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Resumen

El uso de redes neuronales artificiales es explorado
para predecir aceleraciones maximas del terreno y
pseudoaceleraciones para sismos de tipo intraslab
e interplaca. Un total de 277 y 418 registros
sismicos de dos componentes para sismos de
intraslab e interplaca, respectivamente, son
usados para entrenar los modelos de las redes
neuronales artificiales con alimentacion hacia
adelante y con un algoritmo de aprendizaje de
retroalimentacion. Se consideran redes neuronales
artificiales con una y dos capas ocultas. Con fines
de comparacion, valores de aceleracién maxima
del terreno y pseudoaceleraciéon predichos con los
modelos de las redes neuronales son comparados
con los estimados mediante relaciones de
atenuacion o relaciones de movimiento fuerte.
La comparacion indica que los valores predichos,
en general, siguen la tendencia de los valores
obtenidos con las relaciones de movimiento
fuerte. Sin embargo, se debe llevar a cabo una
verificacién extensa de los modelos entrenados
antes que estos puedan emplearse en analisis de
peligro y riesgo sismico ya que, en ocasiones, los
valores predichos no reflejan el comportamiento
observado de los registros.
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pseudoaceleracion, México.
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Abstract

The use of Artificial Neural Networks (ANN) is
explored to predict peak ground accelerations
(PGA) and pseudospectral acceleration (SA) for
Mexican inslab and interplate earthquakes. A
total of 277 and 418 seismic records with two
horizontal components for inslab and interplate
earthquakes, respectively, are used to train the
ANN models by using an ANN with a feed-forward
architecture with a back-propagation learning
algorithm. Both ANN with single and two hidden
layers are considered. For comparison purposes,
the PGA and SA values predicted by the trained
ANN models are compared with those estimated
with attenuation relations or ground motion
prediction equations (GMPEs). The comparison
indicates that the predicted PGA and SA values
by the trained ANN models, in general, follow
the trends predicted by the GMPEs. However, an
extensive verification of the trained models must
be conducted before they can be used for seismic
hazard and risk analysis since, on occasion, the
PGA and SA values predicted by the trained ANN
models depart from the behaviour observed from
the actual records.

Key words: artificial neural network, subduction
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Introduction

Artificial neural networks (ANNs) have been used
in seismic engineering due to their flexibility to
deal with highly nonlinear problems (Fausett,
1994). ANNs have been used to predict ground
motion measures such as the peak ground
displacement (PGD), peak ground velocity (PGV),
or peak ground acceleration (PGA), and spectral
acceleration (SA) (Glnaydin and Glinaydin, 2008;
Kamatchi et al., 2010). ANNs have also been used
for generating artificial earthquakes and response
spectra, and spectrum compatible accelerograms
(Ghaboussi and Li, 1998; Lee and Han, 2002).
More recently, Hong et al. (2012) showed that the
prediction of the PGA and SA by using ANNs with
a single hidden layer may not be robust, although
it could be considered as an alternative to the
commonly used attenuation relations or ground
motion prediction equations (GMPEs). Estimation
of PGAs for Mexican subduction earthquakes
using the ANNs has been explored by Garcia et
al. (2007). However, the application of ANNs to
predict SA for Mexican earthquakes has not been
reported in the literature.

The main objective of this study is to investigate
the applicability of ANNs to estimate PGA and SA
for ground motion records caused by Mexican
subduction earthquakes. Two sets of records
of Mexican subduction earthquakes obtained at
firm soil sites (i.e., site class B according to the
NEHRP (BSSC, 2004)) are used in training and
qualifying ANNs. Training of the ANN models was

a back-propagation learning algorithm. Only single
and two hidden layers are considered to minimize
potential overfitting. The parameters considered
in the input layer are: moment magnitude (M ),
closest distance to the fault (R ) and focal depth
(H), while the logarithm of the ground motion
measures is used to represent the outcome from
the output layer. The predicted PGA and SA values
are compared with those estimated from GMPEs to
assess the adequacy of the trained ANN models.

ANN Modeling
Description of the ANN modeling

The ANN modeling involves the selection of the
number of neurons in the input as well as the hid-
den and output layers. In this study, the number
of neurons in the input layer is considered to be
3, representing M , R and H as defined earlier.
Single and two hidden layers (denoted by 1HL and
2HL, respectively) with multiple hidden neurons
are used to approximate the mapping between the
input and output layers. The output layer consists
of a single neuron that represents the logarithm
of the ground motion measures (PGA or SA) for
a considered earthquake type and natural vibra-
tion period.

An illustration of an ANN model with multiple
hidden layers and neurons is depicted in Figure 1,
where neurons are weighted and transformed into
output values. By considering two hidden layers,
the mathematical expression of the output neuron

carried out using a feed-forward architecture with in the output layer, Y outpurr 1S 9iVEN by,
Inputs Hidden layers Output layer
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Figure 1. Sketch of an ANN model with multiple hidden layers and neurons.
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where n is the total number of neurons in the input
layer; x, is the j-th neuron in the input layer; [w ]
[w, ] and [w,], , are the weights that optimize
tﬁe mapplng between the input and the first
hidden layer, between the first and second hidden
layer and between the second hidden layer and
output layer, respectively; ((pl) (@,), and (@,),
are the biases associated with the hidden and
output layers; f,( ), £,( ) and f,(') are activation
(or transfer) functions between the input and the
first hidden layer, the first and the second hidden
layer and between the second hidden layer and
the output layer, respectively; and m is the total
number of neurons in the hidden layers.

Two types of activation functions, namely, the
tan-sigmoid function and the linear function are
commonly used. These functions are expressed
as,

f(x)=(ex —e"")/(ex+e"x), (2a)

and
Jx)=x, (2b)

The former is often used as the transfer
function between the input and hidden layers,
while the latter is used as the transfer function
between the hidden layers and the output layer.
Following Garcia et al. (2007), in the present
study, Eq. (2a) is used as the transfer function
between the input and hidden layer(s) and Eq.
(2b) is used as the transfer function between the
hidden layer(s) and the output layer.

Training ANN

The training of an ANN consists in the minimization
of a predefined error function, in terms of observed
and predicted output values, by varying the
weights and biases. One of the algorithms used
to train the ANN is the back-propagation (Fausset,
1994), where the error is propagated backward by
adjusting the weights from the output to the input
layer. The training can be summarized as follows:

1. Provide the ANN model with sample inputs
and known outputs;

2. Evaluate an error function in terms of
the difference between the predicted and
observed output;

3. Minimize the error function by adjusting the
weights and biases of all the layers from the
output to the input layer.

For the numerical analysis to be presented
in this study, the error function was defined as
the mean square error (MSE). The minimization
of the MSE (Step 3)) was carried out using the
Levenberg-Marquardt algorithm (Marquardt,
1963; Press et al., 1992) that is incorporated into
the back-propagation algorithm and implemented
in Matlab (Hagan and Menhaj, 1994).

Strong ground motion database and GMPEs

The strong ground motion database employed to
develop the ANNs model consists of 695 strong
ground motion records, each one with two
horizontal components at firm soil sites (class
B according to NEHNP -BSSC, 2004) complied
by Garcia et al. (2005, 2009). There are 277
inslab records and 418 interplate records for the
events shown in Figure 2 and listed in Table 1.
There are 16 intermediate-depth normal-faulting
inslab events with M within 5.2 to 7.4 and 40
interplate events with M, ranging from 5.0 to
8.0. The distribution ofM and H with respect to
R, is presented in Figure 3. A baseline correction
and a high-pass filter with cut-off frequencies of
0.05 Hz for events with M >6.5 and 0.1 Hz for
the rest events were applied to all the records.
The selection criteria of the records can be found
in Garcia et al. (2005, 2009). The same strong
ground motion database was also employed by
Hong et al. (2009) to develop GMPEs based on the
geometric mean (i.e., for a random orientation).
As these GMPEs will be used to compare with
those predicted by the ANN model, the adopted
functional forms and the obtained regression
coefficients in Hong et al. (2009) are summarized
below.

The functional form of the GMPEs for inslab
earthquakes is the one given by Garcia et al.
(2005), which can be written as,

log,Y=c,+c,M, +c;R—-c,log,R+c;H + ¢,
(3)

where Y (cm/s?) represents the PGA or SA values,
c,i=1,.., 5, are the model parameters, M is

the moment magnitude, R = \/R}, +A;, R, (km)
is the closest distance to the fault surface for
events with M > 6.5, or the hypocentral distance
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Figure 2. Location of events for the considered records.
Table 1. Inslab and interplate events used in training the ANN models.
Inslab earthquake Interplate earthquake
Event No. of Date Mw Event No. of Date Mw Event No. of Date Mw
No. Rec. (dd/mm/yy) No. Rec. (dd/mm/yy) No. Rec. (dd/mm/yy)
1 6 23/02/94 5.8 1 10 19/09/85 8 21 15 05/07/98 5.3
2 21 23/05/94 6.2 2 8 21/09/85 7.6 22 12 11/07/98 5.4
B 16 10/12/94 6.4 3 9 08/02/88 5.8 23 14 12/07/98 5.5
4 22 11/01/97 7.1 4 6 10/03/89 5.4 24 10 04/09/01 5.2
5 18 22/05/97 6.5 5 10 25/04/89 6.9 25 11 10/11/01 5.4
6 15 20/04/98 5.9 6 5 02/05/89 5.5 26 10 07/06/02 5.2
7 30 15/06/99 6.9 7 8 13/01/90 5.3 27 12 07/06/02 5.5
8 16 21/06/99 6.3 8 6 11/05/90 5.5 28 12 19/06/02 5.3
9 26  30/09/99 7.4 9 9 31/05/90 5.9 29 7 05/08/02 5.4
10 14  29/12/99 5.9 10 6 15/05/93 5.5 30 10 27/08/02 5.0
11 21 21/07/00 5.9 11 12 24/10/93 6.6 31 6 30/08/02 5.2
12 21 05/03/01 5.3 12 15 14/09/95 7.3 32 15 25/09/02 5.3
13 23 06/03/01 5.2 13 10 13/03/96 5.1 33 10 08/11/02 5.2
14 13 30/01/02 5.9 14 9 27/03/96 5.4 34 8 10/12/02 5.4
15 9 17/01/04 5.4 15 17 15/07/96 6.6 B5 15 10/01/03 5.2
16 6 20/04/04 5.6 16 10 18/07/96 5.4 36 8 22/01/03 7.5
17 12 21/01/97 5.4 37 15 01/01/04 6.0
18 7 16/12/97 5.9 38 11 01/01/04 5.6
19 12 09/05/98 5.2 39 8 06/02/04 5.1
20 10 16/05/98 5.2 40 18 14/06/04 5.9

for the rest, A =0.0075 x 10°37™* js a near-source
saturation term defined by Atkinson and Boore
(2003), H (km) is the focal depth, and ¢ is a zero
mean error term with standard deviation o, in
which 6= (6? + 0", and o, and o, denote the
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standard deviation due to intra- and inter-event
variability, respectively. If the geometric mean
for Y is considered, o = (0+ 0+ 0" and the
standard deviation o, accounts for the random
orientation variability.
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Table 2. Coefficients for the geometric mean and
the horizontal components H1 and H2 for the the
records of inslab earthquakes (c, equals 1).

T (s) ¢, ¢, ¢, s o

Geometric mean

0.20 -0.020 0.595 -0.0036 0.0068 0.31
0.50 -0.907 0.687 -0.0024 0.0034 0.29
1.00 -1.931 0.781 -0.0016 0.0029 0.31
1.50 -2.468 0.831 -0.0014 0.0017 0.31
PGA -0.109 0.569 -0.0039 0.0070 0.31

Horizontal component 1 (H1)

0.20 -0.015 0.595 -0.0036 0.0065 0.31
0.50 -0.895 0.688 -0.0023 0.0028 0.29
1.00 -1.987 0.793 -0.0017 0.0029 0.29
1.50 -2.531 0.84 -0.0014 0.0019 0.28
PGA -0.091 0.569 -0.0038 0.0065 0.31

Horizontal component 2 (H2)

0.20 -0.034 0.596 -0.0037 0.0071 0.29
0.50 -0.913 0.683 -0.0024 0.004 0.27
1.00 -1.886 0.768 -0.0015 0.003 0.30
1.50 -2.441 0.825 -0.0014 0.0018 0.30
PGA -0.13 0.568 -0.0039 0.0076 0.29

For the records of interplate earthquakes, the
functional form of the GMPE is the one employed
by Garcia (2006), which is expressed as,

log,,Y =¢, +c,M +c;R-c,log,, (R +c,10%M ) +c,H+¢,
(4)

where c,i=1,...,7, are the model parameters, R
(km) is the closest distance to the fault surface for
events with M_> 6.0, or the hypocentral distance
for the rest, and Y, M, H and & were defined
previously. Note that in the above equation ¢, is
considered to be given by the following equat|on
(Garcia 2006),

¢, =182-0.16M,. (5)

Using the adopted GMPEs, the records for the
events detailed in Table 1, and the regression
analysis algorithm given by Joyner and Boore
(1993), Hong et al. (2009) obtained the model
coefficients for a range of natural vibration
periods based on the geometric mean. For an
easy reference, the model coefficients for a few
selected values of the natural vibration period,
T , are presented in Tables 2 and 3. Moreover, for
comparison purposes, the regression analysis in
this study is carried out by considering either the
first horizontal component (H1), or the second
horizontal component (H2). The obtained model

Table 3. Coefficients for the geometric mean and the horizontal components H1 and H2 for the records
of interplate earthquakes (c, is defined in Equation 5).

T (s) c, c, c, ; ¢, c, o
Geometric mean
0.20 2.609 0.144 -0.0034 0.009 0.475 -0.00410 0.39
0.50 1.542 0.238 -0.0015 0.003 0.515 -0.00300 0.40
1.00 0.734 0.301 -0.0005 0.002 0.509 -0.00500 0.41
1.50 0.214 0.336 -0.0002 0.002 0.495 -0.00490 0.40
PGA 2.545 0.108 -0.0037 0.0075 0.474 -0.00240 0.37
Horizontal component 1 (H1)
0.20 2.658 0.129 -0.0036 0.009 0.475 -0.00105 0.40
0.50 1.653 0.211 -0.0017 0.003 0.515 -0.00001 0.40
1.00 0.862 0.265 -0.0004 0.002 0.509 -0.00283 0.40
1.50 0.343 0.298 -0.0002 0.002 0.495 -0.00195 0.40
PGA 2.608 0.088 -0.0038 0.0075 0.474 0.00073 0.40
Horizontal component 2 (H2)
0.20 2.639 0.146 -0.0036 0.009 0.475 -0.00405 0.36
0.50 1.571 0.247 -0.0018 0.003 0.515 -0.00364 0.38
1.00 0.716 0.321 -0.0010 0.002 0.509 -0.00458 0.32
1.50 0.182 0.357 -0.0007 0.002 0.495 -0.00427 0.33
PGA 2.500 0.123 -0.0038 0.0075 0.474 -0.00330 0.34
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Figure 3. Distribution of M and H with respect to R :
(a) and (b) for inslab events; (c) and (d) for interplate
events.
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coefficients are also shown in Tables 2 and 3. As
the H1 and H2 components represent the seismic
excitation for a random orientation (with respect
to the source), the developed model coefficients
shown in Tables 2 and 3 will be used to predict
PGA or SA for a random orientation.

Comparison of the results shown in the tables
indicates that the estimated model coefficients
based on either only H1 or H2 components differ
only slightly from those based on both components
(i.e., geometric mean), as expected. Also, the
average of the model coefficients obtained from
H1 alone and from H2 alone is almost identical
to those obtained based on the geometric mean.
This fact simply confirms the robustness of the
algorithm given by Joyner and Boore (1993)
for developing the GMPEs. It also indicates that
the number of records used for the purpose of
regression analysis is adequate.

Prediction of strong ground motion measures
using ANN

Effect of the number of hidden layers and
neurons on the training ANN and on predicted
values

The selection of the number of hidden layers and
neurons is of importance in developing or training
an ANN. This selection depends on the nature of
the problem to be investigated, and a trial and
error process is often followed to determine the
adopted structure of the ANN model (Shahin et
al., 2004). In selecting the ANN model, potential
overfitting due to the use of an excessive hum-
ber of hidden layers and/or neurons needs to be
avoided, as this will lead to a lack of learning and
the inability to predict the outcomes for scenarios
not used in training. To avoid the possible overfit-
ting, several preliminary ANN models were tested
by considering combinations of the single and
two hidden layers and up to 50 hidden neurons
in each hidden layer. Furthermore, a total of 80%
randomly selected records were used to train the
model, while the remaining 20% of records were
used for validating the trained model.

To investigate the effect of the record selection
on the trained ANN model, a total of 300 trials were
carried out. For each trial, a new set of PGA and
SA values from 80% randomly selected records
were used. For the analysis, only one component
(H1 or H2) from each record is considered;
both 1HL and 2HL models are employed for the
training. As the results obtained for the H1 and
H2 components from the records exhibit similar
trend and the results for inslab and for interplate
records are similar as well, we only illustrate the
estimated MSE in Figure 4 for the H1 component
from the inslab records.
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Figure 4, which presents the results for PGA
and SA at T = 1.5 s, shows scatter in the MSE.
As expected, the scatter (but not necessarily
the standard deviation) of the MSE increases as
the number of trials increases. The average MSE
estimated based on 300 trials, which is considered
to be sufficient large, is illustrated in Figure 5 for
the training stage. The results presented in this
figure indicate that the lowest average MSE is
obtained for n_around 10, and that the average
MSE is relatively consistent for the number of
hidden neurons, n , up to 25. As the average MSE
for n = 50 is much larger than that for n < 50,
the use of n_ > 25 is not recommended.

By using the remaining 20% records to test the
trained ANN models, the average of MSE for 300
trials was also calculated and presented in Figure
6. Comparison of Figures 5 and 6 indicates that
average values of MSE for the trained ANN models
shown in Figure 6 are slightly greater than those
presented in Figure 5. This can be explained by
noting that the trained ANN models are tested
with input parameters that are different than
those used during the training process. Figure 6
also shows that the use of the model with n =
50 leads to the greatest average MSE among the
considered n_values.

During the analysis, it was observed that the
optimum number of neurons and hidden layers -
those leading to the lowest MSE for the trained
model - depend on the selected records. In all
cases, the optimum number of neurons is within
3 to 20; in about 50% of time the 1HL model out-
performs the 2HL model, and vice versa. To further

inspect the differences of using the 1HL and 2HL
ANN models, the mean of the ratio of the MSE of
the trained 1HL model to that of the trained 2HL
model shown in Figure 4 was calculated. The va-
lues are presented in Table 4. The table indicates
again that there is no clear preference among the
1HL and 2HL models, although the 1HL model for
inslab earthquakes may be considered to perform
better than the 2HL model. Based on these ob-
servations, the use of 10 neurons and the ANN
model with 1HL and with 2HL will be considered
in the next section.

Comparison of predictions using trained ANN

The training of the ANN models with 1HL and
with 2HL was carried out by considering 10
neurons in each layer. For the analysis, the use
of all H1 components and all H2 components are
considered. As the results based on H1 or H2
components are almost the same, only the results
for H1 are presented. Also, analysis was carried
out by using only the geometric mean since this
quantity is commonly used to develop GMPEs. For
this case, the obtained weights and biases for the
trained models are presented in the Appendix.

A comparison of the predicted PGA and SA
by using the trained models to those obtained
from the actual records is shown in Figures 7
and 8 for the H1 components and the geometric
mean, respectively. It can be observed from the
figures that there is a good agreement between
the predicted and observed values, and that the
correlation coefficient, p, is greater than 0.77
in all cases. The trained ANN models for inslab

Table 4. Comparison of the mean of the ratio of the MSE of ANN models with 1HL to that with 2HL by
considering the H1 components.

Earthquake Number of PGA SA SA SA
Type neurons (T =0.2s) (T =0.5s) (T =1.0s) (T =1.5s)
Inslab 3 0.88 0.86 0.88 0.88 0.91
5 1.12 1.19 1.19 1.19 1.15
10 1.00 1.00 1.06 1.10 1.09
15 0.98 1.06 1.11 1.05 1.08
20 0.86 0.93 0.95 0.91 0.93
25 0.86 0.83 0.77 0.84 0.87
50 0.54 0.50 0.48 0.50 0.45
Interplate 3 0.91 0.93 0.98 0.95 0.93
5 1.15 1.11 1.07 1.11 1.11
10 1.02 1.03 1.09 1.08 1.05
15 1.05 1.08 0.98 1.03 1.11
20 0.98 1.00 1.04 1.02 1.10
25 1.01 0.99 0.97 0.88 0.94
50 0.47 0.48 0.54 0.47 0.49
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earthquakes provide better estimates than those
for interplate earthquakes if H1 is considered;
if the geometric mean is considered, both ANN
models provide similar estimates. The scatter
shown in the figures appears to be independent of
the logarithm of PGA or logarithm of SA. A more
detailed statistical investigation considering that
the residual - 1 defined as the difference between
the logarithmic of the actual PGA (or SA) and the
logarithmic of the predicted PGA (or SA) - as a
function of the predicted PGA (or SA) is beyond
the scope of this study.

employed for training.

To provide a probabilistic characterization of the
residual, n is shown in Figure 9 for a few selected
cases presented in Figures 7 and 8. Inspection
of the plots and use of a Kolmogorov-Smirnov
test (Benjamin and Cornell, 1970) indicate that
n can be modeled as a normal variable. The
mean and the standard deviation of n for the
cases presented in Figure 9 are summarized in
Table 5, where the statistics of 1, shown for the
geometric mean case, were calculated by taking
into account that the trained model will be used
to predict ground motion measures for a random
orientation, rather than the geometric mean (see
Section 3).
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Figure 7. Comparison of predicted and observed PGA

and SA H1 component values for inslab and interplate

earthquakes (p in the plots denotes correlation
coefficient).
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Comparison of the predicted PGA and SA using
trained ANN and GMPEs

To appreciate the adequacy of the trained ANN
models for seismic hazard and risk assessment,
a comparison of the trained models and the
GMPEs is needed. The comparison is focused on
the “average” behaviour and on the uncertainty
in the model developed.

The uncertainty in the GMPEs is characterized
by the statistics of ¢ (Tables 2 and 3), while that for
the trained ANN is characterized by the statistics
of the residual n (Table 5). A comparison of these
tables indicates that although the trained ANN
models are only slightly biased (i.e., the mean of
n differs from zero), the degree of uncertainty in
the trained ANN models, in terms of the standard
deviation, is similar to that in the GMPEs. In parti-
cular, the statistics of 1 and ¢ are very consistent
for the case when the geometric mean was used to
develop the GMPEs and to train the ANN models.
Since n and € shown in Egs. (3) and (4) represent
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the difference between the logarithmic of the ac-
tual PGA (or SA) and the logarithm of the PGA (or
SA) predicted by the ANN model and the GMPE,
respectively, the physical meaning of 17 and ¢ is
similar. n needs to be considered as an integral
part of the developed ANN model if it is used for
seismic hazard and risk analysis.

A comparison of the “average” behaviour of
the trained ANN model and the GMPEs obtained,
based on the geometric mean, is presented in
Figures 10 and 11 for selected scenario events. It
can be observed from these figures that in general
the predicted values by the ANN model follow
those predicted by the GMPEs. However, some
differences are observed. The most pronounced
are associated for R greater than 150 km.
Moreover, in some cases, the predicted values
by the trained ANN models may not necessarily
reflect reality. For example, the results shown
in Figure 10c indicate that SA can increase with
distance beyond R = 200 km for M = 5.9 and H
= 50 km, which is unrealistic. Since this drawback
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Figure 9. Normal probability plots of the residual n.
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Table 5. Statistics of 1) for cases shown in Figure 10.

Earthquake H1 Geometric Mean
Type
mean Std. Dev. mean Std. Dev.
Inslab PGA 1.5E-01 0.68 9.2E-03 0.35
SA (Tn=0.5s) -3.0E-01 0.58 -7.3E-03 0.32
SA (Tn=1.5s) 4.9E-02 0.57 5.0E-04 0.33
Interplate PGA -1.4E-01 0.67 7.3E-03 0.38
SA (Tn=0.5s) -5.5E-03 0.79 -1.2E-02 0.43
SA (Tn=1.5s) -6.6E-02 0.72 7.0E-03 0.40
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trained ANN models and by a GMPE for inslab earth-
quakes (Hong et al., 2009).
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Conclusions

Artificial Neural Network models were developed
to predict the ground motion measures for
Mexican inslab and interplate earthquakes. The
development used the PGA and SA calculated
from single horizontal components of the
records and from the geometric mean of the
horizontal components. For training ANN model,
the parameters for the input layer are moment
magnitude, closest distance to the fault and focal
depth, while the logarithmic of the PGA (or of
the SA) is used to represent the outcome of the
model. The main observations that can be drawn
from the analysis results are:

1. The performance of the trained ANN model
by using a single hidden layer is similar to
that by using two hidden layers. The most
appropriate number of neurons per hidden
layer seems to be within 3 to 20.

2. The use of a single horizontal component or
the geometric mean of the two horizontal
components leads to similar trained ANN
models, implying that the number of
considered records is adequate.
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3. The statistics of the residuals associated
with the trained ANN models are similar
to those associated with the GMPEs. The
ground motion measures predicted by the
trained ANN models follow those predicted
by the GMPEs. This indicates that the ANN
models may be a good alternative to GMPEs
in some applications.

4. In some cases, the SA predicted by the
trained ANN models increases as the R
increases. This does not reflect the general
behaviour observed from actual records.
Therefore, extensive verification of the
trained ANN models should be carried out
before the models can be used for seismic
engineering applications.
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Appendix
Weights and biases for the trained models.
The coefficients of the trained models needed

for their application are given in the following
tables (next page).
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