

The way we have defined R, the ratio of particle flux, 
only allows us to analyze the depletion or overabundance 
of particles per energy band; the information about the net 
number of particles is lost. 

Suppose that the combined effect of the average sys
tematic rate and the rate of diffusion in energy may be seen as 
a kind of effective energy gain rate (dE/dt)eff= aef$nwm 
(n real, m > 0). This effective rate may be similar, slower 
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0.25 0.188 0.5 0.25 

0.25 0.058 0 .5 0.25 
10. 0.188 0.5 0.15 

or faster than the average systematic rate in a given energy 
range, so that it may generate similar (R-1), lower (R < 
1) or higher (R > 1) number of particles in an energy 
range. 

Many factors contribute to whether (R >1, -1, < 1), as 
well as the magnitude of R: the initial population 
(scenario), depending on the sign of af!av as discusse<l in 
section 2.2, and on the value Eo, the temporal (steady-state 
or time-dependent) behavior of the particle generation phe
nomenon, and the involved acceleration process. The main 
factor is the acceleration efficiency of the process (more 
exactly, the value of the parameter product at appearing in 
the spectra). The average efficiency of the systematic rate 
in the Fermi mechanism is determined by the ratio of 
accelerative interactions ("head-on" collisions) to decelerat
ing interactions ("catch-up" collisions). If the relative pro
portion of head-on collisions increases or decreases with re
spect to the average then, Ckff will increase or decrease re
spectively, and so will R. In the first approximation, high 
values of acceleration efficiency are due to high frequencies 
of accelerating head-on collisions, and viceversa. Also, 
according to equations (9) and (14), the higher or lower 
values of ar and Om in Tables 1 and 2 depend on the related 
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Fig. 1. The ratio R for the Fermi process: (a) stationary first 
scenario, (b) non-stationary first scenario, (c) stationary 
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cases are evaluated with the same parameters (fable 1). 
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Fig. 3. The ratio R for the Fermi process in the stationary case 
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Fig. 5. The ratio R for the Fermi process in the stationary case 
of the second scenario. The parameters are given in Table 1. 

values of the hydromagnetic and wave phase velocities, on 
the size scale of the inhomogeneities and magnetosonic 
waves, and on the magnetic field strength. 

Recall from statistics that t~e higher the number of 
events the lower is the variance and the dispersion around 
the average vakle of a parameter. Here the events are inter
actions between particles and accelerating agents. The 
number of interactions is proportional to the number of 
"resonant" particles per energy band. Hence the importance 
of diffusion effects in a given energy band is related to the 
number of "resonant" particles, which in tum is related to 
the acceleration efficiency. In fact, as stated in 4.2(1), when 
a increases the effects of the energy spread on the spectra 
tend to become less important. This can be seen, for in
stance, in the Fermi process, where an increase in ar is as
sociated with an increase in turbulence which results in an 
increase of the local hydromagnetic velocity U and a de
crease of the mean distance l between the accelerating 
agents (ar -l.fl/1). This entails an increase in the frequency 
of accelerating collisions and a reduction of the statistical 
variance. Consequently the dispersion <d£2/dt> around the 
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average rate <dE/dt>sys is small. Therefore the absolute 
magnitude of R (separation from the unit) is highly depen
dent on the acceleration efficiency. The same can be said 
for turbulent acceleration by magnetosonic waves; in fact, 
according to equation (14) (am- V2~fB2) a change in the 
value of am is directly related to a change in the phase ve
locity V ~ . An increase in V ~ means that, among the group 
of particles that satisfy the resonant condition (section 
2.2), the relative proportion of particles where v ~ V ~ in
creases over those where v > V ~- This entails a higher ratio 
of accelerated particles (head-on collisions) to decelerated 
particles (catch-up collisions). In other words, the frequency 
of accelerating interactions increases with the number of res
onant particles. Hence the variance of the energy gain rate de
creases, that is, the dispersion around the average value of 
the rate decreases. In conclusion, the effect of diffusion in 
energy gradually decreases as am increases. An equivalent 
form of visualizing this argument is as follows. As we 
saw in section 2.2, the resonant particles that satisfy the 
condition v, = (k/k,)Va, with k>k, (v,>Va) are 
susceptible to acceleration. Since Va a B, an increase in 
am (which entails a decrease in B) is associated with a de
crease in Va, implying an increase in the number of parti
cles that satisfy the condition v > Va, and thus an increase 
in the frequency of wave-particle interactions and a decrease 
in diffusion effects. Therefore, it appears that the impor
tance of diffusion effects must be related to the acceleration 
efficiency, which produces a larger or smaller accumulation 
of resonant interacting particles per energy band. Since all 
these effects are initially determined in the low energy re
gion of the spectra, the importance of diffusion (absolute 
value of R in Figures 1-10) in the high energy region of 
the spectra is a compensating effect for what was lost or 
gained in the low energy bands. 

The difference between the results obtained in the first 
and second scenarios [see 4.1(3)] may be understood as fol
lows. In the first scenario the initial population is thermal 
and acceleration starts from very low energies. In contrast, 
in the second scenario the injection threshold lies within 
the energetic population of the spectrum q(E). The low-en
ergy population in the first scenario is distributed over a 
relatively wide range of energy bands, with few particles in 
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the high suprathermal energies. Hence, during acceleration, 
the accelerating interactions per energy band are relatively 
infrequent, especially in the high energy bands. Hence, the 
statistical variance is high. As we saw, this implies im
portant diffusion effects, especially in the high region of 
the spectrum. In contrast, particles in the second scenario 
are initially concentrated in a relatively narrow energetic 
range. Hence, during acceleration the number of accelerat
ing interactions per energy band is relatively high and the 
dispersion around the average of the energy gain rate is 
lower than in the first scenario where the initial distribu
tion is Maxwellian. 

In both initial populations, thermal and energetic, there 
are more particles per energy band· in the low energy sec
tion that in the high energy section of their initial spectra. 
Hence the effects of the energy spread during acceleration 
are lower in the low-energy bands than in those of higher 
energy. This is especially true for the first scenario where 
the ratio of high to low energy particles in the thermal 
population is lower than in the energetic distribution pro
duced by th<1 neutral current sheet acceleration. 

Within the frame of the first scenario, if the tempera
ture rises there is an increase of turbulence and of the accel
eration efficiency parameter, i.e a higher frequency of colli
sions, and less diffusion from the statistical point of view. 
In a population of high T there are more particles above 
the threshold value Eo than in a population of lower T. 
Due to the higher number of resonant accelerating interac
tions, the variance around the average acceleration rate is 
lower for higher T, so that diffusion effects must gradually 
decrease as T increases as found here [4.2(3)]. Analogously, 
when in the second scenario the threshold value Eo is de
creased, more particles in the low-energy bands are suscep
tible to acceleration. The frequency of accelerating colli
sions per energy band is increased, and the result is a min
imization of energy spread in the low-energy region of the 
spectrum. 

As for the time behavior of energy diffusion, the effects 
are less important in the stationary case than in the non
stationary case, [ 4.1 (2)]. This may be understood on the 
basis of result 4.2(2), if in the steady-state situation the ac
celeration parameters have reached a value very close to the 
average of the systematic acceleration rate. Then, the dis
persion is relatively small and the diffusion effects are less 
important than in the nonstationary case especially at the 
beginning of the acceleration. In the time-dependent case, 
the additional parameter (t) produces a higher dispersion of 
the acceleration rate at the beginning of the process, but in 
time this effect gradually diminishes approximating the 
stationary case. This can be seen from the definitions of Eo 
and Ei (t) given underequations (17) and (22), since for a 
given energy E, an increase in (t) is equivalent to a decrease 
in Eo or Ei. This causes more low-energy particles to par
ticipate in the acceleration process. As mentioned before, 
the variance in the frequency of accelerating interactions de
creases, and so do the diffusion effects. There(ore, as time 
elapses there will be a tendency toward a stationary behav
ior, in which the diffusion effects will be less important. 
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We have sometimes used very short time values to em
phasize the difference between the steady-state and the time
dependent situations, as the steady state may be reached in 
very few seconds. 

Now, from the point of view of particle dynamics, high 
energy particles have a larger Larmor-radius, and conse
quently a larger interaction mean free path. Hence, for a 
given population it follows that there is more diffusion in 
the high-energy part of the spectrum than in the lower-en
ergy part, since the collision frequency with the accelerat
ing agents is lower. Therefore, in the Fermi process col
lisions in the high-energy bands are less frequent because 
of the limitation to interactions with rL~L- I, whereas in 
turbulent acceleration particles may resonate even with 
waves much smaller than the Larmor radius (rv>A.). This 
leads to higher diffusion effects for the Fermi process at 
high energies, especially in the second scenario. 

As for the difference in energy diffusion for different 
kinds of particles, obviously some difference in the impor
tance of the R value at a given energy is expected, since 
the equations are not linear in mass. However, the effect is 
masked by the difference in particle energy between protons 
and electrons, which produces a sharp shift of diffusion. ef
fects along the energy axis. · 

Finally, it is important to point out that a quantitative 
analysis of particles diffusing into and out of resonant en
ergy bands may eventually be performed by the kinematic 
equation of the evolution of particles in a resonant interval 
as derived by Canuto et al, (1978). This equation balances 
the confinement of particles in the resonant interval against 
their drifting out, as the particle velocity retreats from the 
center of maximum resonance (at V q,= average wave phase 
velocity), taking into account the subsidiary peaks in the 
"diffraction resonant pattern", as emphasized by Cheng 
(1974). Such an analysis is beyond the scope of this work. 

6. CONCLUSIONS 

The relative contributions of the first and second mo
ments of the particle distribution function have been evalu
ated within the context of the evolution equation in energy 
space of accelerated particles. 

This study was done for two scenarios and two accelera
tion processes over the entire energy range, from thermal 
up to relativistic energies. We considered injection spectra 
with physical meaning, instead of the usual oversimplifica
tions delta functions or power law spectra that do not con
tain explicit information about the physical source parame
ters. 

The results show that diffusion in energy cannot be 
treated in general as a fluctuation around the average value 
of the systematic energy rate. It must be considered as a 
kind of additional energy change rate. As a matter of fact, 
the basic energy change process of any stochastic accelera
tion mechanism is the diffusion in energy, from which a 
certain average tendency may be isolated and designated as 
the systematic acceleration rate. Therefore, the so-called 



"fluctuational acceleration" in the Russian literature may 
be somewhat misleading, in the sense that diffusion is not 
actually translated as fluctuations of particle flux over the 
energy distributions. As we show, particle spectra may be 
modulated by an overproduction or depletion by several 
orders of magnitude. In other words, once we define a sys
tematic tendency of the energy change process by means of 
an average tendency to increase particle energies, some sit
uations of very high acceleration efficiency (very high tur
bulence density combined with a high concentration of par
ticles with velocities around the characteristic wave phase 
velocity of the spectrum of turbulence) may produce negli
gible energy diffusion effects yet may often generate as 
many or much more particles than the systematic rate. 
This was confirmed in an earlier paper (Gallegos-Cruz and 
Perez-Peraza, 1987) by using the expressions for the 
asymptotic case when ~ = 1. Moreover, as shown by sev
eral authors, even when the average acceleration rate is zero 
a well-defined particle spectrum is generated by diffusion in 
energy of the acceleration rate. 

In calculations of the secondary flux (y-rays, neutrons, 
pions), equation (6) is often solvea without the second 
Fokker-Planck moment. It might be interesting to de
limitate the situations, and if possible, the range of param
eters for which the diffusion term in equation (6) can be to
tally neglected in solar particle generation. According to 
our present results this may occur mainly for scenarios 
with two acceleration stages, i.e., when the injected spec
trum is energetic and the acceleration parameters do not 
change abruptly with time during acceleration so that a 
kind of stationary situation prevails in the source, when 
the acceleration parameters for protons are about a't = 
0.097- 0.099, with E.o ~ 10 KeY, and a't- 0.093, wilh 
Eo- 1 Ke V for electrons. 

However, the second Fokker-Planck coefficient cannot 
be ignored in solving equation (6) for a single acceleration 
stage from the background matter up to high energies. In 
such a relatively abrupt phenomenon, stationarity is not 
reached during the generation of the bulk of the energetic 
particle flux. This must be taken into account when solv
ing the transport equation (6), for instance in deriving the 
flux of secondary radiation generated by the interaction of 
the accelerated particles with the source matter and local 
electromagnetic fields during acceleration. Neglecting the 
diffusion term in eq. (6) may lead to substantial errors. 

Finally, let us mention that in particle propagation 
where spatial diffusion may be the main controlling factor 
in determining the transport process, this factor may be 
limited, for instance, when diffusion is constrained within 
magnetic flux tubes lending an,anisotropic directional na
ture to the transport. The relative importance of spatial dif
fusion effects is always dependent on the scenario of parti
cle propagation. We have also shown that diffusion in en
ergy space is dependent on the scenario of particle accelera
tion, so that stochastic (diffusive) acceleration may be lim
ited to a kind of unidirectional process by a systematic ac
celeration rate, given some specific values of the accelera
tion parameters. 

Fluctuational acceleration 

APPENDIX A. STEADY-STATE SOLUTION 
OF THE TRANSPORT EQUATION (6). 

The stationary solution of equation (6) may be derived 
as follows. Let us write (6) as 

1/-+-Je(AN}--!ffr(DN}+lf = Q(E,t} (A.1) 

where A = <dE/dt>, D = <dE2/dt>, N = N(E,t), Q(E,t) = 
q(E)9(t) = q(E) fort~ 0. In the stationary regime (aNtat) = 
0, so that (A.1) may be rewritten as 

~-[~- b(~)]~ 
- ..L [L + (M) _ (IfiL)]N = _ q( E) 

D -r dE dE2 D (A.2) 

setting 

-[1t-i(1H)]= PJ,--b[i+*-~]= -fj=P2 

and 

-~=f(E} 
Equation (A.2) becomes, 

~~"f + P11ff+ P2N = f(E} (A.3) 

Now, defining 

g( E)= exp( f1IdE') 
(A.4) 

and multiplying (A.3) by g(E), 

*[g(E)1Jf]+ g(E}P2N = g(E)f(E} (A.5) 

Now, let us define a variable l)(E) such that dl)=g-l(E)dE: 

.dj'ff=g-1(E).djff and :Je =g-1(£)--#ry (A.6) 

Introducing (A.6) in the first term of (A.5), together with 
(A.4), and multiplying (A.5) by g = g(E), we obtain, 

~~%+iP2N=if (A.7) 

where f = f(E). Defining r(l)) = g2p2 , and h(l)) = g2f, (A.?) 
becomes 

IElf+ r( TJ)N = h( TJ) 
dTJ (A.8) 

The homogeneous part of equation (A.8) may be solved by 
the WKBJ method, provided the following criterion is ful
filled (e.g., Mathews and Walker, 1973): 
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(A.9) 

In appendix C we find the conditions for which (A.9) is 
satisfied in solar particle sources. When the requirement 
(A.9) is fulfilled, the solution of the homogeneous part of 
(A.8), when r < 0 (i.e. Pt, P2< 0), is obtained by the 
above method as 

(A.IO) 

where I and H are constants, and 

(A.ll) 

In this expression Nt corresponds to the(-) solution and 
N2 to the(+) solution. We have taken into account that 
r(11) < 0, since r = g2P2 and P2= (- a/D) < 0. The general 
solution of (A.8) is thus obtained by adding to (A.lO) a 
particular ·solution, Np(11): 

(A.l2) 

Np(11) may be derived by the method of variation of 
Lagrange parameters (which in this case is equivalent to 
the Green function method), leading to the following re
sult, 

(A .l3) 

where W(Nt, N2) = Nt(dN2/d11)- N2(dN1/d11) is the 
Wronskian of Nt and N2.To evaluate this Wronskian, let 
us put for simplicity j(11) =- r(11) =- g2P2. Now, deriving 
(A.ll) with respect to 11. we obtain 

~= /" exp(-f1"'d~·]-ir'" exp[-f.:/"d~} 
df# = /" exp(J1"' d~·)-i r'" expu.: / "d~} 
where j'= dj/d11, in such a way that W(N 1 ,N2) = 2, and 
therefore (A.l2) may be rewritten as 

Nc( TJ) = IN1( 1J) + HN2( 1J)- !!.!fJl r~2 ( TJ')h( 1J')d1J' 
Jrlo 

+ N2~1J) r~~( TJ')h( 1J')d1J' 

JT7o (A.l4) 
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Since the energy spectrum of cosmic particles is a decreas
ing function of energy, and 11 = E [according to (A.6)], we 
may cancel the 2nd and 4th term of (A.l4) because N2 is 
an increasing function of energy. Using h = g2f =- g2q/D, 
(A.l4) may be written as 

Nc( 1J) = IN1( TJ) -1 N1( 1J) r17 
N2( TJ')i( TJ')q( TJ')dTJ' /D 

JT7o 
(A. IS) 

Now, introducing the definitions ofr(11). g and 11. equation 
(A.ll) may be rewritten as, 

N2,1(E) = a-114 (E)D114 (E) 

ex{-J~ P1dE'± L~j"dE'] 
(A.lla) 

using (A.lla) in (A. IS) and recovering the initial variable 
(E), (A.IS) becomes, 

JDII4(E) l rE rE l 
N(E)= D114(Eo) exp -1 jE~1dE'-J:f

2
dE' -

Dli4(E) rE (E') [ rE rE l 
+ 2a}!2 JEo DL(E') +exp -1 JE.PidE"-JE~l'2dE" dE' 

(A.l6) 

where E' and E" are integration variables in E. The evalua
tion of I in (A.l6) requires boundary conditions which de
pend on the assumed scenario. For the first scenario in this 
paper, the low energy extreme corresponds to the local 
thermal population, so that I is obtained from the condi
tion that when particle energy E ~ thermal energies, the 
first term of (A.l6) approaches the Maxwell thermal distri
bution evaluated at the characteristic threshold value (Eo) 
for injection into the acceleration process. Similarly, in the 
second scenario I tends toward q(Eo) as E tends to Eo. 

The explicit evaluation of (A.l6) for each acceleration 
mechanism requires solving the corresponding integrals: 

(a) for the Fermi mechanism, from eqs.(8) and (10) A(E) = 
(4/3)apw,and D(E) = (l/3)ap3w2, with w = E + mc2 
and~= (W2- m2c4)112/W, so that, 

i
E 112 

- P~ 1 2dE"=-(~) J(E',E) 
E' (A. l7) 



(b) In the case of turbulent acceleration by magnetosonic 
waves. according to eqs. (12) and (13). A(E) = am~2w 
and D(E) = (<lm/2)~4W2, where <lm was defined in eq. 
(14). The corresponding integrals in this case are 

-}I P,dE'~J·[Ut )""(~ r] 
-r• Pi"d£'~1•[(~ )f(2~.r 

JEo 
(A.18) 

APPENDIX B. TIME DEPENDENT SOLUTION 
OF THE TRANSPORT EQUATION (6) 

The non-stationary solution of equation (6) may be ob
tained by the following procedure. Let us take the Laplace 
transform of (6), 

SN(E,S)- N(E,S)+ct[AN(E,S)] 

-ib[DN(E.s)]+ N(~,S) = Q(E,S) 
(B.l) 

where S is the Laplace variable. Developing the 3rd and 
4th terms of (B.l) and reordering them, 

~~~ -[~- b(~)]f 

-[ ~+-h~-i(d:~ )]N=-i- NbE) 
(B.2) 

where N = N"(E,S), q = Q (E,S) and N(E) = N(E,O). By 
introducing P1, P2 and f(E) in (B.2), we obtain 

(B.3) 

which is identical to (A.3). Its specific solution in analogy 
to (A.15) may be written as, 

N G ( 1],S) = IN1( 1], S) -~ N1( 7],s) f12( 7]' ,s)h( 7]' ,s )dn' 
J1Jo 

(2.4) 

where h = g2f(E). g and T1 were defined in (A.8). (A.4) and 
(A.6). Now, using (A.ll) in (B.4) with r(ll) = g2P2, we 
obtain ' 

Nc( E,S) = PL exp[-~l~JdE'- f~£'2dE'] 
2 E

0 
JEo 

+ ex - P1dE x [ I.
E ·] I.E Q(E',S)+N(E',O) 

zfJt4 p 1 Eo Eo D(E')P~ t4(E') 

F /uctuational acceleration 

(B.5) 

where I is a constant to be evaluated from the boundary 
conditions (discussed below eq. B.8);with the consideration 
of a steady-state injection spectrum Q(E,t) = q(E)8(t) = 
q(E), hence, Q(E,S) = q(E)/S, so that (B.5) becomes, 

- JD114(E) 
N(E,S)=! j114 x 

S+a(E) 

[ 
fE , fE [S+a(E')t2 dE·] 

exp -1 JEo P1dE- JEo Dlt2(E') 

+ ~::;~~"' ex1-f fJ.,dE'] 
fE (q(E')IS+N(E',O)) 

X JEo D3t4(E')[S +a(E')Y'4 

[ 
fE' fE S+a(E") 112 l 

exp-! JEo P1dE"-JE· D 1 (E") dE" dE' 

(B.6) 

where a was defined below (A.2) in Appendix A. In solar 
particles sources the main contribution to a is determined 
by 1/t, thus we set a(E) = r 1 + F, as in connection with 
the spectrum (27). F is evaluated by taking the average 
between the injection energy Eo and the corresponding 
value of E so that (B .6) may be written as, 

wherel1(Eo,E) =H) f~]dE', 
JE0 

12(E',E) = f~i'2dE" 
JE' 
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stands for the Laplace inverse transform. Obviously, since 
h and h depends on Pt and P2, they need to be evaluated for 
each acceleration process. The Laplace inverse transforms 
to be used are 

f(s-b) ~ F(l)exp(bl), b = constant 
exp(-bsl12)fs112 ~ exp(-b214t)l(m)112 

exp(-bsll2) ~ b.exp(-b214t)l4m3 
s-1/4 ~ c314Jr(l/4) r= gamma function 

L·l[f(S)g(S)j = JF(t-tt}G(tt}dtt (convolution theorem) 

Thus we obtain, 

exp[ -at'-Iff ( E', E) I 4t']dt' 

With these results equation (8.7) may be rewritten as, 

=[12(E',E)]2• Formally, equation (8.8) is the general solu
tion of equation (6); however, within the scope of energetic 
particle evolution during their acceleration, the 2nd and 3rd 
terms of (B.8) must satisfy all boundary conditions at the 
low and high extremes of the energy spectrum. Thus the 
first term becomes unnecessary, which implies in this case 
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that I = 0, so that our general solution within the scope of 
energetic particle generation in cosmic sources reduces to 
equation (32) of the text. 

APPENDIX C. APPLYING CONDITIONS OF 
THE WKBJ METHOD 

The general requirement for applying the WKBJ method 
to the solution of the homogeneous differential equation 
(A.2) was given in (A.9) as 

S=M1ij-lr3'21<< 1 (C. I) 

where according to the definitions given in Appendix A, 
we have, 

r"2 (E)~ -( ~ )"' •·+ fl'J<iE'] 

1.J~£~~aD-'[1(~)-2Aje+ fl'1dE'l 

so that equation (C.1) may be rewritten as 

(C.2) 

Now let us apply (C.2) to the two specific acceleration 
processes studied in this work. 

(a) For the Fermi mechanism, we have, 

s1 = 0.29[ a1 la(E0 ,E}Y'
211-3P211 p112 

(C.3) 

Since a(E) = r-1 + F(E), with F(E) = (a./3)(~-1+3~- 2~3), 
we may define a(Eo,E) = t-1+ (l/2)[F(Eo) + F(E)], with 
F(Eo) defined as F(E) in terms of ~o. For the range of pa
rameters used in this paper , a= (0.04 - 0.7S)S-1, i.e., at 
= 0.004 - 0.4 for protons, and a= (0.01 - 0.2)s-1· i.e., at 
= 0.005 - 0.1 for electrons, (C.1) is fulfilled. Let us 
consider a range of particle velocities between thermal en
ergies (~o = 0.5) and ultrarelativistic energies(~- 1). Then 
equation (C~) shows us that in all cases Sr ~ 0.1. 

(b) For turbulent acceleration by magnetosonic waves 
(C.2) is transformed into 

(C.4) 

where a(Eo,E) = -r- 1 + (l/2)[G(E) + G(Eo)], G(E) =am 
(23~2- 12p4 - 14) and G(E0 ) is defined in terms of Po in the 
same form as G(E). Again, for the mnge of parameters used 
in this paper, it can easily be verified that Sm ~ 0.1. 

Therefore, the analysis of (C.2) and (C.4) shows that 
the conditions for which Sr or Sm << 1 are fulfilled when 
a/a<< 1. 
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