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Resumen

En este trabajo se presenta un análisis 
morfológico de cobertura forestal en un lapso 
de doce años. Se emplearon dos imágenes 
multiespectrales LANDSAT TM-4 de los años 
1989 y 2001. Estas imágenes cubren un 
área forestal donde han ocurrido cambios 
significativos en tales años. Estas imágenes 
fueron expandidas en términos de variables 
canónicas que describen la respuesta espacial-
espectral de las masas forestales. Las imágenes 
fueron modeladas como un campo vectorial de 
tantas dimensiones como bandas empleadas 
en el análisis. Se construyó un campo vectorial 
usando las bandas de variables canónicas.El 
conjunto de variables canónicas fue usado para 
cuantificar el cambio vectorial de las masas 
forestales. Este cambio vectorial cuantifica el 
grado de alteración de las masas forestales. Se 
empleó un algoritmo de crecimiento de regiones 
para segmentar las áreas ocupadas por el 
bosque. Este algoritmo emplea como entrada 
las variables canónicas. El resultado de tal 
segmentación es una imagen binaria llamada el 
bitmap. A partir de este bitmap, se llevó a cabo 
un análisis morfológico del área ocupada por el 
bosque. Se empleó un DEM generado a partir de 
un par interferométrico del satélite RADARSAT-1 
para realizar una referencia cruzada con los 
bitmaps. Esta referencia cruzada conduce a la 
determinación de las elevaciones a las cuales 
ocurren los cambios de las masas forestales.

Palabras clave: cobertura forestal, variables 
canónicas, morfología, crecimiento de regiones.

Abstract

A morphologic analysis of forest cover in a 
time span of twelve years is presented in this 
work. Two multispectral LANDSAT TM-4 images 
of the years 1989 and 2001 were used. These 
images cover a forest area where significant 
changes have occurred in such years. These 
images were expanded in terms of canonical-
expansion variables that describe the spatial-
spectral response of the forest masses. The 
images were modeled as a vector field of as 
many dimensions as the number of bands 
employed in the analysis. A vector field was 
constructed using canonical-variable bands. 
The set of canonical variables for each year 
was used to quantify a vector change of the 
forest masses. This vector change quantifies 
the degree of alteration of the forest masses. A 
region-growth algorithm was used to segment 
the areas occupied by the forest. This algorithm 
uses as input the canonical variables. The result 
of such segmentation is a binary image named 
the bitmap. From this bitmap, a morphologic 
analysis of the area occupied by the forest 
was undertaken. A DEM generated from a 
radar interferometric pair of the RADARSAT 1 
satellite, was used to perform a cross-reference 
with the bitmaps. This cross-reference leads to 
the derivation of the elevation of occurrence of 
changes in the forest masses.

Key words: forest cover, canonical variables, 
morphology, region growing.
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Introduction

The analysis of vector change is used in this 
work to quantify the change of forest cover 
in the environs of Mexico City. The vector 
change is combined with morphologic analysis 
to derive quantitative evolution of the forest 
cover. A number of methods of vector change 
have been published in the literature (Allen and 
Kupfer, 2000; Fraser et al., 2005; Nackaerts et 
al., 2005; Sanchez Flores and Yool, 2007). 

A number of change indices have been used 
to quantify change of temporal phenomena 
such as deforestation, desertification, urban 
growth or land cover change (Johnson and 
Kasischke, 1998; Le Hégarat-Mascle and 
Seltz, 2004; Cakir et al, 2006). A detailed 
account of change detection methods is given 
in Coppin et al. (2004). Several methods of 
change detection in remote sensing are given 
in Canty (2007). Recent advances in tropical 
forest cover used parametric classification and 
change vector analysis to detect unchanged 
and changed areas in the tropical forest of 
Amazonia (Raši et al., 2013).

	
In the present work, a multispectral image 

is modeled as a vector field of as many 
dimensions as bands employed in the analysis 
(Lira and Rodriguez, 2006; Lira, 2010). In this 
model, a pixel is defined as a vector of an equal 
number of elements as the number of bands. 
Two LANDSAT TM-4 images are used in this 
model to obtain the change of forest cover in a 
time span of twelve years. A co-registration of 
the images was applied in order to implement 
our method and to evaluate the forest cover 
change in the time span. 

In the present research, the vector change 
that experiences the vector field associated to 
the image was considered (Lambin and Strahler, 
1994; Warner, 2005; Sanchez and Yool, 2007; 
Kontoes, 2008). A set of variables were 
calculated from a canonical-expansion of the 
image (Lira and Garcia, 2003). This expansion 
produces three basic canonical variables that 
characterize the spatial-spectral state of the 
forest cover. The use of variables to study land 
cover change, as a basis for change vector 
analysis, has been proposed (Lambin and 
Strahler, 1994; Lambin and Ehrlich, 1997). The 
original Landsat bands define a 6-dimensional 
vector field. Instead, the canonical variables 
define a 3-dimensional vector field.

The set of variables were used in a region-
growth algorithm to segment the forest cover. 
This segmentation produced a two-class 

image named the bitmap. The bitmap depicts 
the area of the forest cover and the rest of 
the image. From the bitmaps of the images, 
morphologic change was evaluated. A digital 
elevation model (DEM) was constructed using 
an interferometric pair of the RADARSAT 1 
satellite. The DEM was combined with the 
bitmaps to derive conclusions on morphologic 
change of forest cover.

In the present work, one vector field was 
considered: the vector field formed by the 
canonical variables. Principal component 
analysis (PCA) was applied to the set of 
variables of both images. From PCA, changes 
of the vector field were assessed. The analysis 
of vector change based on PCA is used there 
upon and conclusions on the forest cover 
change were derived. In the ensuing section 
of methods, details are provided on the vector 
field analysis. 

Materials and methods

Materials 

Two multi-spectral LANDSAT TM-4 images are 
used in this research. From these images, an 
area was extracted; the resulting sub-images 
are dubbed 1989 and 2001. Figure 1 depicts 
a false color composite of the images of 1989 
and 2001. Table 1 shows basic technical details 
of these images. With the exception of band 6, 
all the bands of the images were used in our 
research analysis. Band 6 is not included in the 
analysis due to a different pixel size. 

These images cover an area located to 
the east of Mexico City where a forest mass 
surrounds two volcanoes. This forest mass 
is formed by a mixture of coniferous trees, 
namely pine, oyamel and cedar (Hernandez 
García and Granados Sánchez, 2006). From 
March 1989 to January 2001, this forest 
mass has experienced a change in extension, 
morphology and heterogeneity (Rzedowski 
and Rzedowski. 2005; Hernandez García and 
Granados Sánchez, 2006). This forest masses 
will be referred in this research as forest cover. 
In addition to the LANDSAT TM-4 images, an 
interferometric pair from the RADARSAT 1 
satellite was considered (Table 2). From this 
interferometric pair, a digital elevation model 
(DEM) was extracted. 

The LANDSAT TM-4 images were 
geometrically corrected and corregistered 
using the ephemerides of the orbit. On the 
generation of the DEM from the RADARSAT 1, 
ground control points were used to corregister 
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Figure 1. RGB = [7,4,1] of the images of 1989 (a) and 2001 (b).

Table 1. Basic technical details of multi-spectral Landsat TM-4 images.

	 Image	 Date	 Path/Row	 Pixel (m2)	 Dimension (pixels)	 Bands (μm)

						      1) 0.45-0.52 
						      2) 0.52-0.60
						      3) 0.63-0.69
	 1989	 March 7,	 26/47	 28.5 × 28.5	 1904 × 2380	 4) 0.76-0.90
		  1989				    5) 1.55-1.75
						      6) 10.4-12.5
						      7) 2.08-2.35

						      1) 0.45-0.52 
						      2) 0.52-0.60
						      3) 0.63-0.69
	 2001	 January 4,	 26/47	 28.5 × 28.5	 1904 × 2380	 4) 0.76-0.90
		  2001				    5) 1.55-1.75
						      6) 10.4-12.5
						      7) 2.08-2.35



J. Lira

120      Volume 53 Number 2

the interferometric pair. In this sense, the 
DEM produced by the interferometric pair was 
corregistered with the LANDSAT TM-4 images. 
Both, the LANDSAT TM-4 images and the 
DEM were resampled to have the same pixel 
dimension of 28.5 × 28.5 m2. 

Methods

In order to quantify the temporal change 
of the forest cover, two multi-spectral images 
were considered. On the grounds of these 
images, a model to characterize the spatial-
spectral state of the forest cover was defined. 
The model was defined by means of a set of 
variables. Using the model, a segmentation 

of the area covered by the forest cover was 
undertaken. The segmentation based on 
this model results in a binary image dubbed 
the bitmap as explained in section 2.2.3. The 
validity of the model was assessed on the 
grounds of a multivalued probabilistic logic 
combination of the variables that define the 
model as explained in section 3.3. The bitmap 
was used to derive morphologic parameters 
that quantify the temporal change of the forest 
mass (Section 3.4). A method of vector change 
by means of the principal component analysis 
was considered to quantify the degree of forest 
cover change (Section 2.2.4). Details of the 
above rationale follow (Figure 2). 

Figure 1b.
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Figure 2. Workflow of the methodology of analysis.

The selected variables that describe the 
spatial-spectral behavior of the forest cover 
are Reflectance of vegetation, Texture and 
the Greenness band of the Kauth and Thomas 
transformation. These variables define the 
spatial-spectral state of the forest cover. The 
texture determines the spatial roughness of 
vegetation, and Reflectance and Greenness 
establishes the spectral state of vegetation. 
Details of the calculation of these variables 
are provided in section 2.2.1. Such variables 
form a canonical expansion of the image 
(Lira and Garcia, 2003). In brief, the model is 
designed as (a) A canonical expansion of the 
multispectral image, (b) A set of variables to 
describe the spatial and spectral behavior of 
the forest cover and (c) To define a vector field 
of three dimensions from which vector change 
can be assessed.

A segmentation of forest cover was achieved 
using the variables as input to a hierarchical 
region-growth algorithm RHSEG (http://
techtransfer.gsfc.nasa.gov/RHSEG). The result 
is a segmented image with a certain number 
of regions (Tilton et al., 2006). Details of this 
segmentation are provided in section 2.2.3. 

RHSEG stands for Recursive Hierarchical 
Segmentation. This algorithm establishes 
a segmentation hierarchy where an image 
is segmented at different levels of detail. 
Segmentation at coarser levels of detail 
can be generated from merges of regions at 
finer levels of detail. In this procedure, an 
object in the image is represented by multiple 
image segments in finer level of detail in the 
segmentation hierarchy. In region-growing, 
spatially adjacent regions iteratively merge 
to represent and object with spatial-spectral 
homogeneity (Tilton et al., 2006).

The morphology of the forest cover was 
calculated using a group of morphologic 
parameters. A large number of connected 
areas dubbed patches form the forest cover. 
The evaluation of the morphology consists in 
the calculation of two groups of parameters, 
a) the number of patches and its area and 
b) the heterogeneity of the patches. The first 
group is to assess the extension of the forest 
cover and the second group is to assess the 
complexity of the landscape form by the forest 
cover. The calculation of the two groups of 

parameters for the images 1989 and 2001, 
permit the quantification of the evolution of the 
extension of the forest cover and the change 
of its heterogeneity. Morphologic parameters 
were calculated using the Fragstats software 
(http://www.umass.edu/landeco/research/
fragstats/fragstats.html). Details are given in 
section 3.4.

Since PCA is used to quantify the temporal 
vector change, no radiometric normalization 
was required for the variables that define the 

Table 2. Basic technical details of interferometric RADARSAT 1 images.

	 Image 1	 Image 2	 Pixel (m2)	 Size (km2)	 Looks	 Band

	 May 19, 1998	 July 6, 1998	 24 × 24	 144.74 × 226.89	 4	 C(5.6 cm)
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spatial-spectral model (Canty, 2007, Chapter 
8). Details of this are provided in section 
2.2.2. Once the images were corregistered, 
PCA was applied to the vector field formed by 
the variables of both images. Section 2.2.4 
describes such change. Figure 2 depicts the 
workflow of the methodology above described.

In order to corroborate that the selected 
variables adequately depicts the state of 
the forest cover a multivalued probabilistic 
logic is employed. The variables of the two 
images are combined by means of multivalued 
probabilistic logic (Nilson, 1986) to generate 
an image where the change of the forest cover 
is described. Section 2.2.5 provides details of 
such combination.

Canonical expansion

A canonical expansion is a representation of 
the image in terms of a set of variables with 
low or null correlation among them (Lira and 
Garcia, 2003). The variables selected for 
such expansion were Reflectance, Texture 
and Greenness of the forest masses. The 
calculation of these variables was the following. 
The Greenness is the second band of the Kauth 
and Thomas transformation of the LANDSAT 

TM-4 image. The Reflectance of the forest 
cover is derived using a variant of the principal 
component analysis (Lira, 2006). In this 
variant, a set of pixels related only to the forest 
cover is manually extracted from the image. 
The covariance matrix of such set is calculated. 
The set of eigenvectors is obtained from this 
covariance matrix. These eigenvectors define 
a kernel of transformation. This kernel is then 
applied to the whole image. The result is the 
variant of the principal component analysis 
related only to the forest cover. The Texture is 
generated using a divergence operator applied 
upon the first three principal components of 
the LANDSAT TM-4 images (Lira and Rodriguez, 
2006). These variables represent the spatial-
spectral state of the forest masses. Figure 3 
shows a false color composite of canonical 
variables for the images of 1989 and 2001. 
Let these variables be named as follows: X1 – 
Greenness, X2 – Reflectance and X3 – Texture. 
These variables form an expansion of the image 
in agreement with the following expression

	
g  k,l  =  + a X k,l   i = 1, 2... n and k, l =1, 2ij ji i( ) ( ) ". .... M, N          (1)

j-1

m

	g  k,l  =  + a X k,l   i = 1, 2... n and k, l =1, 2ij ji i( ) ( ) ". .... M, N          (1)
j-1

m

		  (1)

Figure 3. RGB false color composite of canonical variables for the 1989 (left) and 2001 (right) images.
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Table 3. Linear regression between canonical bands of image 1989.

Table 4. Linear regression between canonical bands of image 2001.

Where (k, l) are the coordinates of a pixel in 
the image, μi is the mean of the image bands 
and (M, N) are the dimensions of the image. 
The index i is a band of the image, while j is a 
dummy index. The coefficients aij in this case 
are set to one. Hence, the image g is expressed 
as a linear combination of the variables above-
mentioned. When the correlation between 
variables Xi is low, expression (1) approximates 
a canonical expansion of the image (Dougherty 
1999). The moderate correlation (Table 3 and 
4) among these variables for the images used 
in this work corroborates that expression (1) is 
approximately valid as a canonical expansion 
of the images. A linear histogram expansion 
was applied to the three variables to have the 
digital range [0,255]. No units were associated 
to the variables.

Radiometric normalization and co-registration

Although the same sensor produces the 
images used in this research, the conditions 
of illumination and geometry of acquisition are 
not exactly the same. From one date to the 
other, the solar illumination is different due to 
variations in the elevation angle and changes of 
the azimuth angle of the Sun. Even more, the 
satellite orbit experiences small fluctuations 
that lead to a geometry of different observation 
for the acquisition of the images. Due to this, 
it is necessary to carry out a co-registration 
process of the images. The co-registration is 
made by means of an orthorectification model 
using the satellite ephemerides applied to each 
image. The radiometric normalization is not 
required since the vector change is assessed 
using the PCA applied upon the ensemble of 
spectral variables of both images (Canty, 2007, 
Chapter 8). The combined histogram of the 

variables for the images of 1989 and 2001 show 
that a radiometric normalization is achieved 
(Figure 4). To obtain the combined histogram, 
an RGB false color composite of the canonical 
variables was prepared. This RGB is an image 
of 24-bits depth. Then, a compression of 24-
bits to 8-bits was applied. The histogram of the 
compressed image is the combined histogram. 
The co-registered bands were used in turn to 
derive the above-described variables.

Generation of a bitmap

The region-growth algorithm RHSEG was 
applied to the set of canonical variables above-
mentioned. This algorithm was applied to each 
group of variables for the images of 1989 and 
2001. The region-growth algorithm generated 
a segmented image where certain regions 
are associated with the forest masses. In an 
iterative process, the regions were grouped 
until reaching a binary image that represents 
a thematic map dubbed the bitmap. This 
iterative process consists in the aggregation 
of regions related to the forest cover. Regions 
not associated to the forest cover are grouped 
into a single class dubbed rest of the image. 
The identification of regions related to forest 
cover is done on the grounds of the image 
obtained by multivalued probabilistic logic 
(section 2.2.5). The part of the clouds in the 
image 1989 is entirely over the forest masses; 
therefore, that cloud-region was integrated 
into the class forest cover. This procedure was 
carried out manually.

This bitmap is a binary image with two 
values or states: 1 − forest cover, and 0 − rest 
of the image. The bitmap set the grounds for 
the quantification of the associated morphologic 

	 Canonical band	 First component	 Texture	 Greenness

	 First component	 1.0000	 0.3248	 0.6145
	 Texture	 0.3248	 1.0000	 0.1773
	 Greenness	 0.6828	 0.1773	 1.0000

	 Canonical band	 First component	 Texture	 Greenness

	 First component	 1.0000	 0.3802	 0.6828
	 Texture	 0.3802	 1.0000	 0.2142
	 Greenness	 0.6828	 0.2142	 1.0000
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parameters of the forest cover as explained in 
section 3.4. Figure 5 displays the bitmap of the 
images of 1989 and 2001. The bitmaps were 
also used to assess the temporal change of the 
forest cover as explained in sections 2.2.5, 3.1 
and 3.2.

Vector change

In a multispectral image gη(r) of η bands, a 
pixel is a vector of η elements

	 r = {b1, b2 . . . bη}	 (2)

Where bk is the value of the pixel in the k 
− band. The interval of variation of bk is 0 ≤ bk 
≤ 2n-1, where n = 8 in most cases. The set of 
vectors {ri} forms the vector field associated 
to the multispectral image (Lira and Rodriguez, 
2006; Lira 2010), represented as

	 U ={ri }	 (3)

Where the hooks {} indicate the set of 
vectors associated to an image. Let ri be the 
vectors of the vector field of the 1989 image 
and rj those of the 2001 image. According 
to this, two vector fields are considered. The 
region of the vector field associated to the 

forest masses experience a change from the 
year 1989 to 2001. A measurement of such 
change is required to asses the modification of 
the forest cover.

The vector change can be measured in 
several ways: (a) By means of a measurement 
of similarity between the vectors {ri} and 
{rj} (Sanchez Flores and Yool, 2007; Warner, 
2005). (b) Using the principal component 
analysis of the whole ensemble of bands of 
the two images (Canty, 2007). (c) Using the 
principal component analysis of the set of 
canonical variables of the two images. 

The principal component analysis was 
applied on two sets of bands, namely

(i) Principal component analysis of the 
ensemble of bands.

The principal component analysis was 
applied to the ensemble of bands of the 
images 1989 and 2001. None of the first three 
components shows valuable details to quantify 
the change of the forest cover.

(ii) Principal component analysis of the set 
of canonical variables.

Figure 4. Combined histogram of 
indicators of image 1989 (a) and image 

2001 (b).
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The vector change was measured using the 
principal component analysis of the ensemble 
of canonical variables of the images 1989 and 
2001. Six canonical variables, three variables 
from the image of 1989 and three from the 
image of 2001 determine such ensemble. 
Therefore, a 3-dimensional vector field is 
defined for 1989 and a 3-dimensional vector 
field for 2001. This vector field experiences a 
change from 1989 to 2001. This vector field 
change can be measured by the use of principal 
component analysis applied on the ensemble of 
6-canonical variables for 1989 and 2001. The 
first component carries most of the variance of 
the vector change from 1989 to 2001. Figure 
6 shows the first principal component of the 
vector change. 

The regions of the vector field that did 
not experience a change from 1989 to 2001 
have a high degree of similarity. Those that 
did change have a low similarity. That change 
is depicted in the first principal component. 
In figure 6, the values of the measurement 
of similarity and principal components are 
standardized at the interval [0, 255], where 
zero indicate no change and 255 the maximum 
change. This is translated into an image where 
forest cover change is gradually appreciated 
from dark tones to bright tones. Forest cover 
alteration is appreciated in bright tones, the 
brightest, the greater the change.

Multivalued probabilistic logic

The canonical expansion produced three 
variables Xi that characterize the spatial-
spectral state of the forest vegetation of the 
scene. These variables can be combined using 
multivalued probabilistic logic (Nilsson, 1986) 
by means of the expression

	 	 (4)

Where X is the resulting image of such 
combination. Image X is the probability of 
occurrence of forest cover.

Equation (4) requires the variables Xi to 
be considered as probabilities. To accomplish 
this, it is assumed that the pixel distribution 
values of the variables Xi are probabilities. In 
this sense, the higher the value of the pixel in 
Xi, the higher the probability. The histogram of 
Xi characterizes such probability distribution. 
The higher the value of a pixel in Xi the higher 
the probability of occurrence of a forest cover. 
Therefore, the multivalued logic allows the 
corroboration that the selected variables 
characterize the forest cover properly. Figure 
7 shows the multivalued probabilistic logic 
for the set of variables of the images of 1989 
and 2001. The results for the multivalued 
probabilistic logic are high probability for forest 

Figure 5. Bitmap of the images of 1989 (left) and 2001 (right).
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Figure 6. (a) First principal component of 
vector change. Forest cover alteration is ap-
preciated in bright tones, the brightest, the 
greater the change. Forest mass appears in 
medium and dark gray. (b) Amplification of 
two selected zones from the top left (left) 

and from the middle (right) of figure 6a.

a)

b)

zones (dark tones) and low probability for the 
rest of image (medium and bright tones). 
In multivalued probabilistic logic, distinctive 
probabilities occur for the forest masses and 
the rest of the image. 

Digital elevation model

An interferometric pair from the RADARSAT 
1 satellite was used to generate a digital 
elevation model (DEM) of the area of study. 
This interferometric pair was acquired from 

the Alaskan Satellite Facility by means of an 
ASF Project Agreement. Table 2 shows basic 
parameters of this interferometric pair.

The DEM is depicted in figure 8. A cross-
reference of this DEM with the bitmaps that 
depict the forest cover change (Figure 5) 
permits the estimation of the elevations of 
the forest masses and an identification of the 
areas of forest loss. With the cross-reference, 
forest loss-type may be related to altitude as 
explained in section 3.5.



J. Lira Geofísica Internacional

April - June 2014      127

Figure 7. Multivalued probabilistic logic of 
1989 (a) and 2001 (b).Forest masses appear 
in dark gray. Borders from the bitmap of 
2001 are overlaid with the probabilistic logic 

of 2001.

a)

b)
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Results

Production of a bitmap

The classification with the region−growth 
algorithm using the canonical variables 
produced the bitmap of the years 1989 and 
2001. The bitmap was used as the basis to 
evaluate the morphology of the forest areas 
(Figure 5 and Table 5). Figure 9 depicts an 
overlay of the bitmaps of 1989 and 2001. 
The forest cover change is shown in red. 
The reduction of forest masses occur in the 
perimeter and in numerous spots within the 
forest.

Vector change

Two methods were considered using the 
principal component analysis applied to the 
original bands or to the set of variables (section 

2.2.4). Best result was obtained with the set of 
six canonical variables from the images 1989 
and 2001. As figure 6 shows, the bright spots 
that indicate forest change match well with the 
borders of the bitmap of 2001. In this figure, 
the perimeter of the forest cover coincides well 
with the edges produced by the bitmap. 
	

Figure 6 is an overlay of the first principal 
component of the ensemble of canonical 
variables with the bitmap of 2001. In this 
component, forest cover changes are depicted 
in varying shades of gray. Instead, the bitmap 
depicts the total forest loss. Therefore, some 
of the gray shades indicating medium or 
moderate forest cover change are not marked 
by the bitmap. These results corroborate that 
the use of variables, instead of the original 
bands, is an appropriate model of the spectral 
response of the forest cover.

Figure 8. Digital elevation model derived from a RADARSAT 1 interferometric pair. Elevation scale is shown on 
the left-bottom.
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Multivalued probabilistic logic

The combination of the variables of forest 
cover with multivalued probabilistic logic 
produced an enhancement of the forest zones 
and an inhibition of the rest of the image. 
This corroborate that the selected canonical 
variables are well adapted to characterize the 
spatial-spectral response of the forest masses 
(Figure 7). The histogram of the probabilistic 
image is bimodal with a sharp decrease around 
digital value of 80. A sharp change in gray 
shades from forest cover to non-forest occurs 
in this probabilistic image. The borders coincide 
well with the multivalued probabilistic logic 
of image 2001. Therefore, when the borders 
from the bitmap of 2001 are overlaid with the 
probabilistic logic of 2001 such sharp changes 
is identified.

Morphology of forest cover

With the bitmap associated to the segmentations 
of the forest cover, it is feasible to quantify the 
morphologic parameters of the forest zones. 
These morphologic parameters are area, 
number of patches, density of patches, form 
of the landscape and fractal dimension. The 
first three parameters determine the extension 
of the forest cover. The last two parameters 
describe the complexity of the forest cover.

Table 5 summarizes the values of these 
parameters. The area associated to each pixel 
is 28.5 × 28.5 m2 = 812.25 m2. The definition 
and units of these parameters is the following

• Area - Number of pixels of the forest area 
of the bitmap multiplied by the area associated 

Table 5. Morphologic parameters of the forest areas.

Figure 9. Overlay of bitmaps of 1989 (white 
plus red) and 2001 (white). Change appears 

in red.

	 Image	 Patches	 Area (m2)	 Density/patches 	 Form/landscape	 Perimeter/Area
				    (m-2)		  (1/m)

	 1989	 3,691	 1,028,905,504	 1.0049	 53.9582	 1.3341
	 2001	 4,002	   926,230,606	 1.0896	 58.8024	 1.3267
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to the dimension of the pixel. This quantity is 
expressed in m2.

• Patches - Number of connected zones 
under connectivity 8 that include the forest 
area. This quantity is dimensionless.

• Density of patches - Number of patches 
divided by the forest area. This quantity is 
expressed in m-2.

• Form of the landscape - Measure of the 
aggregation or desegregation of patches. As 
the value of this parameter increases, the 
patches become increasingly disaggregated. 
This quantity is dimensionless.

• Perimeter/Area, fractal dimension - 
Double of the slope of the line of regression 
of the logarithm of the patch area against the 
logarithm of the patch perimeter. This quantity 
is expressed in 1/m.

From the year 1989 to the year 2001, the 
forest area was reduced by 102,674,898 m2 
(Table 5). The fragmentation and reduction of 
the forest areas is the result of illegal cutting, 
fires and plagues (Aceves Pastrana, 2005).

The values of the morphologic parameters 
of table 5 prove clearly that the forest area 
(the landscape) becomes more complex as 
forest mass is lost. A great number of patches 
of diverse size form the forest areas depicted 
in the bitmap; the set of patches is equal to 
the total area occupied by the forest mass. For 
a quad-core i7 PC running at 3.4 GHz at 64-bit 
operating system, the total computing time for 
the images used in the present investigación is 
less than 10 minutes.

Cross-reference of DEM with forest cover

A cross-reference of DEM with forest cover 
(bitmap) is shown in figure 10. Table 6 resumes 
forest changes related to the elevation of the 
study area. The boxes in figure 10 indicate 
several zones of major forest change (Table 6).

As figure 10 shows, minor changes in 
the forest areas occur in the periphery and 
in numerous spots inside the forest. Major 
changes are localized in two zones: to the 
north and to the southeast in two large gullies. 
The forest cover of the study area occurs in the 
environs of two major volcanoes. The elevation 
variation in this area is from the hills at 2105 
meters to the summit of the highest volcano at 
5543 meters. The forest cover are present from 
the hills to an altitude of about 4000 meters. A 
cross-reference of DEM with the bitmap allows 

the localization of forest cover in relation to the 
altitude of the study area. Therefore, on the 
grounds of this cross-correlation the elevation 
of forest change occurrences can be identified. 
Table 6 has three columns. The left column 
shows five selected areas where forest change 
occurs. The column on the middle indicates the 
elevations of that change, and the column on 
the right the degree of change.

Conclusions

A segmentation of the areas that occupy the 
forest masses in a zone to the east of the 
Mexico City generated a binary image dubbed 
the bitmap. This bitmap was produced using 
an algorithm of region−growth that employs as 
input the canonical variables that characterize 
the state of the spatial-spectral response 
of the forest masses. From the bitmap, it is 
possible to obtain the morphologic variables 
that describe the spatial structure of the forest 
areas. The associated vector change to the 
vector fields of the images of two dates in a 
lapse of twelve years allows the quantification 
of the degree and location of the change of the 
forest mass. The use of a DEM obtained from an 
interferometric pair allows the identification of 
elevation-related spots where changes in forest 
cover occur. A search of the social, geographic 
and physical situation of the forest masses 
in area of study (Aceves Pastrana, 2005) 
complement the image analysis developed in 
this research. From these bases the following 
conclusions are derived 

i). Such fragmentation is heterogeneous, 
within the forest mass and some edges of the 
forest area. The density of patches increases 
since the area is reduced and the number of 
patches increases (Table 5), this result in an 
increase of heterogeneity of the landscape 
formed by the forest cover patches.

ii). The morphologic structure of the areas 
becomes more complex as the forest area 
fragments. The form of the landscape (Table 
5) gives the measurement of the complexity 
of the forest area. The value of this parameter 
increases from 1989 to 2001 indicating that 
the complexity of the forest cover area has 
increased.

iii). The forest spots are reduced in a 
considerable area. The area of the forest cover 
is reduced by slightly more than 100 km2 
(Table 5).

iv). The canonical variables describe better 
the spatial-spectral state of the forest areas than 
the original bands. The application of principal 
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Table 6. Modification of forest areas in relation to the elevation.

Figure 10. Cross-reference of DEM with bitmaps of 1989 (yellow plus red) and 2001 (red). Yellow depict change 
areas. Boxes show three alteration zones (see table 6).

Year 1989 – Zone	 Height  (m)	 Observations

A	 2650 –3960	 minor changes
A1	 3050 – 3960	 mayor change
B	 2550 – 3960	 minor changes
C	 2500 – 3830	 minor changes
C1	 3050 – 3830	 minor change

Year 2001 – Zone	 Height (m)	 Observations

A	 2850 – 3950	 minor change
A1	 3160 – 3960	 mayor change
B	 2550 – 3960	 minor change
C	 2600 – 3830	 minor change
C1	 3250 – 3830	 mayor change
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component analysis to the ensemble of the 
12-bands of the images of 1989 and 2001 did 
not produce meaningful results. The canonical 
variables are designed to characterize the 
spatial (texture) and the spectral (reflectivity 
and greenness) response of the forest cover. 

v). The multivalued probabilistic logic 
corroborates that the canonical variables 
provide an adequate description of the forest 
areas.

vi). The cross-reference with the DEM 
identified small spots of deforestation at higher 
altitudes and mayor changes of forest cover at 
lower altitudes (Table 6).
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