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Resumen

Después de una breve explicación sobre el 
significado de los fractales en las Ciencias de la 
Tierra, se presenta una modificación de la famosa 
iteración de Mandelbrot. El resultado tiene un 
cierto parecido con una hoja de gingko, el cual 
es una especie de árbol singular, no solo en la 
botánica sino en la cultura y la filosofía oriental. Se 
presentan algunas de las características inusuales 
del nuevo fractal “hoja de gingko”.

Palabras clave: fractales en geofísica, conjunto 
de Mandelbrot, gingko biloba, iteración de la hoja 
gingko.

Abstract

After shortly explaining the significance of fractals 
in the geosciences I present a modification of the 
famous Mandelbrot iteration. The result bears a 
certain resemblance to a gingko leaf. The gingko 
tree is special in botany, in cultural history and 
in philosophy. Some unusual features of the new 
gingko-leaf fractal are presented.

Key words: fractals in geophysics, Mandelbrot set, 
gingko biloba, gingko leaf iteration.
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Introduction

This special article out of competition does not 
directly concern geophysics but indirectly by 
presenting a special new fractal (the gingko-leaf 
fractal) and beyond that by enabling the view on 
beauty of science and connections to philosophy, 
art, and nature.

It is well-known that fractals surround us 
everywhere [see e. g. Mandelbrot (1977) and 
Barnsley (1988)]. The concept of fractals was 
introduced into science by Mandelbrot (1967) in 
a geological context. Later it became more and 
more evident that fractals are very important for 
geophysics and geology. That is small wonder 
because following Scholz and Mandelbrot (1989) 
one possible broad explanation of the role of 
fractals in geophysics may be found in probabilistic 
limit theorems, and in the existence of classical 
“universality classes” related to them. A second 
possible explanation may come from deterministic 
chaotic dynamics. Additionally, Turcotte (1989) 
pointed out that scale invariance has long been 
recognized as an important feature of many 
geological problems. A fractal distribution is the 
only distribution that is scale invariant. Thus 
it is not surprising that many geological and 
geophysical data sets are fractals. In this context, 
fractals are a method of empirically correlating a 
variety of quantitative observations. But in addition 
to being appropriate for empirical correlations 
fractals also result from several classes of 
theoretical studies. Dimri has devoted the first 
chapter of his book [Dimri (2005)] the fractals 
in geophysics and seismology. The applications 
in seismology range from the size-frequency 
distribution of earthquakes, Omori’s law and 
the analysis of aftershock data even up to the 
forcasting of tsunami. For completeness, we cite 
here also two articles which analyse the fractal 
geometry and seismicity in the Mexican subduction 
zone [Angulo-Brown et al. (1998)] and fracture 
arrays in Baja California Sur, Mexico, by using 
fractal analysis [Nieto-Samaniego et al. (2005)].

One of the most prominent fractals is without 
doubt the Mandelbrot set. After Taylor and 
Sprott (2008) Mandelbrot saw this set for the 
first time at 1 March 1980. It must have been 
an indescribably great feeling to see that whole 
cosmos of wonderful and unimaginably fragile 
structures. The author of the present article was 
also surprised in suddenly seeing the gingko-leaf 
fractal (see Figure 2) for the first time about 25 
years ago. It has not those fine ramifications 
and complexity of the Mandelbrot set which is 
following Dewdney (1985) “the most complex 
object in mathematics”. But the gingko-leaf set 
is complex enough and has its own specialities 
and beauties as we will see later. We start with a 
short description of the gingko tree’s prominence.

The gingko tree

It is well known that the gingko tree (Ginkgo 
biloba) is a “living fossil” because of its special 
botanic history. It is a medical plant with botanical 
and historico-cultural significance. The German 
curatorship “Baum des Jahres” (tree of the year) 
has declared it as the “tree of the millennium”. 
It is a great symbol for our world, a tree of the 
world and a symbol of strength and hope. The 
far eastern philosophy considers the tree, among 
other things because of its splited leaves, as an 
incarnation of the famous Ying-Yang principle 
and connected with that it is also considered 
as a symbol for harmony and fertility. Last but 
not least the people are fascinated from the 
special beauty of the leaves. Nobody less than 
Johann Wolfgang von Goethe (1749-1832) was 
also fascinated from this tree and its leaves and 
initiated the growing of a gingko in the botanical 
garden in Jena, which is now the oldest gingko 
tree in Thuringia. He even wrote a poem “Gingo 
Biloba” [Goethe (1819)] which he devoted to his 
muse Marianne von Willemer (1784-1860) (see 
Figure 1) and whose rough English translation is 
(see en.wikipedia.org/wiki/Gingo_biloba):

Figure 1. Facsimile of Goethe’s poem Gingo biloba 
devoted to M. v. Willemer.
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Gingo Biloba

This leaf from a tree in the East,
Has been given to my garden.

It reveals a certain secret,
Which pleases me and thoughtful people.

Is it a living being,
Which has separated in itself?
Or are these two, who chose

To be recognized as one?
Answering this kind of question,

Haven’t I found the proper meaning,
Don’t you feel in my songs,
That I’m one and double?

The Mandelbrot and the gingko-leaf iteration

It is well-known that the Mandelbrot set consists 
of all points c = a + ib ≙ (a, b) of the complex 
plane for which the quadratic recurrence equation

	 zn+1 = z2
n + c, z0 = 0,	 (1)

does not tend to infinity, i. e. ∀n, n > 0, zn ≠ ∞. It 
can be also written in real notation with z = x + i y:

	 xn+1 = x2
n − y2

n + a,
	 yn+1 = 2xn yn + b.	 (2)

There are a lot of generalizations of (1), e. 
g. with higher polynomials instead of (1) or with 
bicomplex numbers in order to produce Mandelbrot 
sets in dimensions three and four [Rochon (2000)] 
among many others. All these generalizations do 
not create the elementary beauty of the original 
Mandelbrot set, the so-called apple-man.

We apply now another special generalization 
of (1) which leads to a structure which can be 
considered as a stylized gingko leaf (see Figure 
2). It is defined as follows:

	 zn+1 = 1
2
 (z2

n + z*2
n) + 1

4
 (z2

n − z*2
n) (zn + z*

n)
           + c, z0 = 0,		  (3)

where the star means complex conjugation. We 
call it gingko-leaf iteration. It is a polynomial of 
third order in zn and z*

n . However, the cubic terms 
in xn and yn cancel. By using the real notation we 
see immediately what is going on here in contrast 
to (2):

	 xn+1 = x2
n − y2

n + a,
	 yn+1 = 2x2

n yn + b.	 (4)

That means, the only third order term is the 
mixed term x2

n  yn.

A visualization of the Mandelbrot set together 
with the new gingko-leaf set is presented in Figure 
3. It shows the approximate border strip of the 
apple-man together with the gingko leaf. Figure 
3 was calculated with Mathematica and for the 
reader’s convenience we present here the main 
features of the program without explanation:

CompiledMandel = Compile[{{c, _Complex}}, 
Length[FixedPointList[#^2+c 
&,c,25,

	 SameTest -> (Abs[#2] > 2.0 &)]]];
CompiledGingko = Compile[{{c, _Complex}}, 

Length[FixedPointList[#^2 
+Im[#^2]* (Re[#] – 1)*I + c &, 
c, 25, SameTest -> (Abs[#2] > 
2.0 &)]]];

g = DensityPlot[compiledGingko[x + I y], {x, -2, 0.6}, {y, 
-1.3, 1.3}, PlotPoints -> 500,

	 Mesh -> False, Frame -> False, AspectRatio -> 
Automatic,

	 ColorFunction -> (If[# = 1, RGBColor[0.3, 0.7, 0], 
RGBColor[1, 1, 1]] &)];

c = ContourPlot[compiledMandel[x + I y], {x, -2, 0.6}, {y, 
-1.3, 1.3}, PlotPoints -> 300,

	 Frame -> False, AspectRatio -> Automatic, 
ContourShading ->False,

	 Contours -> {13}];

Show[g, c]

Figure 2. Gingko-leaf set with indication of 2 regions 
A and B of interest.

Figure 3. The gingko-leaf set together with the contour 
of the Mandelbrot set.
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Obviously, the gingko-leaf set is symmetric 
concerning the x-axis. The proof for that behaviour 
is simple and is omitted here. It can be carried 
out similarly as for the Mandelbrot set.

Some features of the gingko-leaf set

The Mandelbrot set has a rich structure at its bor-
der line and also in the outer regions not belonging 
to the set. The latter structure can be visualized 
by using so-called velocity diagrams, where the 
number of iterations necessary for exceeding a 
given limit is colour-coded [see e. g. Peitgen and 
Richter (1986)]. The same is true for the gingko-
leaf set especially within the regions A and B of 
Figure 2 and we present some examples. A very 
convenient and effective vehicle for visualizing 
these structures is the “Fractalizer” of Sontheimer 
(2007), which was used for painting Figures 6-9. 
Additionally we have investigated also the inner 
region of the set (Figure 4) with Turbo Pascal by 
using the following colour-code, where t = x2

n + y2
n:

t > 4	 → black
3 < t < 4	 → light green
2 < t < 3	 → dark grey
1 < t < 2	 → crimson
0.4 < t < 1	 → leaf green
0.155 < t < 0.4	 → crimson
0.1 < t < 0.155	 → light yellow
0.05 < t < 0.1	 → light brown
0.008 < t < 0.05	 → dark crimson

The colour-code for Figure 5 is:

t > 4	 → black
3 < t < 4	 → light green
2 < t < 3	 → pink
1 < t < 2	 → violet
0.4 < t < 1	 → light blue
0.1 < t < 0.4	 → light purple
         t < 0.1	 → light yellow

The nodality in region A has also a nice 
structure which we demonstrate with the 
“landscape” in Figure 6. The black parts belong 
to the gingko-leaf set.

Very interesting and beautiful structures occur 
in region B nearby the sawtooth-like indentations 
at the right end of the gingko leaf. In Figure 
7 we see a stylized winter rose (Euphorbia 
pulcherrima), whose origin is Mexico. It occurs 
in many places of region B.

Another winter rose from region B is presented 
in Figure 8. It is interesting to note that contrary 
to Figure 7 we find here parts of it which belong 
to the gingko-leaf set (in black).

Figure 4. Inner structure of the gingko-leaf set

Figure 5. Colour-coded range a∈[−1.8, −1.5], 
b∈[−0.01, 0.01] within region A with Turbo Pascal.

Figure 6. Color-coded range a∈[−1.4366, −1.4360], 
b∈[−0.0069, −0.0064] within region A.

It could be carried out with Mathematica as well 
by using e. g. the RasterArray command.

The stalk (region A) is characterized by the 
occurrence of so-called satellites which are typical 
for the antenna of the Mandelbrot set and which 
have now the form of stylized gingko leaves in the 
broadest sense (Figure 5).
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It remains unclear wether similar to the 
Mandelbrot set the isolated parts of the set are 
all connected with the main body by very thin 
fibres or not.

Miscellaneous

It is well-known [see e. g. Peitgen and Richter 
(1986)] that by changing the role of c and z in (1) 
we can assign each point of the complex plane a 
corresponding Julia set. The same is true for the 
gingko-leaf set. Especially for points from region 
A and B interesting figures are obtained. Without 
going into details we present two examples from 
region B in Figure 9.

I have called the left figure “throne of 
Cuauhtémoc” and the right figure “bad ghost”. 
Note that on both sides of the throne again winter 
roses occur.

Finally, let us demonstrate that by changing 
the gingko-leaf iteration only a little bit, we get a 
completely different set. By replacing (4) by

	 xn+1 = x2
n − y2

n + a,
	 yn+1 = 2xn y

2
n + b.	 (5)

we obtain a set (Figure 10) which I call “ugly 
duckling”.

Figure 7. The winter rose in region B out of 
the gingko-leaf set with a∈[0.4507, 0.4528], 

b∈[−0.2148, 0.2132].

Figure 8. Winter rose in region B for a∈[0.386232, 
0.386246], b∈[−0.135391, −0.135381]; the black 

forms belong to the gingko-leaf set.

Figure 9. Left: “throne of Cuauhtémoc” is a Julia set from point (0.4084, -0.1636); right: “bad ghost” 
is a Julia set from a point nearby.
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Obviously, the symmetry concerning the x-axis 
is completely broken.

Conclusions

We have presented a less-known part of the 
enormously multiform world of fractals. It is not 
excluded, that the properties of the gingko-leaf 
set follow from already existing mathematical 
theorems about more general fractals. This 
might require closer examination. It is also 
not excluded that a similar kind of feedback 
mechanism, which produces the gingko-leaf 
fractal, is also responsible in the broadest sense 
for “producing” the nice gingko leaves in nature. 
At the same time a formal but pretty “connection” 
between the gingko and the Mexican winter rose 
is accomplished.

Hopefully, this article will attract attention of 
all people fascinated by the beauty of science.
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