
Geofísica Internacional (2014) 53-1: 59-75

59

Original paper

Parallel numerical simulation of two-phase flow model in porous media
using distributed and shared memory architectures

Luis Miguel de la Cruz* and Daniel Monsivais

Received: October 10, 2012; accepted: May 03, 2013; published on line: December 11, 2013

L.M. de la Cruz*

D.Monsivais
Instituto de Geofísica
Departamento de Recursos Naturales
Universidad Nacional Autónoma de México
Ciudad Universitaria
Delegación Coyoacán, 04510
Mexico D.F., México
*Corresponding author:luiggix@gmail.com

Resumen

En este trabajo se estudia un modelo de flujo
bifásico (agua-aceite) en un medio poroso
homogéneo considerando un desplazamiento
inmiscible e incompresible. Este modelo se
resuelve numéricamente usando el Método de
Volumen Finito (FVM) y se comparan cuatro
esquemas numéricos para la aproximación de los
flujos en las caras de los volúmenes discretos.
Se describe brevemente cómo obtener los
modelos matemático y computacional aplicando
la formulación axiomática y programación
genérica. También, implementa dos estrategias de
paralelización para reducir el tiempo de ejecución.
Se utilizan arquitecturas de memoria distribuida
(clusters de CPUs) y memoria compartida (Tar-
jetas gráficas GPUs). Finalmente se realiza
una comparación del desempeño de estas dos
arquitecturas junto con un análisis de los cuatro
esquemas numéricos para un patrón de flujo de
inyección de agua, con un pozo inyector y cuatro
pozos productores (five-spot pattern).

Palabras clave: flujo bifásico, medios porosos,
recuperación de hidrocarburos, método de
volumen finito, cómputo paralelo, Cuda.

Abstract

A two-phase (water and oil) flow model in
a homogeneous porous media is studied,
considering immiscible and incompressible
displacement. This model is numerically solved
using the Finite Volume Method (FVM) and
we compare four numerical schemes for the
approximation of fluxes on the faces of the discrete
volumes. We describe briefly how to obtain
the mathematical and computational models
applying axiomatic formulations and generic
programming. Two strategies of parallelization
are implemented in order to reduce the execution
time. We study distributed (cluster of CPUs) and
shared (Graphics Processing Units) memory
architectures. A performance comparison of these
two architectures is done along with an analysis of
the four numerical schemes, for a water-flooding
five-spot pattern model.

Key words: two phase flow, porous media,
oil recovery, finite volume method, parallel
computing, Cuda.

L. M. de la Cruz and D. Monsivais

60 Volume 53 Number 1

Introduction

New recovery techniques (for example Enhanced
Oil Recovery) are essential for exploiting efficiently
oil reservoirs existing around the world. However,
before these techniques can be successful applied,
it is fundamental to develop mathematical and
computational investigations to model correctly
all the processes that can occur. General
procedures for constructing these mathematical
and computational models (MCM) are presented
in [1, 2], where it is shown that with an axiomatic
formulation it is possible to achieve generality,
simplicity and clarity, independently of the com-
plexity of the system to be modeled. Once we
have an MCM of the oil recovery process we
are interested in, an efficient implementation of
computer codes is required to obtain the numerical
solution in short times.

Nowadays, the oil reservoir characterization
technologies can produce several millions of
data, in such a way that an accurate well-
resolved simulation requires an increase on
the number of cells for the simulation grid. The
direct consequence is that the calculations are
significantly slow down, and a very high amount
of computer resources (memory and CPU) are
needed. Currently, fast simulations on commercial
software are based on parallel computing on CPU
cores using MPI [3] and OpenMP [4]. On the other
hand, since the introduction of the CUDA language
[5], high-performance parallel computing based
on GPUs has been applied in computational fluid
dynamics [6, 7], molecular dynamics [8], linear
algebra [9, 10], Geosciences [11], and multi-
phase flow in porous media [12, 13, 14, 15, 16]
among many others.

The water-flooding technique is considered
as a secondary recovery process, in which water
is injected into some wells to maintain the field
pressure and to push the oil to production wells.
When the oil phase is above the bubble pressure
point, the flow is two phase immiscible and
there is no exchange between the phases, see
[17]. Otherwise, when the pressure drops below
the bubble pressure point, the hydrocarbon
component separates into oil and gas phases.
The understanding of the immiscible water-
flooding technique is very important and still
being studied as a primary benchmark for new
numerical methods [18] and theoretical studies
[19]. Besides, some authors have started to
investigate parallel technologies to reduce the
execution time of water-flooding simulations, see
for example [7, 13, 15, 20].

The incorporation of the GPUs into the floating
point calculation of the oil reservoir simulation, has
been considered in several studies. For example,
in [20] a model for two-phase, incompressible,

immiscible displacement in heterogeneous porous
media was studied, where an operator splitting
technique, and central schemes are implemented
on GPUs producing 50-65 of speedup compared with
Intel Xeon Processors. In [13], a very similar study
as ours is presented, where the IMPES method
is used to linearize and decouple the pressure-
saturations equation system, and the SOR method
is applied to solve the pressure equation implicitly.
Their implementations was done considering
a partition of the domain and then distributing
each subdomain to blocks of threads. They obtain
considerable accelerations (from 25 to 60.4 times)
of water-flooding calculations in comparison with
CPU codes. Multi-GPU-based double-precision solver
for the three-dimensional two-phase incompressible
Navier-Stokes equations is presented in [7]. Here
the interaction of two fluids are simulated based on
a level-set approach, high-order finite difference
schemes and Chorin’s projection method. They
present an speed-up of the order of three by
comparing equally priced GPUs and CPUs.

The numerical application studied in this
paper, is the well known five-spot pattern model,
and we work this model in the limit of vanishing
capillary pressure, applying Darcy’s law coupled
to the Buckley-Leverett equation. This assumption
generates an hyperbolic partial differential
equation which can presents shocks in its solution.
Our approach for solving this equation is to use four
numerical schemes for approximating the fluxes
adequately on the faces of the discrete volumes.
We are interested in to study the numerical
throwput of these four numerical schemes. We
also focus our attention in the comparison of two
parallel implementations written to run on a high-
performance architecture consisting of CPUs and
GPUs. We made this comparison in equality of
conditions in order to do an objective analysis of
the performance. The parallel implementations we
present, are based on the use of well established
opensource numerical libraries for solving linear
systems. We use PETSc [21, 22] for distributed
memory and CUSPARSE [24, 23] for GPU shared
memory. We coupled these two libraries to our
software TUNAM [25, 26], which implements FVM
from a generic point of view. With this software
we can easily implement, incorporate and evaluate
the four numerical schemes for the approximation
of the fluxes on the faces. Our objective is to give
a quantitative reference that can be reproduced
easily, and applied to other applications.

This paper is structured as follows. In section
2, we discuss the mathematical modeling
of multiphase flows in porous media. The
presentation is based on the axiomatic formulation
introduced in [1, 2], and a pressure-saturation
formulation is described for the two-phase
flow. In section 3, the FVM is applied to the
mathematical model, and the four numerical

Geofísica Internacional

January - March 2014 61

schemes for approximating the fluxes on the faces
are introduced. We also explain the IMPES method
used to obtain the solutions. The computational
implementation of the algorithms, including our
parallel implementations are also explained. In
section 4, we solve the five-spot model using the
four numerical schemes in combination with a
linear and quadratic relative permeability models.
In section 5, an analysis of the performance of
our parallel implementations is done. Finally, in
section 6 we give our conclusions.

Governing equations of a multiphase system

Given an intensive property y and a reference
body B(t) of a continuous system, the general
balance equation, in conservative form see [27],
can be written as follows

	
∂
∂

+ ∇⋅ =∫ ∫ ∫y
t
dx dx qdx

B t B t B t() () ()

F ,	 (1)

where x represents the position and t is the time.
In equation (1) the flux function is defined as
F =vy—t, and the quantities v(x, t), q(x, t) and
t(x, t) represent the velocity of the particles of
B(t), the generation and the flux of property y,
respectively (see [1] for a complete description
on this formulation).

In a multiphase porous media system, the mass
of fluid of the phase a is an extensive property
Ma, and the corresponding intensive property is
ya. Both properties are related as follows

	 M dx
B tα αψ= ∫ ()

,	

where the intensive property is defined as
ya=fraSa. Here f is the porosity, ra and Sa are the
density and the saturation of phase respectively.

From equation (1), and using the fact that
B(t) is arbitrarily chosen, the conservative form
of the balance equation for the mass of fluid of
the phase a is

	
∂
∂

+∇⋅ =∂
() ()φρ αα αS

t
qF ,	 (2)

where the flux function Fa is defined as

	 F D∂ =− ∇ − ℘ −ρ λ ρ τα α α α αk p() ,	 (3)

In equation (3) we have introduced the Darcy’s
law for multiphase systems

	 uα α α αλ ρ=− ∇ − ℘∇k p()D ,	 (4)

where la is the mobility of the phase a defined
as la=kra/ma. Here kra is the relative permeability
of phase a. The viscosity, the pressure and the
density of phase a are denoted by ma, pa and
ra, respectively. The tensor k is the absolute
permeability. The symbol ℘ is the magnitude of
earth gravity and D represents the depth of the
porous media, see [17]. We also used the Darcy’s
velocity of phase a defined as ua=vfSa.

Pressure equation

Equation (2) represents a fully–coupled
system of Np phases. Using a pressure–saturation
formulation, see [17], it is possible to decouple
the Np equations into one for a phase pressure
and Np−1 for saturations. These equations will
be weakly coupled and can be solved iteratively.

In order to obtain a pressure equation, we start
from equation (2) and neglecting the diffusion ta
= 0, dividing by ra and summing over all phases,
we obtain

	
1
ρ

φρ ρ
α

α α
α α α

∂
∂

+∇⋅ −






















() ()S
t

qu ==
=
∑ 0

1α

Np
,	

Developing the derivatives and using the fact
that we obtain the phase pressure equation

	

∂
∂
− ∇⋅ ∇ − ℘∇

+ ∂
∂
+ ⋅∇

=
∑φ λ ρ

ρ
φ ρ α ρ

α α α
α

α
α

α

t
k p

S
t

u

Np

(())D
1

1
αα

α

α

αα ρ











− =

= =
∑ ∑

1 1
0

Np Np q
.

		 (5)

where the Darcy’s law was written explicitly.

Saturation equation

The solution of equation (5) produce the
pressure for a phase a. Other phase pressures
can be obtained via the capillary pressure relations

	 p p pca a a a a a
1 2 1 2 1 2= − ≠, ,	 (6)

where a1 represent a non-wetting phase and a2
represent a wetting phase.

Using the phase pressures we can calculate
the velocities via Darcy’s Law, equation (4).
This velocity is necessary to solve the saturation
equations (2), which can be written as follows

L. M. de la Cruz and D. Monsivais

62 Volume 53 Number 1

	
∂
∂

−∇⋅ ∇ − ℘∇ − =() (())φρ ρ λ ρα α
α α α α α

S
t

k p qD 0 ,	
		 (7)

Incompressible two-phase pressure-saturation
model

Two-phase flow in porous media modeling is
concerned to the displacement of one fluid by
another. In general, a wetting fluid, say water, is
injected into the porous media displacing a non-
wetting fluid, say oil, which is being extracted at
another location. Due to the physical interaction
between the two phases, this process generates
a moving front at the interface between the
phases. The evolution of the front is of primary
interest for the production of hydrocarbons in oil
recovery field.

We consider two incompressible and immiscible
phases: water (w) and oil (o) in a porous media
of constant porosity f. Equations are commonly
posed in terms of the field variables oil pressure
and water saturation as follows

	 ∇⋅ = +F 1 Q Qw o,	 (8)

	 f ∂
∂
+∇⋅ =()S

t
Qw F 2 w,	 (9)

where

F D1 =− ∇ − ∇ − +()℘∇








k p dp

dS
Sλ λ λ ρ λ ρo w

cow

w
w w w o o 

F D2 =− ∇ − ∇ − ℘∇








k p dp

dS
Sλ λ λ ρw o w

cow

w
w w w

and the source terms are defined as Qw = qw/rw
and Qo = qo/ro. The capillary pressure is defined as
pcow(Sw) = po − pw and because it depends on water
saturation, it is possible to write ∇pcow=(dpcow/dSw)
∇Sw. Equations (8) and (9) are coupled and non-
linear. In order to decouple and linearize those
equations, we employ the IMPES method, which
will be explained in the next section. Note that
equations (8) and (9) are simplified versions of
equations (5) and (7), respectively.

Numerical model

The numerical formulation of the equations (8)
and (9) is based on the finite volume method
(FVM) which is derived on the basis of the integral
form of the global balance equation (1), see [28,
29, 27].

In the FVM we keep track of an approximation
to the integrals of equation (1) over each control

Figure 1. Control volume: black squares represent the nodes commonly used in finite differences or finite element
methods. The center of the volumes (circles) are labeled with uppercase letters, meanwhile the faces are labeled

using lowercase letters.

Geofísica Internacional

January - March 2014 63

 if (pn
P ≤ pn

E) then
	 Sn

e = Sn
E

 else
	 Sn

e = Sn
P

 end if

Average : a weighted average is done using
the neighbors to point P; for example for face e
we have

volume, see figure 1. Every time step, we update
these values using approximations to the fluxes
throughout the faces of the volumes. When the
approximations are calculated in a control volume,
we transform the original equations into a set of
algebraic equations.

Applying FVM to equation (8), and using the
notation and we obtain the next discrete pressure
equation

	a p a p a p a p a p aP
n

P
n

E
n

E
n

W
n

W
n

N
n

N
n

S
n

S
n

F
+ + + + += + + + +1 1 1 1 1 nn

F
n

B
n

B
n

P
np a p f+ ++ +1 1

a p a p a p a p a p aP
n

P
n

E
n

E
n

W
n

W
n

N
n

N
n

S
n

S
n

F
+ + + + += + + + +1 1 1 1 1 nn

F
n

B
n

B
n

P
np a p f+ ++ +1 1

	 ,	 (10)

where the superscript is the time step and the
subscripts indicate the node of the mesh according
to figure 1. Equation (10) was obtained for a fully
implicit temporal scheme and assuming that the
an

NB coefficients, for NB∈{P, E, W, N, S, F, B}, can
be calculated from values of the fluxes at instant
n. The shape of an

NB coefficients depends on the
numerical schemes used to approximate the fluxes
on the control volume faces. In obtaining equation
(10) we use the fact that the pressure equation
is coupled with the saturation one, in such a way
that, even though there is not temporal term in
equation (8), we need to update the pressure field
when a new saturation field is obtained.

The discretized form of equation (9) using
FVM is

	SP
n+1 = Sn

P + bn
P S

n
P − (bn

E S
n
E + bn

W S
n
W + bn

N S
n
N + bn

S S
n
S + bn

F S
n
F + bn

B Sn
B)	

 − cn
P p

n
P + (cn

E p
n
E + cn

W p
n
W + cn

N p
n
N + cn

S p
n
S + cn

F p
n
F + cn

B pn
B)

 + dn
P D

n
P − (dn

E D
n
E + dn

W D
n
W + dn

N D
n
N + dn

S D
n
S + dn

F D
n
F + dn

B Dn
B)	

+ ∆Q P t

W f		 (11)

The shape of the coefficients for equations (10)
and (11) are given in appendix A.

Numerical schemes for water saturation

Coefficients of equations (10) and (11) depends
on the mobilities and capillary pressure evaluated
on the faces of control volumes. These coefficients
in turn depend on the water saturation, Sw, which
is an unknown of the system of equations, and
is updated every time iteration at the center of
the volumes. In order to calculate the mobilities
and the capillary pressure we require the value
of Sw on the faces of volumes. There exist several
approaches to evaluate Sw on the faces, and in
this work we implemented four numerical schemes
which are described below.

Upwind : linear upstream; for example for
face e we have

Sn
E = bSn

E + (1 − b)Sn
P

where b = (xe − xP)/Dxe.

UpwindE : quadrat ic upstream with
extrapolation [30]; for example for face e we have

 if (pn
P ≤ pn

E) then
	 Sn

e = Sn
E (1 − bE) − Sn

EE bE
 else
	 Sn

e = Sn
P (1 − bP) − Sn

W bP
 end if

where bP = DxP / 2Dxw and bE = DxE / 2Dxee.

UpwindQ : cubic upstream [31]; for example
for face e and uniform meshes we have

if (pn
P ≤ pn

E) then
	 Sn

e = − 18 S
n
EE + 3

4
 Sn

E + 38 S
n
P

L. M. de la Cruz and D. Monsivais

64 Volume 53 Number 1

 else
	 Sn

e = − 18 S
n
W + 3

4
 Sn

P + 38 S
n
E

 end if

evaluate the total elapsed time of pressure and
saturation solution, when both are obtained for
the same number of iterations.

Computational implementation

We use the software TUNAM [25] to implement the
FVM applied to the equations described in previous
sections. The TUNAM library use object-oriented
and generic programming, in such a way that
it is possible to extend its functionality to solve
many sort of problems. In TUNAM there are three
main concepts: Generalization, Specialization
and Adaptors, which are related through the
application in two levels of the Curiously Recurring
Template Pattern [32].

The main generalization in TUNAM is the
GeneralEquation concept, which refers to the
general balance equation (1) and its FVM discrete
formulation represented by equations (10) and
(11). In principle, this general concept accounts
for all the FVM coefficients. We inherit from this
concept the TwoPhaseEquation, which is an
specialization that includes all particular features
of the two-phase model described in section
§2.3. Because we are interested in to analyze
the performance of the four numerical schemes
described in section §3.1, we implement eight
adaptors resumed in table 3.

Next two lines of code explains how the
pressure and saturation equations are defined in
the TUNAM framework

TwoPhaseEquation<FSIP1<double, 3> >
pressure(p, A, b, mesh);
TwoPhaseEquation<FSES1<double, 3> >
saturation(Sw, A, b, mesh);

The pressure and saturation equations are
defined in lines 1 and 2 of the above code,
respectively. These equations are defined in terms
of the objects p (pressure field), Sw (saturation
field), A (matrix of algebraic system), b (source
term) and mesh (mesh of the domain). The
template parameters FSIP1 and FSES1 are two
adaptors that define the shape of the coefficients
of equations (10) and (11). We can use any of the
adaptors listed in table 3, and the change in the
code would be only in lines 1 and 2 (for example
we can use FSIP2 and FSES2, instead). For more
details of the TUNAM framework see [26].

Using the objects pressure and saturation the
IMPES method is implemented in the next simple
manner:

while (t <= Tmax) {
pressure.calcCoefficients();
Solver::TDMA3D(pressure, tol, maxIter);
pressure.update();

Solution method

The IMPES (IMplicit Pressure, Explicit Saturation)
method is very used for solving two phase flow
models of incompressible or slightly compressible
fluids, see [17, 30]. As presented in sections §2.1
and §2.2, we can formulate our problem in terms
of one equation for a phase pressure and Np− 1
equations for phase saturations. In the IMPES
method, for the two-phase case, we solve the
pressure equation (8) implicitly and the saturation
equation (9) explicitly. In order to solve the
pressure equation, we use an initial saturation,
and once the pressure is obtained, we can use
it to solve the saturation equation. This process
linearize and decouple the system of equations
and is done iteratively for a given number of time
steps. The IMPES method is given in algorithm (1).

Algorithm 1 IMPES

1: Initial data: S0, p0, Tmax and Dt.

2: n ← 0.

3: while t < Tmax do:

4: Calculate the coefficients of equation (10)
using Sn.

5: Solve discrete pressure equation (10)
implicitly to obtain pn.

6: Calculate the coefficients of equations (11)
using pn and Sn.

7: Solve discrete saturation equation (11)
explicitly to obtain Sn+1.

8: tn+1 ← tn + Dt.

9: n ← n + 1.

10: end while

Even though that it is possible to use different
time steps for pressure and saturation equations,
here we use the same time step in order to

Geofísica Internacional

January - March 2014 65

saturation.calcCoefficients();
Solver::solExplicit3D(saturation);
saturation.update();
t += dt;

}

Parallel implementation

Inside the IMPES algorithm (1), the step 5 is the
most time consuming task. In the TUNAM code,
related to the IMPES cycle as described in sections
§3.2 and §3.3, the solution of the pressure
equation can be achieved by different approaches.
Due to the size of the problem, the use of iterative
algorithms is usually the fast (and many times the
only) way to get the solution vector. Among these,
is the BiCGStab [33], a Krylov sub-space method,
which gave us the better time convergence and
stability than other similar methods. This solver
method can be implemented easily in parallel
exploiting different type of architectures. In this
work, we study the performance of two memory
architectures: a distributed memory of a cluster
via the PETSc library[21, 22]; and a shared
memory architecture of a Graphics Processing
Unit (GPU) using the CUSPARSE library[24, 23],
which is based on CUDA.

The linear algebra operations contained in a
regular iteration of the BiCGStab method (without
preconditioning) are listed in the table 1, as well as
the number of times each operation is called inside
the iteration. Using PETSc1 and CUDA libraries we
wrote down two codes with the same operations, as
shown in table 1, in order to achieve the BiCGStab
algorithm, see appendix B. Also, the same type of
matrix’s compression format was used to fix down
the same conditions for both codes. In this case,
the most time-consuming operations are the 2
matrix-vector product.

The Compressed Row Storage (CRS) format[34]
was used to store the matrix of the linear system.
In the CRS, the non-zero elements are stored in
a linear array A*, and an auxiliary array J* is used
to keep the column number j of each element of

A*. In order to know the row of every element
stored, a third array I* is used. This array keeps
the segmentation of the array A* in elements
of the same row in the original matrix A, i.e.
the position in the array A* of the first non-zero
element of each row. For diagonal matrices, the
growth in size of the data stored is O(n), against
the O(n2) of the non-compressed counterpart.

We adapted the TUNAM code described in
section §3.3 for using PETSc and CUDA. At the
very beginning of each IMPES iteration, just after
updating the matrix and vectors of the linear
system for pressure, the containing arrays from
TUNAM were handled to conform the format
required by the two evaluated parallel libraries.
The explicit solution of the saturation equation,
can be expressed as a set of linear algebra
operations (see appendix C). In this approach,
the saturation vector S at time n + 1, is calculated
as follows

	 S S S Q tn n n n n n n n+ = − − + + ∆1 B C Dp d W f
,	

		
		 (12)

where S, p, d, Qw are vectors corresponding
to equation (11) and , , are diagonal-banded
matrices (see Appendix B) containing respectively,
the coefficients bn

NB, cn
NB and dn

NB. The linear
operation (20) was translated to an equivalent
parallel implementation, with 5 axpy’s operations
and 3 matrix-vector products.

Application to the five-spot pattern

Waterflooding is classified as a secondary oil
recovery technique, which consists in the injection
of water into the reservoir through injectors wells,
pushing the hydrocarbons into the rocks and
forced to flow towards the producers wells.

A simplified, but realistic two-phase flow
model, is that from Buckley and Leverett [35],
where we have two immiscible and incompressible

1Despite of PETSc has a BiCGStab implementation,
these includes operations not present in CUBLAS, as
WAXPY

	 Copy	 Scale	 Dot product	 Norm	 Axpy	 Matrix-Vector

	 y ← x	 x ← ax	 c ← x ⋅ y	 x ← ∣∣x∣∣	 y ← ax + y	 y ← aAx + y
 	 	 	 	 	
	 2	 1	 4	 2	 6	 2

Table 1. Operations used in the BiCGStab and number of calls for each one of them inside the method.

L. M. de la Cruz and D. Monsivais

66 Volume 53 Number 1

fluids, the diffusivity and capillary pressure effects
are ignored, and the gravity is neglected. With
these considerations pressure equation (8) is
elliptic, whilst saturation equation (9) is hyperbolic
and may develop discontinuities in the solution.
Applying the model of Buckley-Leverett, we
studied the well established five-spot pattern.
The domain of study is a parallelepiped domain,
where four producers wells are located in the
corners, and one injector well is in the center of
the domain. Due to the symmetry only a quarter
of the domain is simulated. The complete data set
was taken from [18] and is resumed in table 2.

Relative permeability model

We use the Corey’s model [36] to evaluate the

saturation after 600 days of simulation, for
the cases lineal (s = 1) and quadratic (s = 2),
respectively. The numerical schemes Upwind,
Average, UpwindE and UpwindQ are presented
in graphics (a), (b), (c) and (d) respectively of
those figures. In the linear case, the water front
is well behaved independently of the numerical
scheme. Figure 4(a) presents the profiles of water
saturation for the linear case, along a line joining
the injector and extractor wells. We observe in
this figure that all the four schemes are very
similar; UpwindE scheme introduce a numerical
diffusion, producing an smeared solution; the
other three schemes approximate the water front
more accurate, and the best is UpwindQ, which
is O(Dx3). On the other hand, for the case s =
2, figures 3(a) and (c) show similar distribution,
while graphics (b) and (d) have a non-realistic
behavior. This is more clear in figure 4(b). High-
order schemes provide accurate approximation
of the front, but when they are used in isolation
will usually result in physically meaningless
solutions. The situation arises from the violation
of the so called “entropy condition”, and to solve
it a monotonicity constraint is required, see [37].
We do not address this problem in this work. The
numerical scheme UpwindE produce the best
solution for s = 2.

Performance analysis

All the results presented in this section were
obtained by executing our codes in a cluster with
216 (Intel(R) Xeon(R) CPU X5650 2.67GHz) cores.
The interconnection between the nodes of the
cluster is Gigabit Ethernet. Moreover, the cluster
has a TESLA M4050 GPU, with 448 cuda cores.
The parameters for the simulation were the same
as those in the table 2. The number of volumes
in the x, y, and z directions were 320, 320, and
16 respectively, given a total of 1638400 cells.
We reach the memory limit of the GPU using this
number of volumes.

Linear algebra operations

The most time-consuming linear algebra
operations used inside the BiCGSTab (see
table 1), for a fixed number of volumes, were
evaluated. This evaluation gave us the optimal
number of processors for using the PETSc library
in our cluster. Using matrices and vectors of
the same size, as those used in the whole two-
phase simulation, a PETSc implementation of
each linear algebra operation from table 1, was
analyzed in terms of the average FLOPs (floating
point operations per second) measured over
10000 executions, for a distinct number of cores
(between 1 and 216). Next, the average FLOPs of
same linear algebra operations for the CUSPARSE
implementation were measured using the same
parameters as with PETSc. The matrix-vector

Table 2. Quarter five-spot data.

relative permeabilities. This model is defined as
follows

	 krw = Sn
e and kro = (1 − Se)

s	

where the effective saturation is defined as Se =
(Sw − Srw)/(1 − Srw − Sro).

Table 3 shows the adaptors implemented in
TUNAM for this work, which combine the relative
mobility model for and s = 1, and 2 the numerical
schemes presented in section §3.1.

Numerical results

Figures 2 and 3 show the distribution of water

Table 3. Numerical schemes evaluated and
implemented in TUNAM.

Parameters	 Values	SI units

Dimension for x-axis and y-axis	 182.76	 [m]
Dimension for z-axis	 9.14	 [m]
Water injection rate (Qw)	 3.86 x10-04	 [m3/s]
Absolute permeability (k)	 0.9869 x 10-15	 [m2]
Porosity (f)	 0.2	 –
Water (mw) and Oil (mo) viscosities	1.0 x 10-03	 [Pa s]
Water residual saturation (Srw)	 0	 –
Oil residual saturation (Sro)	 0.2	 –

Numerical	 Adaptors
Scheme	 s = 1	 s = 2
	 p	 S	 p	 S

Upwind	 FSIP1	 FSIS1	 FSIP2	 FSIS2
Average	 FSIP3	 FSIS3	 FSIP4	 FSIS4
UpwindE	 FSIP5	 FSIS5	 FSIP6	 FSIS6
UpwindQ	 FSIP7	 FSIS7	 FSIP8	 FSIS8

Geofísica Internacional

January - March 2014 67

Figure 2. Water saturation for s = 1. (a) Upwind scheme; (b) Average scheme; (a) UpwindE scheme;(a) UpwindQ
scheme. Black lines represent the streamlines from the injector to the extractor wells.

Figure 3. Water saturation for s = 2. (a) Upwind scheme; (b) Average scheme; (a) UpwindE scheme;(a) UpwindQ
scheme. Black lines represent the streamlines from the injector to the extractor wells.

L. M. de la Cruz and D. Monsivais

68 Volume 53 Number 1

Figure 4. Water saturation
profiles along a line joining
the injector and extractor
wells, after 600 days of
simulation. (a) s = 1 and

(b) s = 2.

product, axpy operation, dot product and norm
of a vector performances are shown respectively
in graphics a), b), c) and d) of the figure 5. In all
graphics, the results of the CUSPARSE operations
are shown as a horizontal line (blue), because the
number of cores is fixed in a GPU, giving us only
one point to compare with. On the other hand,
for the PETSc library it is possible to measure the
FLOPs with several number of processor, and we
have at most 216 in our cluster.

Convergence speed of the four numerical
schemes

During the simulation, the evolution of the
water front (shock) depends on the numerical
scheme used to calculate the water saturation
on the volume’s faces, see section §3.1. The
saturation field and each numerical scheme
generates different conditions for the calculation
of coefficients of discrete pressure equation. As
a consequence, the linear system to be solved in
the iterative process of the BiCGStab, will change
its condition number depending particullarly on

Geofísica Internacional

January - March 2014 69

the numerical scheme. The profiles of the water
front at a fixed time, using the four different
numerical schemes described in section §3.1,
was shown in the figure 4, where the scheme-
dependence is clear. In order to take into account
this dependence, in table 4 we show the average
number of iterations done by the BiCGStab
method to converge using a tolerance (relative
error) of 10-7, for each one of the four numerical
schemes. We also report the condition number of
the matrix generated by each one of the numerical
schemes. The average is calculated over the total
number of IMPES iterations (1200 steps) and a
mesh of 80 x 80 x 4. The remaining data were
the same as in table 2.

We observe from table 4 that the linear case, s
= 1, do not present any kind of complications, and
the condition number and the average number of
iterations is the same for all the four schemes. On

the other hand, the case s = 2 give us different
numbers for different schemes. It can be observed
that the best behaved scheme is the UpwindE, as
we already observed in section §4.2.

We do not present the results for the case
UpwindQ with s = 2, because it was not
able to converge. As we pointed out before,
this implementation does not contains the
monotonicity constrain and therefore the results
are unrealistic for this case. Similar comments are
valid for the Average with s = 2, but in that case
we do obtain convergence, although the numbers
are not useful because it also presents a similar
behavior as the UpwindQ scheme.

SpeedUp of the parallel IMPES method

The solving time for the pressure and saturation
equations, during the simulation for PETSC and

Figure 5. Average FLOPs as a function of number of cores: a) matrix-vector product, b) axpy operation, c) dot
product, and d) norm of a vector. In all cases, the horizontal line (blue) represents the FLOPs obtained with the CUDA
implementation and the broken line represents the PETSc implementation. All operations were executed with vectors

and matrices corresponding to a mesh of 320 x 320 x 26 = 1638400 cells.

L. M. de la Cruz and D. Monsivais

70 Volume 53 Number 1

CUSPARSE are shown in the figure 6. We use non-
dimensional time, defined as the ratio between the
greater time (for one core in PETSc) between the
times obtained for each number of cores. Again,
the horizontal line (blue) represent the CUSPARSE
result. Taking as reference the execution time
with one core in the PETSc implementation, the
speedup analysis is shown in the bottom graphic
of the figure 6.

Here the speedup is defined as the ratio
between the time taken to solve the pressure
and saturation equations in a serial process,
divided by the time taken in a parallel process
(448 cores for CUDA and n cores for PETSc, with
1 ≤ n ≤ 192). All operations were executed with
vector and matrices corresponding to a mesh of
1638400 nodes.

Table 4. Average number of iterations (AI) taken by BiCGStab to converge using a tolerance of 10-7 for
each one of the four numerical scheme; CN stands for the condition number of the matrix generated by

each numerical scheme.

Figure 6. Top-left: Average non-dimensional time to complete the pressure solution (BiCGstab). Top-right: Average
non-dimensional time to solve saturation. Bottom: Speedup of whole the parallel implementation. The horizontal

(blue) line represents the CUSPARSE results, meanwhile the red line is for PETSc.

	 Numerical	 s = 1	 s = 2 	
	 Scheme	 AI	 CN	 AI	 CN

	 Upwind	 206.00	 7399.59	 304.61	 7897.30
	 Average	 206.00	 7399.59	 300.03	 7853.45
	 UpwindE	 206.00	 7399.59	 273.68	 7450.28
	 UpwindQ	 206.00	 7399.59	 –	 –

Geofísica Internacional

January - March 2014 71

In figure 6 we observe that the best performance
is obtained on the GPU for a fixed problem size.
The speedup is almost 8 times in relation with the
serial code. For the PETSc implementation, we
observe that the peak performance is obtained
for 12 processors. After that, the speedup starts
to decrease monotonically as the number of
processors is increased. This effect is due to the
fact that the size of the problem is fixed and this
size is tied to the memory of the GPU. When we
increase the number of processor, the number of
grid cells assigned to each processor by PETSc
is reduced, and therefore, the communications
between processors will have more impact on the
execution time than the floating operations. We
also recall that the interconnection of the clus-
ter is not a high-end technology (for example
infiniband), then is expected a reduction on the
speedup when we increase the communications.
Each node of our cluster contains 12 independent
CPUs, which share memory. Hence, the results
shown in figure 6 are compatible with the
architecture of the cluster. Our conclusion here
is that, in equality of conditions, a GPU TESLA
M4050 GPU give us double of speedup than a
node composed of 12 Intel Xeon processors, using
CUSPARSE and PETSc as was described in the
previous sections.

Conclusions

In this work we investigated the impact of four
numerical schemes on the solution of a two-phase
flow in an homogeneous porous media. Our study
was focus on two objectives: 1) accuracy of the
numerical scheme; and 2) performance in parallel
using two memory architectures.

For the first objective, we found that the
UpwindQ scheme, which is third order, gives the
better approximation to the water-oil front than
the other three, for the linear permeabilities
model (s = 1). In this case, all the schemes
work fine, although some of them introduce
numerical diffusion which smears the numerical
solution. For the quadratic permeability model (s
= 2), it was observed that the best scheme was
UpwindE, which is second order, and the Average
and UpwindQ present unrealistic solutions due
to the lack of a monotonicity constrain in their
implementations. The Upwind scheme, which is
first order, gives good approximation but produce
higher numerical diffusion than UpwindE scheme.

The second objective was studied using two
libraries: PETSc for distributed memory and
CUSPARSE for GPUs where the memory is shared.
We implemented a BiCGStab method with both
libraries and we use similar operations in order
to have equality of conditions. The saturation
calculation step was implemented in terms of
linear algebra operations, and we also measured
the performance of this step. We obtained

that, for a fixed problem size the CUSPARSE
implementation is approximately two times the
speedup than the PETSc one. At this point we
can say that our CUSPARSE implementation for
a single GPU, is a better option than our PETSc
implementation executed on a 12 CPU node. On
the other hand, the PETSc implementation can be
used for a bigger problems size, and in the case of
our cluster, we can run in at least 8 nodes, allowing
to investigate eight times bigger problems. This
is important for more realistic research were we
have very large-scale data sets.

Finally, we can say that a GPUs cluster will have
better performance than a CPU only cluster. In
some cluster architectures it is possible to deploy
more than one GPU by node, allowing more floa-
ting point operations powerful. Combining the
CPU and GPUs, along with efficient opensour-
ce libraries, like CUSPARSE and PETSc, we can
face the challenge of oil reservoir simulation to a
large-scale and more realistic formulations.

Acknowledgments

Luis M. de la Cruz wishes to acknowledge the
support from the project IX10110 of DGAPA-UNAM
to develop this research.

Appendix A

Coefficients of discrete pressure equation (10)

	 	

		 (13)

	

	

	 	
		
	

	
		 (14)

L. M. de la Cruz and D. Monsivais

72 Volume 53 Number 1

	 	

		 (15)

Coefficients Tn
NB and Tn

NB, for NB = P, E, W, N,
S, F, B and nb = e, w, n, s, f, b, are known as the
transmissibilities of each control volume.

Coefficients of discrete saturation
equation (11)

	 	
		 (16)

	 	
		 (17)

	 	
		 (18)

Appendix B

In this section, we show our implementations of
BiCGStab [33]. This iterative Krylov-subspace
method requires a matrix A and a left-side vector
b, and returns an approximate vector solution x
of the system Ax = b. The algorithm (2) presents
the general steps of the BiCGStab method.

Algorith 2 BiCGStab

1: r0 ← b − Ax0

2: r
*
0 arbitrary

3: p0 ← r0

4: for j= 0, 1... jmax do:

5: aj ← (rj, r
*
0)/(Apj, r

*
0)

6: sj ← rj − aj Apj

7: wj ← (Asj, sj)/(Asj, Asj)

8: xj+1 ← xj + aj pj + wj sj

9: rj+1 ← sj − wj Asj

10: bj ← (rj+1, r
*
0)/(rj, r

*
0) × aj /wj

11: pj+1 ← rj+1 + bj (pj + wj Apj)

12: end for

The corresponding CUDA implementation used
in this work is presented below.

init_res = cublasDnrm2(N,d_r,1);
if(init_res!=0.0) init_res=1./init_res;
else return false;

cusparseDcsrmv(handle,CUSPARSE_OPERATION_
NON_TRANSPOSE, N, N,-1.,

 descr, d_val, d_row, d_col, d_x, 1., d_r);
res = cublasDnrm2(N,d_r,1);
res *= init_res;
if (res < tol) return true;

cublasDcopy(N,d_r,1,d_rtilde,1);

while (res > tol && k <= max_iter) {
 ri_0 = cublasDdot(N,d_rtilde,1, d_r,1);
 if (ri_0 == PrecType(0)) {
 return false;
 }

if (k!=1){
if (omega == 0.) {
 return false;

}
beta = (ri_0 / r_ant) * (alpha / omega);
cublasDaxpy(N,-omega,d_Ap,1,d_p,1);
cublasDscal(N,beta,d_p,1);
cublasDaxpy(N,PrecType(1),d_r,1,d_p,1);
} else {
cublasDcopy(N,d_r,1, d_p,1);
}
cusparseDcsrmv(handle,CUSPARSE_OPERATION_

NON_TRANSPOSE, N, N, 1.,

Geofísica Internacional

January - March 2014 73

	 .	
		 (19)

The terms in the previous sum can be obtained
as the result of a vector product, as follows

	 	

The row vector of the last relation is, indeed, a
row of a matrix N × N, in which every row has
a corresponding relation of some element of the
-size mesh. The N-size column vector contains the
saturation in the elements of the mesh at time n.
Defining matrices and for the terms related to cn and
dn respectively in the equation (11), we get a final
linear algebra version of the saturation equation

	 	
		 (20)

Bibliography

Aksnes E.O., 2009, Simulation of Fluid Flow
Through Porous Rocks on Modern GPUs
(Master degree thesis). Norwegian University
of Science and Technology, Department of
Computer and Information Science. http://
ntnu.diva-portal.org/smash/record.jsf?
pid=diva2:348910.

Al-Huthali A., Datta-Gupta A., 2004, Streamline
simulation of counter-current imbibition in
naturally fractured reservoirs. Journal of
Petroleum Science and Engineering, 43, 271–
300.

Amazianea B., Jurakb M., Kekoc A.G., 2011,
An existence result for a coupled system
modeling a fully equivalent global pressure
formulation for immiscible compressible
two-phaseflow in porous media, Journal of
Differential Equations, 250, 3, 1685-1718.

Anderson J., Lorenz C., Travesset A., 2008,
General purpose molecular dynamics
simulations fully implemented on Graphics
Processing Units. Journal of Computational
Physics, 227, 10, 5342-5359.

Balay S., Brown J., Buschelman K., Gropp W.D.,
Kaushik D., Knepley M.G., Curfman McInnes
L., Smith B.F., Zhang H., 2012, PETSc Web
page, http://www.mcs.anl.gov/petsc.

 descr, d_val, d_row, d_col, d_p, 0., d_Ap);
alpha = ri_0 / cublasDdot(N,d_Ap,1, d_

rtilde,1);
cublasDcopy(N,d_r,1,d_s,1);
cublasDaxpy(N,-alpha,d_Ap,1,d_s,1);
if (cublasDnrm2(N,d_s,1)*init_res < tol) {
cublasDaxpy(N,alpha,d_p,1,d_x,1);
return true;
}
cusparseDcsrmv(handle,CUSPARSE_OPERATION_

NON_TRANSPOSE, N, N, 1.,
 descr, d_val, d_row, d_col, d_s, 0., d_As);
omega = cublasDdot(N,d_As,1,d_s,1) /

cublasDdot(N,d_As,1,d_As,1);
cublasDaxpy(N,alpha,d_p,1,d_x,1);
cublasDaxpy(N,omega,d_s,1,d_x,1);
cublasDcopy(N,d_s,1,d_r,1);
cublasDaxpy(N,-omega,d_As,1,d_r,1);
r_ant = ri_0;
res=cublasDnrm2(N,d_r,1)*init_res;
k++;
}
if(res < tol && k <= max_iter) return true;
else return max_iter+1;

The original matrix A was stored in the d_val,
d_row and d_col arrays (format CRS), the left-side
vector b in the d_r array, and the vector solution
x was stored in the d_x array. For the PETSc
implementation, only minimal changes must be
done, changing for example, line with the matrix
vector product in CUDA

cusparseDcsrmv(handle,CUSPARSE_OPERATION_
NON_TRANSPOSE, N, N,-1.,

descr, d_val, d_row, d_col, d_x, 1., d_r);

by the line

ierr = MatMult(A,x,r);

where A, x, r are PETSc matrix and vectors

Appendix C

The main idea is to restate the discretized
saturation equation (11) in a more convenient,
linear algebra representation, to exploit the
features of the parallel libraries evaluated. Every
element of the N-size mesh can be mapped to
an element of a vector of size N. Any arbitrary
volume P, with neighbors set NB∈{E, W, N, S, F,
B} must be identified by an index i, with 1<i<N,
and the corresponding neighbor set NBi comes {i+DE, i+DW, i+DN, i+DS, i+DF, i+DB}, where
DI keeps the distance of the neighbor from the
element inside the vector containing them, with
I∈{E, W, N, S, F, B}.

Next, applying this notation to every term in
equation (11), and showing only terms involving
b for simplicity, we get

L. M. de la Cruz and D. Monsivais

74 Volume 53 Number 1

Balay S., Brown J., Buschelman K., Gropp W.D.,
Kaushik D., Knepley M.G., Curfman McInnes
L., Smith B.F., Zhang H., 2012, PETSc Users
Manual, ANL-95/11 - Revision 3.3, Argonne
National Laboratory.

Barrett R., Berry M., Chan T.F., Demmel J.,
Donato J., Dongarra J., Eijkhout V., Pozo R.,
Romine C., Van der Vorst H., 1994, Templates
for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition,
SIAM, Philadelphia, PA.

Beisembetov I.K., Bekibaev T.T., Assilbekov B.K.,
Zhapbasbayev U.K., Kenzhaliev B.K., 2012,
Application of GPU in the development of 3D
hydrodynamics simulators for oil recovery
prediction, AGH Drilling Oil Gas, 29, 1.

Boris N. Chetverushkin B., Churbanova N.G.,
Morozov D.N., Trapeznikova M.A., 2010,
Kinetic approach to simulation of multiphase
porous media flow, V European Conference
on Computational Fluid Dynamics ECCOMAS
CFD 2010, J. C. F. Pereira and A. Sequeira
(Eds), Lisbon, Portugal, 14-17.

Buckley S., Leverett M., 1942, Mechanism of
fluid displacement in sands. Trans. AIME,
146, 107–116.

Bydal A., 2009, GPU-accelerated simulation of
flow through a porous medium (Master degree
thesis). Faculty of Engineering and Science,
University of Agder, Grimstad May 25. http://
brage.bibsys.no/hia/bitstream/URN:NBN:no-
bibsys_brage_10942/1/Bydal.pdf.

CUDA Toolkit 4.2, CUSPARSE Library NVIDIA
Corporation, 2012, 2701 San Tomas
Expressway, Santa Clara, CA 95050.

Chen Z., Huan G., Ma Y., 2006, Computational
Methods for Multiphase Flows in Poros Media,
SIAM.

Chen Z., 2007, Reservoir Simulation Mathema-
tical Techniques in Oil Recovery, SIAM,
Philadelphia, USA.

Coplien J.O., 1995, Curiously recurring template
patterns. C++ Report, 24–27.

Corey A., 1954, The interrelation between gas
and oil relative permeabilities. Prod. Montly,
19, 1, 3841.

Datta-Gupta A., King M.J., 2007. Streamline
Simulation: Theory and Practice, Society of
Petroleum Engineers Textbook Series Vol. 11.

De la Cruz L.M., Template units for numerical
applications and modelling (TUNAM) Web
page, http://code.google.com/p/tunam/.

De la Cruz L.M., Ramos E., 2012, General
Template Units for the Finite Volume Method
in Box-shaped Domains. Accepted to be
published in Trans. Math. Soft.

Herrera I., Pinder G.F., 2012, Mathematical
Modeling in Science and Engineering: An
Axiomatic Approach, John Wiley.

Herrera I., Herrera G., 2010, Unified Formulation
of Enhanced Oil-Recovery Methods, Geofisica
Internacional, 2010.

Kirk D.B., Hwu W., 2010, Programming Massively
Parallel Processors: A Hands-on Approach
(Applications of GPU Computing Series).
Elsevier, Massachusetts.

Leonard B.P., 1979, A stable and accurate
conevctive modelling procedure based on
quadratic upstream interpolation. Comp.
Meth. in App. Mech. and Engineering, 19:59–
98.

Leveque R.J., 2004, Finite Volume Methods for
Hyperbolic Problems. Cambridge University
Press.

Openmp: Simple, portable, scalable smp
programming. http://www.openmp.org/.

Patankar S.V., 1980, Numerical Heat Transfer
and Fluid Flow. McGraw–Hill.

Pereira F., Rahunanthan A., 2010, Numerical
Simulation of Two-phase Flows on a GPU
Proceedings of 9th International Meeting, High
Performance Computing for Computational
Science (VECPAR 2010), Berkeley, CA.

Saad Y., 2000, Iterative Methods for Sparse
Linear Systems. PWS/ITP 1996. Online:
http://www-users.cs.umn.edu/~saad/books.
html.

Snir M., Otto S., Huss-Lederman S., Walker
D., Dongarra J., 1998, MPI: The Complete
Reference: Volume 1, The MPI Core. The MIT
Press, Cambridge, Massachusetts, London,
second edition edition.

The NVIDIA CUDA Sparse Matrix library
(cuSPARSE) Web page, 2012, http://
developer.nvidia.com/cuda/cusparse.

Geofísica Internacional

January - March 2014 75

Tolke J., Krafczyk M., 2008, TeraFLOP computing
on a desktop PC with GPUs for 3D CFD.
International Journal of Computational Fluid
Dynamics, 22, 7, 443-456.

Tomova S., Dongarraa J., Baboulina M., 2010,
Towards dense linear algebra for hybrid GPU
accelerated many core systems. Parallel
Computing, 36, 56, Pages 232-240.

Torp A., 2009, Sparse linear algebra on a
GPU with Applications to flow in porous
Media (Master degree thesis). Norwegian
University of Science and Technology,
Department of Mathematical Sciences.
http://ntnu.diva-portal.org/smash/record.
jsf? pid=diva2:347855

Trapeznikova M., Chetverushkin B., Churbanova
N., Morozov D., 2012, Two-Phase Porous
Media Flow Simulation on a Hybrid Cluster,
I. Lirkov, S. Margenov, and J. Wasniewski
(Eds.): LSSC 2011, LNCS 7116, pp. 646-653.
Springer-Verlag Berlin Heidelberg.

Versteeg H., Malalasekera W., 1995, An
introduction to computational fluid dynamics:
The finite volume method. Longman.

Walsh S.D.C., Saar M.O., Bailey P., Lilja D.J., 2009,
Accelerating geoscience and engineering
system simulations on graphics hardware.
Computers & Geosciences, 35, 2353-2364.

Zaspel P., Griebel M., 2012, Solving incompressible
two-phase flows on multi-GPU clusters.
Computers & Fluids journal, In press.

