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Resumen

En este trabajo se estudia un modelo de flujo 
bifásico (agua-aceite) en un medio poroso 
homogéneo considerando un desplazamiento 
inmiscible e incompresible. Este modelo se 
resuelve numéricamente usando el Método de 
Volumen Finito (FVM) y se comparan cuatro 
esquemas numéricos para la aproximación de los 
flujos en las caras de los volúmenes discretos. 
Se describe brevemente cómo obtener los 
modelos matemático y computacional aplicando 
la formulación axiomática y programación 
genérica. También, implementa dos estrategias de 
paralelización para reducir el tiempo de ejecución. 
Se utilizan arquitecturas de memoria distribuida 
(clusters de CPUs) y memoria compartida (Tar-
jetas gráficas GPUs). Finalmente se realiza 
una comparación del desempeño de estas dos 
arquitecturas junto con un análisis de los cuatro 
esquemas numéricos para un patrón de flujo de 
inyección de agua, con un pozo inyector y cuatro 
pozos productores (five-spot pattern).

Palabras clave: flujo bifásico, medios porosos, 
recuperación de hidrocarburos, método de 
volumen finito, cómputo paralelo, Cuda.

Abstract

A two-phase (water and oil) flow model in 
a homogeneous porous media is studied, 
considering immiscible and incompressible 
displacement. This model is numerically solved 
using the Finite Volume Method (FVM) and 
we compare four numerical schemes for the 
approximation of fluxes on the faces of the discrete 
volumes. We describe briefly how to obtain 
the mathematical and computational models 
applying axiomatic formulations and generic 
programming. Two strategies of parallelization 
are implemented in order to reduce the execution 
time. We study distributed (cluster of CPUs) and 
shared (Graphics Processing Units) memory 
architectures. A performance comparison of these 
two architectures is done along with an analysis of 
the four numerical schemes, for a water-flooding 
five-spot pattern model.

Key words: two phase flow, porous media, 
oil recovery, finite volume method, parallel 
computing, Cuda.
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Introduction

New recovery techniques (for example Enhanced 
Oil Recovery) are essential for exploiting efficiently 
oil reservoirs existing around the world. However, 
before these techniques can be successful applied, 
it is fundamental to develop mathematical and 
computational investigations to model correctly 
all the processes that can occur. General 
procedures for constructing these mathematical 
and computational models (MCM) are presented 
in [1, 2], where it is shown that with an axiomatic 
formulation it is possible to achieve generality, 
simplicity and clarity, independently of the com-
plexity of the system to be modeled. Once we 
have an MCM of the oil recovery process we 
are interested in, an efficient implementation of 
computer codes is required to obtain the numerical 
solution in short times.

Nowadays, the oil reservoir characterization 
technologies can produce several millions of 
data, in such a way that an accurate well-
resolved simulation requires an increase on 
the number of cells for the simulation grid. The 
direct consequence is that the calculations are 
significantly slow down, and a very high amount 
of computer resources (memory and CPU) are 
needed. Currently, fast simulations on commercial 
software are based on parallel computing on CPU 
cores using MPI [3] and OpenMP [4]. On the other 
hand, since the introduction of the CUDA language 
[5], high-performance parallel computing based 
on GPUs has been applied in computational fluid 
dynamics [6, 7], molecular dynamics [8], linear 
algebra [9, 10], Geosciences [11], and multi-
phase flow in porous media [12, 13, 14, 15, 16] 
among many others.

The water-flooding technique is considered 
as a secondary recovery process, in which water 
is injected into some wells to maintain the field 
pressure and to push the oil to production wells. 
When the oil phase is above the bubble pressure 
point, the flow is two phase immiscible and 
there is no exchange between the phases, see 
[17]. Otherwise, when the pressure drops below 
the bubble pressure point, the hydrocarbon 
component separates into oil and gas phases. 
The understanding of the immiscible water-
flooding technique is very important and still 
being studied as a primary benchmark for new 
numerical methods [18] and theoretical studies 
[19]. Besides, some authors have started to 
investigate parallel technologies to reduce the 
execution time of water-flooding simulations, see 
for example [7, 13, 15, 20].

The incorporation of the GPUs into the floating 
point calculation of the oil reservoir simulation, has 
been considered in several studies. For example, 
in [20] a model for two-phase, incompressible, 

immiscible displacement in heterogeneous porous 
media was studied, where an operator splitting 
technique, and central schemes are implemented 
on GPUs producing 50-65 of speedup compared with 
Intel Xeon Processors. In [13], a very similar study 
as ours is presented, where the IMPES method 
is used to linearize and decouple the pressure-
saturations equation system, and the SOR method 
is applied to solve the pressure equation implicitly. 
Their implementations was done considering 
a partition of the domain and then distributing 
each subdomain to blocks of threads. They obtain 
considerable accelerations (from 25 to 60.4 times) 
of water-flooding calculations in comparison with 
CPU codes. Multi-GPU-based double-precision solver 
for the three-dimensional two-phase incompressible 
Navier-Stokes equations is presented in [7]. Here 
the interaction of two fluids are simulated based on 
a level-set approach, high-order finite difference 
schemes and Chorin’s projection method. They 
present an speed-up of the order of three by 
comparing equally priced GPUs and CPUs.

The numerical application studied in this 
paper, is the well known five-spot pattern model, 
and we work this model in the limit of vanishing 
capillary pressure, applying Darcy’s law coupled 
to the Buckley-Leverett equation. This assumption 
generates an hyperbolic partial differential 
equation which can presents shocks in its solution. 
Our approach for solving this equation is to use four 
numerical schemes for approximating the fluxes 
adequately on the faces of the discrete volumes. 
We are interested in to study the numerical 
throwput of these four numerical schemes. We 
also focus our attention in the comparison of two 
parallel implementations written to run on a high-
performance architecture consisting of CPUs and 
GPUs. We made this comparison in equality of 
conditions in order to do an objective analysis of 
the performance. The parallel implementations we 
present, are based on the use of well established 
opensource numerical libraries for solving linear 
systems. We use PETSc [21, 22] for distributed 
memory and CUSPARSE [24, 23] for GPU shared 
memory. We coupled these two libraries to our 
software TUNAM [25, 26], which implements FVM 
from a generic point of view. With this software 
we can easily implement, incorporate and evaluate 
the four numerical schemes for the approximation 
of the fluxes on the faces. Our objective is to give 
a quantitative reference that can be reproduced 
easily, and applied to other applications.

This paper is structured as follows. In section 
2, we discuss the mathematical modeling 
of multiphase flows in porous media. The 
presentation is based on the axiomatic formulation 
introduced in [1, 2], and a pressure-saturation 
formulation is described for the two-phase 
flow. In section 3, the FVM is applied to the 
mathematical model, and the four numerical 
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schemes for approximating the fluxes on the faces 
are introduced. We also explain the IMPES method 
used to obtain the solutions. The computational 
implementation of the algorithms, including our 
parallel implementations are also explained. In 
section 4, we solve the five-spot model using the 
four numerical schemes in combination with a 
linear and quadratic relative permeability models. 
In section 5, an analysis of the performance of 
our parallel implementations is done. Finally, in 
section 6 we give our conclusions.

Governing equations of a multiphase system

Given an intensive property y and a reference 
body B(t) of a continuous system, the general 
balance equation, in conservative form see [27], 
can be written as follows

	
∂
∂

+ ∇⋅ =∫ ∫ ∫y
t
dx dx qdx

B t B t B t( ) ( ) ( )

F ,	 (1)

where x represents the position and t is the time. 
In equation (1) the flux function is defined as 
F =vy—t, and the quantities v(x, t), q(x, t) and 
t(x, t) represent the velocity of the particles of 
B(t), the generation and the flux of property y, 
respectively (see [1] for a complete description 
on this formulation).

In a multiphase porous media system, the mass 
of fluid of the phase a is an extensive property 
Ma, and the corresponding intensive property is 
ya. Both properties are related as follows

	 M dx
B tα αψ= ∫ ( )

,	

where the intensive property is defined as 
ya=fraSa. Here f is the porosity, ra and Sa are the 
density and the saturation of phase respectively.

From equation (1), and using the fact that 
B(t) is arbitrarily chosen, the conservative form 
of the balance equation for the mass of fluid of 
the phase a is

	
∂
∂

+∇⋅ =∂
( ) ( )φρ αα αS

t
qF ,	 (2)

where the flux function Fa is defined as

	 F D∂ =− ∇ − ℘ −ρ λ ρ τα α α α αk p( ) ,	 (3)

In equation (3) we have introduced the Darcy’s 
law for multiphase systems

	 uα α α αλ ρ=− ∇ − ℘∇k p( )D ,	 (4)

where la is the mobility of the phase a defined 
as la=kra/ma. Here kra is the relative permeability 
of phase a. The viscosity, the pressure and the 
density of phase a are denoted by ma, pa and 
ra, respectively. The tensor k  is the absolute 
permeability. The symbol ℘  is the magnitude of 
earth gravity and D represents the depth of the 
porous media, see [17]. We also used the Darcy’s 
velocity of phase a defined as ua=vfSa.

Pressure equation

Equation (2) represents a fully–coupled 
system of Np phases. Using a pressure–saturation 
formulation, see [17], it is possible to decouple 
the Np equations into one for a phase pressure 
and Np−1 for saturations. These equations will 
be weakly coupled and can be solved iteratively.

In order to obtain a pressure equation, we start 
from equation (2) and neglecting the diffusion ta 
= 0, dividing by ra and summing over all phases, 
we obtain

	
1
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Developing the derivatives and using the fact 
that we obtain the phase pressure equation
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		  (5)

where the Darcy’s law was written explicitly.

Saturation equation

The solution of equation (5) produce the 
pressure for a phase a. Other phase pressures 
can be obtained via the capillary pressure relations

	 p p pca a a a a a
1 2 1 2 1 2= − ≠, ,	 (6)

where a1 represent a non-wetting phase and a2 
represent a wetting phase.

Using the phase pressures we can calculate 
the velocities via Darcy’s Law, equation (4). 
This velocity is necessary to solve the saturation 
equations (2), which can be written as follows
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∂
∂

−∇⋅ ∇ − ℘∇ − =( ) ( ( ))φρ ρ λ ρα α
α α α α α

S
t

k p qD 0 ,	
		  (7)

Incompressible two-phase pressure-saturation 
model

Two-phase flow in porous media modeling is 
concerned to the displacement of one fluid by 
another. In general, a wetting fluid, say water, is 
injected into the porous media displacing a non-
wetting fluid, say oil, which is being extracted at 
another location. Due to the physical interaction 
between the two phases, this process generates 
a moving front at the interface between the 
phases. The evolution of the front is of primary 
interest for the production of hydrocarbons in oil 
recovery field.

We consider two incompressible and immiscible 
phases: water (w) and oil (o) in a porous media 
of constant porosity f. Equations are commonly 
posed in terms of the field variables oil pressure 
and water saturation as follows

	 ∇⋅ = +F 1 Q Qw o,	 (8)

	 f ∂
∂
+∇⋅ =( )S

t
Qw F 2 w,	 (9)

where

F D1 =− ∇ − ∇ − +( )℘∇








k p dp

dS
Sλ λ λ ρ λ ρo w

cow

w
w w w o o 

F D2 =− ∇ − ∇ − ℘∇








k p dp

dS
Sλ λ λ ρw o w

cow

w
w w w

and the source terms are defined as Qw = qw/rw 
and Qo = qo/ro. The capillary pressure is defined as 
pcow(Sw) = po − pw and because it depends on water 
saturation, it is possible to write ∇pcow=(dpcow/dSw) 
∇Sw. Equations (8) and (9) are coupled and non-
linear. In order to decouple and linearize those 
equations, we employ the IMPES method, which 
will be explained in the next section. Note that 
equations (8) and (9) are simplified versions of 
equations (5) and (7), respectively.

Numerical model

The numerical formulation of the equations (8) 
and (9) is based on the finite volume method 
(FVM) which is derived on the basis of the integral 
form of the global balance equation (1), see [28, 
29, 27].

In the FVM we keep track of an approximation 
to the integrals of equation (1) over each control 

Figure 1. Control volume: black squares represent the nodes commonly used in finite differences or finite element 
methods. The center of the volumes (circles) are labeled with uppercase letters, meanwhile the faces are labeled 

using lowercase letters.
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  if ( pn
P ≤ pn

E ) then
	    Sn

e = Sn
E

   else
	    Sn

e = Sn
P

  end if

Average : a weighted average is done using 
the neighbors to point P; for example for face e 
we have

volume, see figure 1. Every time step, we update 
these values using approximations to the fluxes 
throughout the faces of the volumes. When the 
approximations are calculated in a control volume, 
we transform the original equations into a set of 
algebraic equations.

Applying FVM to equation (8), and using the 
notation and we obtain the next discrete pressure 
equation

	a p a p a p a p a p aP
n

P
n

E
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E
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W
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N
n

N
n
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n
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n
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S
n

F
+ + + + += + + + +1 1 1 1 1 nn

F
n
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n

B
n

P
np a p f+ ++ +1 1

	                  ,	 (10)

where the superscript is the time step and the 
subscripts indicate the node of the mesh according 
to figure 1. Equation (10) was obtained for a fully 
implicit temporal scheme and assuming that the 
an

NB coefficients, for NB∈{P, E, W, N, S, F, B}, can 
be calculated from values of the fluxes at instant 
n. The shape of an

NB coefficients depends on the 
numerical schemes used to approximate the fluxes 
on the control volume faces. In obtaining equation 
(10) we use the fact that the pressure equation 
is coupled with the saturation one, in such a way 
that, even though there is not temporal term in 
equation (8), we need to update the pressure field 
when a new saturation field is obtained.

The discretized form of equation (9) using 
FVM is

	SP
n+1 = Sn

P + bn
P S

n
P − (bn

E S
n
E + bn

W S
n
W + bn

N S
n
N + bn

S S
n
S + bn

F S
n
F + bn

B Sn
B)	

   − cn
P p

n
P + (cn

E p
n
E + cn

W p
n
W + cn

N p
n
N + cn

S p
n
S + cn

F p
n
F + cn

B pn
B)

   + dn
P D

n
P − (dn

E D
n
E + dn

W D
n
W + dn

N D
n
N + dn

S D
n
S + dn

F D
n
F + dn

B Dn
B)	

   
+ ∆Q P t

W f		  (11)

The shape of the coefficients for equations (10) 
and (11) are given in appendix A.

Numerical schemes for water saturation

Coefficients of equations (10) and (11) depends 
on the mobilities and capillary pressure evaluated 
on the faces of control volumes. These coefficients 
in turn depend on the water saturation, Sw, which 
is an unknown of the system of equations, and 
is updated every time iteration at the center of 
the volumes. In order to calculate the mobilities 
and the capillary pressure we require the value 
of Sw on the faces of volumes. There exist several 
approaches to evaluate Sw on the faces, and in 
this work we implemented four numerical schemes 
which are described below.

Upwind : linear upstream; for example for 
face e we have

Sn
E = bSn

E + (1 − b)Sn
P

where b = (xe − xP)/Dxe.

UpwindE  : quadrat ic upstream with 
extrapolation [30]; for example for face e we have

   if ( pn
P ≤ pn

E ) then
	    Sn

e = Sn
E (1 − bE) − Sn

EE bE
   else
	    Sn

e = Sn
P (1 − bP) − Sn

W bP
  end if

where bP = DxP / 2Dxw and bE = DxE / 2Dxee.

UpwindQ : cubic upstream [31]; for example 
for face e and uniform meshes we have

if ( pn
P ≤ pn

E ) then
	    Sn

e = − 18 S
n
EE + 3

4
 Sn

E + 38 S
n
P
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   else
	    Sn

e = − 18 S
n
W + 3

4
 Sn

P + 38 S
n
E

  end if

evaluate the total elapsed time of pressure and 
saturation solution, when both are obtained for 
the same number of iterations.

Computational implementation

We use the software TUNAM [25] to implement the 
FVM applied to the equations described in previous 
sections. The TUNAM library use object-oriented 
and generic programming, in such a way that 
it is possible to extend its functionality to solve 
many sort of problems. In TUNAM there are three 
main concepts: Generalization, Specialization 
and Adaptors, which are related through the 
application in two levels of the Curiously Recurring 
Template Pattern [32].

The main generalization in TUNAM is the 
GeneralEquation concept, which refers to the 
general balance equation (1) and its FVM discrete 
formulation represented by equations (10) and 
(11). In principle, this general concept accounts 
for all the FVM coefficients. We inherit from this 
concept the TwoPhaseEquation, which is an 
specialization that includes all particular features 
of the two-phase model described in section 
§2.3. Because we are interested in to analyze 
the performance of the four numerical schemes 
described in section §3.1, we implement eight 
adaptors resumed in table 3.

Next two lines of code explains how the 
pressure and saturation equations are defined in 
the TUNAM framework

TwoPhaseEquation<FSIP1<double, 3> > 
pressure(p, A, b, mesh);
TwoPhaseEquation<FSES1<double, 3> > 
saturation(Sw, A, b, mesh);

The pressure and saturation equations are 
defined in lines 1 and 2 of the above code, 
respectively. These equations are defined in terms 
of the objects p (pressure field), Sw (saturation 
field), A (matrix of algebraic system), b (source 
term) and mesh (mesh of the domain). The 
template parameters FSIP1 and FSES1 are two 
adaptors that define the shape of the coefficients 
of equations (10) and (11). We can use any of the 
adaptors listed in table 3, and the change in the 
code would be only in lines 1 and 2 (for example 
we can use FSIP2 and FSES2, instead). For more 
details of the TUNAM framework see [26].

Using the objects pressure and saturation the 
IMPES method is implemented in the next simple 
manner:

while (t <= Tmax) {
pressure.calcCoefficients();
Solver::TDMA3D(pressure, tol, maxIter); 
pressure.update();

Solution method

The IMPES (IMplicit Pressure, Explicit Saturation) 
method is very used for solving two phase flow 
models of incompressible or slightly compressible 
fluids, see [17, 30]. As presented in sections §2.1 
and §2.2, we can formulate our problem in terms 
of one equation for a phase pressure and Np− 1 
equations for phase saturations. In the IMPES 
method, for the two-phase case, we solve the 
pressure equation (8) implicitly and the saturation 
equation (9) explicitly. In order to solve the 
pressure equation, we use an initial saturation, 
and once the pressure is obtained, we can use 
it to solve the saturation equation. This process 
linearize and decouple the system of equations 
and is done iteratively for a given number of time 
steps. The IMPES method is given in algorithm (1).

Algorithm 1 IMPES

1: Initial data: S0, p0, Tmax and Dt.

2: n ← 0.

3: while t < Tmax do:

4: Calculate the coefficients of equation (10) 
using Sn.

5: Solve discrete pressure equation (10) 
implicitly to obtain pn.

6: Calculate the coefficients of equations (11) 
using pn and Sn.

7: Solve discrete saturation equation (11) 
explicitly to obtain Sn+1.

8: tn+1 ← tn + Dt.

9: n ← n + 1.

10: end while

Even though that it is possible to use different 
time steps for pressure and saturation equations, 
here we use the same time step in order to 
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saturation.calcCoefficients();
Solver::solExplicit3D(saturation);
saturation.update();
t += dt;

}

Parallel implementation

Inside the IMPES algorithm (1), the step 5 is the 
most time consuming task. In the TUNAM code, 
related to the IMPES cycle as described in sections 
§3.2 and §3.3, the solution of the pressure 
equation can be achieved by different approaches. 
Due to the size of the problem, the use of iterative 
algorithms is usually the fast (and many times the 
only) way to get the solution vector. Among these, 
is the BiCGStab [33], a Krylov sub-space method, 
which gave us the better time convergence and 
stability than other similar methods. This solver 
method can be implemented easily in parallel 
exploiting different type of architectures. In this 
work, we study the performance of two memory 
architectures: a distributed memory of a cluster 
via the PETSc library[21, 22]; and a shared 
memory architecture of a Graphics Processing 
Unit (GPU) using the CUSPARSE library[24, 23], 
which is based on CUDA.

The linear algebra operations contained in a 
regular iteration of the BiCGStab method (without 
preconditioning) are listed in the table 1, as well as 
the number of times each operation is called inside 
the iteration. Using PETSc1 and CUDA libraries we 
wrote down two codes with the same operations, as 
shown in table 1, in order to achieve the BiCGStab 
algorithm, see appendix B. Also, the same type of 
matrix’s compression format was used to fix down 
the same conditions for both codes. In this case, 
the most time-consuming operations are the 2 
matrix-vector product.

The Compressed Row Storage (CRS) format[34] 
was used to store the matrix of the linear system. 
In the CRS, the non-zero elements are stored in 
a linear array A*, and an auxiliary array J* is used 
to keep the column number j of each element of 

A*. In order to know the row of every element 
stored, a third array I* is used. This array keeps 
the segmentation of the array A* in elements 
of the same row in the original matrix A, i.e. 
the position in the array A* of the first non-zero 
element of each row. For diagonal matrices, the 
growth in size of the data stored is O(n), against 
the O(n2) of the non-compressed counterpart.

We adapted the TUNAM code described in 
section §3.3 for using PETSc and CUDA. At the 
very beginning of each IMPES iteration, just after 
updating the matrix and vectors of the linear 
system for pressure, the containing arrays from 
TUNAM were handled to conform the format 
required by the two evaluated parallel libraries. 
The explicit solution of the saturation equation, 
can be expressed as a set of linear algebra 
operations (see appendix C). In this approach, 
the saturation vector S at time n + 1, is calculated 
as follows

	 S S S Q tn n n n n n n n+ = − − + + ∆1 B C Dp d W f
,	

		
		  (12)

where S, p, d, Qw are vectors corresponding 
to equation (11) and , , are diagonal-banded 
matrices (see Appendix B) containing respectively, 
the coefficients bn

NB, cn
NB and dn

NB. The linear 
operation (20) was translated to an equivalent 
parallel implementation, with 5 axpy’s operations 
and 3 matrix-vector products.

Application to the five-spot pattern

Waterflooding is classified as a secondary oil 
recovery technique, which consists in the injection 
of water into the reservoir through injectors wells, 
pushing the hydrocarbons into the rocks and 
forced to flow towards the producers wells.

A simplified, but realistic two-phase flow 
model, is that from Buckley and Leverett [35], 
where we have two immiscible and incompressible 

1Despite of PETSc has a BiCGStab implementation, 
these includes operations not present in CUBLAS, as 
WAXPY

	 Copy	 Scale	 Dot product	 Norm	 Axpy	 Matrix-Vector

	 y ← x	 x ← ax	 c ← x ⋅ y	 x ← ∣∣x∣∣	 y ← ax + y	 y ← aAx + y
 	  	  	  	  	  
	 2	 1	 4	 2	 6	 2

Table 1. Operations used in the BiCGStab and number of calls for each one of them inside the method.
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fluids, the diffusivity and capillary pressure effects 
are ignored, and the gravity is neglected. With 
these considerations pressure equation (8) is 
elliptic, whilst saturation equation (9) is hyperbolic 
and may develop discontinuities in the solution. 
Applying the model of Buckley-Leverett, we 
studied the well established five-spot pattern. 
The domain of study is a parallelepiped domain, 
where four producers wells are located in the 
corners, and one injector well is in the center of 
the domain. Due to the symmetry only a quarter 
of the domain is simulated. The complete data set 
was taken from [18] and is resumed in table 2.

Relative permeability model

We use the Corey’s model [36] to evaluate the 

saturation after 600 days of simulation, for 
the cases lineal (s = 1) and quadratic (s = 2), 
respectively. The numerical schemes Upwind, 
Average, UpwindE and UpwindQ are presented 
in graphics (a), (b), (c) and (d) respectively of 
those figures. In the linear case, the water front 
is well behaved independently of the numerical 
scheme. Figure 4(a) presents the profiles of water 
saturation for the linear case, along a line joining 
the injector and extractor wells. We observe in 
this figure that all the four schemes are very 
similar; UpwindE scheme introduce a numerical 
diffusion, producing an smeared solution; the 
other three schemes approximate the water front 
more accurate, and the best is UpwindQ, which 
is O(Dx3). On the other hand, for the case s = 
2, figures 3(a) and (c) show similar distribution, 
while graphics (b) and (d) have a non-realistic 
behavior. This is more clear in figure 4(b). High-
order schemes provide accurate approximation 
of the front, but when they are used in isolation 
will usually result in physically meaningless 
solutions. The situation arises from the violation 
of the so called “entropy condition”, and to solve 
it a monotonicity constraint is required, see [37]. 
We do not address this problem in this work. The 
numerical scheme UpwindE produce the best 
solution for s = 2.

Performance analysis

All the results presented in this section were 
obtained by executing our codes in a cluster with 
216 (Intel(R) Xeon(R) CPU X5650 2.67GHz) cores. 
The interconnection between the nodes of the 
cluster is Gigabit Ethernet. Moreover, the cluster 
has a TESLA M4050 GPU, with 448 cuda cores. 
The parameters for the simulation were the same 
as those in the table 2. The number of volumes 
in the x, y, and z directions were 320, 320, and 
16 respectively, given a total of 1638400 cells. 
We reach the memory limit of the GPU using this 
number of volumes.

Linear algebra operations

The most time-consuming linear algebra 
operations used inside the BiCGSTab (see 
table 1), for a fixed number of volumes, were 
evaluated. This evaluation gave us the optimal 
number of processors for using the PETSc library 
in our cluster. Using matrices and vectors of 
the same size, as those used in the whole two-
phase simulation, a PETSc implementation of 
each linear algebra operation from table 1, was 
analyzed in terms of the average FLOPs (floating 
point operations per second) measured over 
10000 executions, for a distinct number of cores 
(between 1 and 216). Next, the average FLOPs of 
same linear algebra operations for the CUSPARSE 
implementation were measured using the same 
parameters as with PETSc. The matrix-vector 

Table 2. Quarter five-spot data.

relative permeabilities. This model is defined as 
follows

	 krw = Sn
e and kro = (1 − Se)

s	

where the effective saturation is defined as Se = 
(Sw − Srw)/(1 − Srw − Sro).

Table 3 shows the adaptors implemented in 
TUNAM for this work, which combine the relative 
mobility model for and s = 1, and 2 the numerical 
schemes presented in section §3.1.

Numerical results

Figures 2 and 3 show the distribution of water 

Table 3. Numerical schemes evaluated and 
implemented in TUNAM.

Parameters	 Values	SI units

Dimension for x-axis and y-axis	 182.76	 [m]
Dimension for z-axis	 9.14	 [m]
Water injection rate (Qw)	 3.86 x10-04	 [m3/s]
Absolute permeability (k)	 0.9869 x 10-15	 [m2]
Porosity (f)	 0.2	 –
Water (mw) and Oil (mo) viscosities	1.0 x 10-03	 [Pa s]
Water residual saturation (Srw)	 0	 –
Oil residual saturation (Sro)	 0.2	 –

Numerical	 Adaptors
Scheme	 s = 1	 s = 2
	 p	 S	 p	 S

Upwind	 FSIP1	 FSIS1	 FSIP2	 FSIS2
Average	 FSIP3	 FSIS3	 FSIP4	 FSIS4
UpwindE	 FSIP5	 FSIS5	 FSIP6	 FSIS6
UpwindQ	 FSIP7	 FSIS7	 FSIP8	 FSIS8
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Figure 2. Water saturation for s = 1. (a) Upwind scheme; (b) Average scheme; (a) UpwindE scheme;(a) UpwindQ 
scheme. Black lines represent the streamlines from the injector to the extractor wells.

Figure 3. Water saturation for s = 2. (a) Upwind scheme; (b) Average scheme; (a) UpwindE scheme;(a) UpwindQ 
scheme. Black lines represent the streamlines from the injector to the extractor wells.
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Figure 4. Water saturation 
profiles along a line joining 
the injector and extractor 
wells, after 600 days of 
simulation. (a) s = 1 and 

(b) s = 2.

product, axpy operation, dot product and norm 
of a vector performances are shown respectively 
in graphics a), b), c) and d) of the figure 5. In all 
graphics, the results of the CUSPARSE operations 
are shown as a horizontal line (blue), because the 
number of cores is fixed in a GPU, giving us only 
one point to compare with. On the other hand, 
for the PETSc library it is possible to measure the 
FLOPs with several number of processor, and we 
have at most 216 in our cluster.

Convergence speed of the four numerical 
schemes

During the simulation, the evolution of the 
water front (shock) depends on the numerical 
scheme used to calculate the water saturation 
on the volume’s faces, see section §3.1. The 
saturation field and each numerical scheme 
generates different conditions for the calculation 
of coefficients of discrete pressure equation. As 
a consequence, the linear system to be solved in 
the iterative process of the BiCGStab, will change 
its condition number depending particullarly on 
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the numerical scheme. The profiles of the water 
front at a fixed time, using the four different 
numerical schemes described in section §3.1, 
was shown in the figure 4, where the scheme-
dependence is clear. In order to take into account 
this dependence, in table 4 we show the average 
number of iterations done by the BiCGStab 
method to converge using a tolerance (relative 
error) of 10-7, for each one of the four numerical 
schemes. We also report the condition number of 
the matrix generated by each one of the numerical 
schemes. The average is calculated over the total 
number of IMPES iterations (1200 steps) and a 
mesh of 80 x 80 x 4. The remaining data were 
the same as in table 2.

We observe from table 4 that the linear case, s 
= 1, do not present any kind of complications, and 
the condition number and the average number of 
iterations is the same for all the four schemes. On 

the other hand, the case s = 2 give us different 
numbers for different schemes. It can be observed 
that the best behaved scheme is the UpwindE, as 
we already observed in section §4.2.

We do not present the results for the case 
UpwindQ with s = 2, because it was not 
able to converge. As we pointed out before, 
this implementation does not contains the 
monotonicity constrain and therefore the results 
are unrealistic for this case. Similar comments are 
valid for the Average with s = 2, but in that case 
we do obtain convergence, although the numbers 
are not useful because it also presents a similar 
behavior as the UpwindQ scheme.

SpeedUp of the parallel IMPES method

The solving time for the pressure and saturation 
equations, during the simulation for PETSC and 

Figure 5. Average FLOPs as a function of number of cores: a) matrix-vector product, b) axpy operation, c) dot 
product, and d) norm of a vector. In all cases, the horizontal line (blue) represents the FLOPs obtained with the CUDA 
implementation and the broken line represents the PETSc implementation. All operations were executed with vectors 

and matrices corresponding to a mesh of 320 x 320 x 26 = 1638400 cells.
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CUSPARSE are shown in the figure 6. We use non-
dimensional time, defined as the ratio between the 
greater time (for one core in PETSc) between the 
times obtained for each number of cores. Again, 
the horizontal line (blue) represent the CUSPARSE 
result. Taking as reference the execution time 
with one core in the PETSc implementation, the 
speedup analysis is shown in the bottom graphic 
of the figure 6.

Here the speedup is defined as the ratio 
between the time taken to solve the pressure 
and saturation equations in a serial process, 
divided by the time taken in a parallel process 
(448 cores for CUDA and n cores for PETSc, with 
1 ≤ n ≤ 192). All operations were executed with 
vector and matrices corresponding to a mesh of 
1638400 nodes.

Table 4. Average number of iterations (AI) taken by BiCGStab to converge using a tolerance of 10-7 for 
each one of the four numerical scheme; CN stands for the condition number of the matrix generated by 

each numerical scheme.

Figure 6. Top-left: Average non-dimensional time to complete the pressure solution (BiCGstab). Top-right: Average 
non-dimensional time to solve saturation. Bottom: Speedup of whole the parallel implementation. The horizontal 

(blue) line represents the CUSPARSE results, meanwhile the red line is for PETSc.

	 Numerical	 s = 1	 s = 2 	  
	 Scheme	 AI	 CN	 AI	 CN

	 Upwind	 206.00	 7399.59	 304.61	 7897.30
	 Average	 206.00	 7399.59	 300.03	 7853.45
	 UpwindE	 206.00	 7399.59	 273.68	 7450.28
	 UpwindQ	 206.00	 7399.59	 –	 –
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In figure 6 we observe that the best performance 
is obtained on the GPU for a fixed problem size. 
The speedup is almost 8 times in relation with the 
serial code. For the PETSc implementation, we 
observe that the peak performance is obtained 
for 12 processors. After that, the speedup starts 
to decrease monotonically as the number of 
processors is increased. This effect is due to the 
fact that the size of the problem is fixed and this 
size is tied to the memory of the GPU. When we 
increase the number of processor, the number of 
grid cells assigned to each processor by PETSc 
is reduced, and therefore, the communications 
between processors will have more impact on the 
execution time than the floating operations. We 
also recall that the interconnection of the clus-
ter is not a high-end technology (for example 
infiniband), then is expected a reduction on the 
speedup when we increase the communications. 
Each node of our cluster contains 12 independent 
CPUs, which share memory. Hence, the results 
shown in figure 6 are compatible with the 
architecture of the cluster. Our conclusion here 
is that, in equality of conditions, a GPU TESLA 
M4050 GPU give us double of speedup than a 
node composed of 12 Intel Xeon processors, using 
CUSPARSE and PETSc as was described in the 
previous sections.

Conclusions

In this work we investigated the impact of four 
numerical schemes on the solution of a two-phase 
flow in an homogeneous porous media. Our study 
was focus on two objectives: 1) accuracy of the 
numerical scheme; and 2) performance in parallel 
using two memory architectures.

For the first objective, we found that the 
UpwindQ scheme, which is third order, gives the 
better approximation to the water-oil front than 
the other three, for the linear permeabilities 
model (s = 1). In this case, all the schemes 
work fine, although some of them introduce 
numerical diffusion which smears the numerical 
solution. For the quadratic permeability model (s 
= 2), it was observed that the best scheme was 
UpwindE, which is second order, and the Average 
and UpwindQ present unrealistic solutions due 
to the lack of a monotonicity constrain in their 
implementations. The Upwind scheme, which is 
first order, gives good approximation but produce 
higher numerical diffusion than UpwindE scheme.

The second objective was studied using two 
libraries: PETSc for distributed memory and 
CUSPARSE for GPUs where the memory is shared. 
We implemented a BiCGStab method with both 
libraries and we use similar operations in order 
to have equality of conditions. The saturation 
calculation step was implemented in terms of 
linear algebra operations, and we also measured 
the performance of this step. We obtained 

that, for a fixed problem size the CUSPARSE 
implementation is approximately two times the 
speedup than the PETSc one. At this point we 
can say that our CUSPARSE implementation for 
a single GPU, is a better option than our PETSc 
implementation executed on a 12 CPU node. On 
the other hand, the PETSc implementation can be 
used for a bigger problems size, and in the case of 
our cluster, we can run in at least 8 nodes, allowing 
to investigate eight times bigger problems. This 
is important for more realistic research were we 
have very large-scale data sets.

Finally, we can say that a GPUs cluster will have 
better performance than a CPU only cluster. In 
some cluster architectures it is possible to deploy 
more than one GPU by node, allowing more floa-
ting point operations powerful. Combining the 
CPU and GPUs, along with efficient opensour-              
ce libraries, like CUSPARSE and PETSc, we can 
face the challenge of oil reservoir simulation to a 
large-scale and more realistic formulations.
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Appendix A

Coefficients of discrete pressure equation (10)
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Coefficients Tn
NB and Tn

NB, for NB = P, E, W, N, 
S, F, B and nb = e, w, n, s, f, b, are known as the 
transmissibilities of each control volume.

Coefficients of discrete saturation 
equation (11)

	 	
		  (16)

	 	
		  (17)

	 	
		  (18)

Appendix B

In this section, we show our implementations of 
BiCGStab [33]. This iterative Krylov-subspace 
method requires a matrix A and a left-side vector 
b, and returns an approximate vector solution x 
of the system Ax = b. The algorithm (2) presents 
the general steps of the BiCGStab method.

Algorith 2 BiCGStab

1: r0 ← b − Ax0

2: r
*
0 arbitrary

3: p0 ← r0

4: for j= 0, 1... jmax do:

5: aj ← (rj, r
*
0)/(Apj, r

*
0)

6: sj ← rj − aj Apj

7: wj ← (Asj, sj)/(Asj, Asj)

8: xj+1 ← xj + aj pj + wj sj

9: rj+1 ← sj − wj Asj

10: bj ← (rj+1, r
*
0)/(rj, r

*
0) × aj /wj

11: pj+1 ← rj+1 + bj ( pj + wj Apj )

12: end for

The corresponding CUDA implementation used 
in this work is presented below.

init_res = cublasDnrm2(N,d_r,1);
if(init_res!=0.0) init_res=1./init_res;
else       return false;

cusparseDcsrmv(handle,CUSPARSE_OPERATION_
NON_TRANSPOSE, N, N,-1.,

    descr, d_val, d_row, d_col, d_x, 1., d_r);
res = cublasDnrm2(N,d_r,1);
res *= init_res;
if (res < tol) return true;

cublasDcopy(N,d_r,1,d_rtilde,1);

while ( res > tol && k <= max_iter) {
     ri_0 = cublasDdot(N,d_rtilde,1, d_r,1);
     if (ri_0 == PrecType(0)) {
     return false;
     }

if (k!=1){
if (omega == 0.) {
    return false;

}
beta = (ri_0 / r_ant) * (alpha / omega);
cublasDaxpy(N,-omega,d_Ap,1,d_p,1);
cublasDscal(N,beta,d_p,1);
cublasDaxpy(N,PrecType(1),d_r,1,d_p,1);
} else {
cublasDcopy(N,d_r,1, d_p,1);
}
cusparseDcsrmv(handle,CUSPARSE_OPERATION_

NON_TRANSPOSE, N, N, 1.,
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	 .	
		  (19)

The terms in the previous sum can be obtained 
as the result of a vector product, as follows

	 	

The row vector of the last relation is, indeed, a 
row of a matrix N × N, in which every row has 
a corresponding relation of some element of the 
-size mesh. The N-size column vector contains the 
saturation in the elements of the mesh at time n. 
Defining matrices and for the terms related to cn and 
dn respectively in the equation (11), we get a final 
linear algebra version of the saturation equation

	 	
		  (20)
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