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RESUMEN 
En los Ultimos aiios se han publicado una serie de articulos que se ocupan de la modelizaci6n de campos potenciales. Aquf se 

disctiten las desventajas de algunos metodos que hacen uso de expresiones analfticas para el campo potencial. 

Se presenta un algoritmo universal para la modelizaci6n de cuerpos discretos de regular construcci6n. Esto se basa en el 
teorema discreto de convoluci6n. Se describe un procedimiento .para eliminar los efectos de contomo en los calculos. Para 
acelerar Ia computaci6n de este procedimiento se utilizan las tecnicas de Ia transformada de Fourier Rapida. 

PALABRAS CLAVE: Modelizaci6n nipida, campos potenciales, transformada de Fourier. 

ABSTRACT 
In recent years many papers dealing with potential field modelling have been published. The main disadvantages of some 

methods using analytical expressions for potential field spectra are considered. 

A universal modelling algorithm for potential fields of regularly constructed discrete models is presented. It is based on the 
discrete convolution thorem. To insulate the output from artifacts of undesired periodicity a complete treatment of edge effects is 
described. In order to speed up the computation, the fast Fourier transform and its symmetries are utilized. We are dealing with a 
discrete convolution of two well behaved functions; more over, one of them having final support. By computing Green's function 
accurately, no other errors except for round-off errors can affect the data within the desired output range. 

KEY WORDS: Fast potential field modelling, FFT. 

INTRODUCTION 

Fundamentally, the calculation of gravitational and 
magnetic effects of subsurface structure rests on general 
attraction laws of potential fields. As is well known, the 
gravity as well as other potential fields of arbitrary struc­
tures can be expressed as a 3-D convolution of a Green's 
function (representing the effect of the point source) with 
the distribution function of physical parameters within the 
structure-the source strength. According to the convolution 
theorem, the Fourier transform of the convolution is just 
the product of the individual Fourier transforms (Brace­
well, 1965). 

So, it seems to be very easy to compute potential fields 
efficiently . using the fast Fourier transform (FFT). B.11t, 
things are not always what they seem to be. To solve the 
problem in a reasonable way, an understanding of digital 
filtering is very important. Mainly the relations between 
discrete and continuous Fourier transform and the convolu­
tion theorem should be kept in mind .. 

In the last three decades considerable attention has 
been devoted to finding an optimal algorithm from the 
viewpoint of accuracy and speed of computation. Many 
papers have been published, everyone of l'ncm promising a 
new and effective method for computing the potential field 
of several geological bodies. 
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The most used algorithm, especially as a tool in solv­
ing inverse problems, was developed by Parker (1973). He 
made use of a Taylor series expansion to express the po­
tential field due to a layer with varying top and bottom 
topography. Bhattacharyya and Navolio (1975) derived a 
modelling algorithm for arbitrary bodies using descompo­
sition into homogeneous prisms and the continuous con­
volution theorem to compute the field of individual prisms. 
A potential field expression for arbitrary polyhedrons in 
the frequency pomain was derived by Pedersen (1978) . 
using transformation of volume integrals into surface 
integrals, and later simplified by Hansen and Wang (1988). 

Disregarding particular advantages of individual algo­
rithms, there are mainly two disadvantages inherent to all 
the above-mentioned methods. First, the analytical expre­
ssions derived for the spectra are not optimal from numeri­
cal point of view. Usually the occurrence of infinite series, 
transcendental functions or the possible arisal of singulari­
ties is rather cumbersome. Second, they require computa­
tion of the inverse Fourier transform of a function having 
generally infinite support. Conversion into the spatial 
domain is done by the inverse FFT, and therefore replacing 
the continuous inverse Fourier transform by the inverse 
discrete Fourier transform {IDFI) leads to aliasing in the 
spatial domain. 
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Especially the second fact, well known from digital 
filtering, has never been discussed in the above-mentioned 
papers. An excellent approach to overcome this problem 
with minimum numerical expense was given by Chai and 
Hinze (1988). 

Other procedures treating potential field modelling in a 
strictly numerical way (Mesko, 1977; Sideris, 1985; 
Bezvoda, 1987), that means, using the discrete convolution 
theorem, have proved to be more promising. Their one and 
only shortcoming is a low order approximation of the 
Green's function and, partly, an incomplete treatment of 
edge effects. 

This paper deals with a universal modelling algorithm 
for potential fields of regularly constructed discrete mo­
dels. The relations between potential field modelling and 
digital filtering are considered and some numerical aspects 
are discussed. To simplify matters all formulae are derived 
for the 2-D case. The extension to 3-D problems is quite 
simple. 

FUNDAMENTAL RELATIONS 

Any potential field anomaly g(jj) can be expressed as 

a 3-D convolution 

(1) 

of the Green's function F (representing the effect of a point 
source) with the distribution function of physical parame­
ters within the source region - the source strength p. Here­
in p denotes the 3-D position vector. For 2-D structures 
integration over the co-ordinate in strike direction, e.g. y, 
can be performed analyticaly, and (1) changes to 

(2) 

where r = ~ x2 + z2 denotes the position vector within a 
plane perpendicular to the strike of the structure under con­
sideration. 

In praxis, we are often interested in computing a finite 
number of potential field data at distinct points on a hori­
zontal plane r;, i = 1, ... , N. The continuous proble!TI can 

be discretized with the assumption that the source strength 
can be represented by a finite number M of coefficients, 
that is, 

M 

p(r) = LP/PAr) (3) 
j=l 

A widely used assumption is that the source is homoge­
neous within a number of subregions (elementary bodies), 
that means 
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fP .(r)={l 
J 0 

j= l, ... ,M (4) 

Herein !.j denotes the area of cross-section of the j-th sub­
region. Inserting (3) into (2) leads to 

M 

gi = ffF (;=; -r'; 'LPjfPAr')d3r' (5) 
j=! 

M 

=""'F. ·P· £.... ,_, J i= l, ... ,N (6) 
j=! 

where 

F J."f F - -, d2-' i-j = Jr. . (r; -r) r 
J 

(7) 

Assuming !.j, j = 1 , ... . , M to be a polygonal cross-sec­
tion, formula (6) in connection with (7) can be easily 
solved using, e.g., the well known algorithm of Talwani 
(Talwani et al., 1959). This method may be particularly 
appropriate when results of reflection seismic survey are at 
hand. But, it is not well suited for all problems. If the geo­
logical structures that have to be modelled are very com­
plex, the computational effort increases rapidly. Such a si­
tuation may occur, if geophysical measurements for envi­
ronmental studies or archeometry have to be interpretated. 

That is why the convolution model has to be employed. 
As it can be seen, the discrete Green's function (7) repre­
sents the impulse response of a linear filter. Thus, equation 
(6) can be considered as a finite discrete convolution. In 
the special case of the source presumed to be composed of 
equal subregions (e.g., rectangular prisms) regularly dis­
tributed within several horizontal layers of arbitrary thick­
ness as shown in Figure 1, (6) changes to 

i = l, ... ,N (8) 

Herein K and N denote the number of layers and subre­
gions whithin the layer, respectively. 

Assuming further the observation points to be nodes of 
a regular grid with constant elevation corresponding to 
discretization of the source region in the horizontal plane, 
{Fi·i.k} becomes a number of shift-invariant filters. Applica­
tion of the discrete convolution theorem (see, e.g., Elliot, 
1987) leads to 

K 

G,.=l<l>,._t·R,.,t, n=l, ... ,N 
k=l 

(9) 



1 N -
1 

2 

K 

Fig. 1. 2-D model for computation of gridded potential field data 
( • denotes nodes of the grid). 

where {G,.}N_ denotes discrete Fourier transform (DFr) 
n-l N N 

of the ~t of potential field data {gi} i=l { <1> n,k.} n=l and 
{ R,,k.} n=l denote DFrs of the Green's function and source 
strength for the k-th layer, respectively. 

COMPUTATION OF THE GREEN'S FUNCTION 

The Green's function is determined by the choosen ele­
mentary body, which depends on the nature of the indivi­
dual potential field as well as on the desired accuracy. For 
example, in gravity or magnetic field modelling the ele­
mentary body is often represented by a rectangular prism. 
The corresponding expression for Green's function can be 
computed with the aid of formula (7). Thus, for the gravity 
and magnetic field (measured at horizontal plane z = 0), 
respectively, one obtains 

2 4 l+m 

~g(x,)= YL L(-1) 
1=1 m=3 

[(bm -x,.)lnr,.,l,m -b1arctan( b:!x, )] (10) 

where 
x,.=n·&, n=l, ... ,N, (12) 

(13) 

(14) 
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c1 = sin(2i'), (15) 

c2 = cos(2i'), (16) 

(17) 

i' = arctan{stfnn ~) . (18) 

Herein y, A., i and T0 denote the gravity constant, the angle 
between north direction and strike of the 2-D structure, the 
inclination and the undisturbed Earth's magnetic field, res­
pectively. The dimensions of the elementary body, as its 
top and bottom depth as well as its leJt and right border, 
are described by the parameter vector b . 

If the Green's function varies only slowly with position 
within the elementary body, it holds approximately that 

respectively, 

F- hh F - -,)d2-, .. = (Y · -r r 
1-J r.j I 

"j +/!u/2 :z 
J JF (Xi -x',z')dz' dx' 

Xj +/!u/2 Z! 

xj+tu/2 

= j [FS(Xi -x',z2 ) -FS(Xi -x',z1)] dx' 
Xj+/!u/2 

(20) 

(21) 

(22) 

where ri and FS denote the center of mass of the elemen­
tary body and the integral of function F over z', respecti­
vely. The weights wi depend on the choosen method of nu­
merical integration (for discussion see Bezvoda et al., 
1992). 

In the sense of numerical mathematics the first ap­
proach is equivalent to discretization of the integral (2), 
and, the second approach corresponds to performing ana­
lytic integration in the vertical direction and numerical in­
tegration using the trapezoid rule in the horizontal direc­
tion. From the viewpoint of geophysical modelling the first 
approach describes the representation of real structures 
with the aid of point sources (3-D case) or horizontal 
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straight lines (2-D case), whereas, the second approach co­
rresponds to representation of real structures using vertical 
line sources passing through the center of mass of the ele­
mentary body (3-D case) or infinite vertical stripes (2-D 
case). 

The first concept in connection with digital filtering 
was originally followed by Mesk6 (1977), the second by 
Bezvoda (1987). Both methods have been proved to be ve­
ry fast, since the approximate Green's function can be 
computed efficiently. But on the other side, they are res­
tricted to sources at depth greater than the grid spacing 
because of the variations of continuous Green's function 
are presumed to be very small within every elementary 
body. In general, they cannot be applied to interpretation 
of geophysical measurements for environmental studies or 
in search for buried antiquities. Applied to anomalous 
source strength distribution located near the surface, these 
modelling techniques lead to great errors. 

Figure 2 gives a comparison of accuracy of the three 
methods (herein a 3-D example is analyzed). The gravity 
of a prism with top and bottom depth of 0.5 m and 1.5 m, 
respectively, and density p = 1.0 g cm-3 was computed at 
noctes of a 2 m x 2 m grid. The prism was subdivided into 
9 subprisms arranged parallel to each other. Employing the 
method of Mesk6 (1977), each subprism will be approxi­
mated by locating a point mass at its center. Bezvoda's 
(1987) method uses approximation of each subprism with 
the aid of a vertical line element through the center of 
mass. Figure 2a shows the gravity field of the whole prism 
computed using program NEW3D published by Nagy 
(1988). Figure 2b-d represent procentual error of computed 
gravity field using (b) the herein developed method, (c) 
Bezvoda's (1987) method and (d) Mesko's (1977) method. 
For the field is symmetric with respect to co-ordinate axis, 
only the first square is drawn. This clearly shows the ad­
vantage of the described method. 

THE TREATMENT OF EDGE EFFECTS 

From the viewpoint of digital filtering, formula (9) re­
presents a number of discrete convolutions of a "signal" or 
data set with a "response function" of a digital filter. He­
rein, the Green's function and the source strength denote 
respectively the signal and filter. 

The discrete convolution theorem presumes two cir­
cumstances which are not universal. First, it assumes that 
the input signal is periodic. Second, the convolution theo­
rem takes the duration of the response to be the same as 
the period of the signal. 

Since we are chiefly interested in a response function 
whose duration M is shorter than the length of the data set 
N, this problem can be solved very easily. One simply ex­
tends the response function to length N by padding it with 
zeros. 
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The first one is a little bit more complicated. After Ka­
nasewich (1981), convolution can be considered as a "slid­
ing" of the filter inverted in space over the signal. Since 
the convolution theorem assumes the data to be periodic, it 
will falsely compute the frrst Mr+J output values with some 
wrapped-around data from the far end of the data set, 
where M(+) denotes the number of so-called positive indi­
ces of the filter. The same holds for the last M(-) output 
values. Correspondingly, M(-) denotes the number of so­
called negative indices of the filter. So, we have to extend 
the discrete Green's function by M{+) values at the begining 
and by M(-) at the end to set a buffer zone. 

Assuming the filter coefficient p[N/2],k to correspond 
with spatial co-ordinate x=O, it holds that 

(24) 

MH = [ ~]-1. (25) 

where [N/2] denotes the greatest integer value of N/2. 

Note that the response function, zero padded out to the 
new duration N1 - N+ (M-1 ), should be arranged in wrap­
around order. Generally this means the following arrange­
ment 

p[Ntl2],k, p[Ntl2] + 1,k, ... , p[Nt>k,pl,k, ... , p[Ntl2]- l,k, 
k=l. ... .K. 

(26) 

Combining these operations (see Figure 3), we effectively 
insulate the output from artifacts of undesired periodicity 
in the desired output range. 

USEFULNESS OF THE FAST FOURIER 
TRANSFORM 

The modelling of potential fields in the frequency do­
main rather'than in the spatial domain is appropriate for 
the processing of large data sets. Because the DFT can be 
computed in O(N log2N) operations with the aid of the 
FFf, the computation of potential fields using equation (9) 
requires 0(3K•Nlog-JV) operations instead of O(K•NJ:) ope­
rations required by (8). Therefore, to speed up the numeri­
cal evaluation of spectral representation of both the source 
strength and the Green's function, the symmetry of the 
DFT can be used to compute the transform of the two real 
functions p and F simultaneously. 

Let us introduce the auxiliary complex variables z[n] 
by the notation 

z,. =p,. +iF,.. n=l, ... ,N1. (27) 
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Fig. 2. Comparison of accuracy of modelling algorithms utilizing the discrete convolution theorem. (a) synthetic model and its gravita­
tional attraction computed using program NEW3D (Nagy, 1988); percentual error distribution of (b) the described algoritlun, (c) 

Bezvoda's (1987) method and (d) Mesko's (1977) method, respectively . 

From the reality of the functional values p,. and F,. it 
follows, when the convention 

(2i) 

is used 

(29) 

and, consequently, 

9lRm =-!(9lZm + 9lZN1-m+2) (30) 

(31) 

. 
9(<1> m =! ( _gzm + _gz N1 -m+2) 

5<1> m =-i (9tZ'm- 9(ZN1-m+2) 

m=l, ... ,N1 

(32) 

(3_3) 

(34) 

where Zm, Rm and <l>m are the DFI's of the sets z,., p,. and 
F ,., respectively. ~ and ~ denote respectively real and ima­
ginary part of a complex number. 

As convolution in space domain is equivalent to 
multiplication in frequency domain, thus 

(35) 
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Fig. 3. Storage arrangement of the Green's function (signal) and 
the source strength (filter). 

where Gm denotes the DFf of the potential field. It follows 
that 

za. =-l((9lZ .)' -(zz.)' -( 9lZ", __ .,)' + 

( zz", -•+2 r l (37) 

Then the potential field can be easily obtained by 
application of the inverse FFf to the set G m· 

CONCLUSIONS 

In this paper a universal algorithm for potential field 
modelling based on digital filtering is presented. Using the 
discrete convolution theorem, the problem is transformed 
into the frequency domain where convolution changes to 
simple multiplication. To speed the calculation process, the 
FFf and its symmetries are utilized. A technique to treat 
edge effects is completely described. No other errors 
except for round-off errors and those propagated from the 
approximation of the Green's function can affect the data 
within the desired output range. 

The price we have to pay for simplicity and rapidity is 
that inherent to all Fourier transform techniques: potential 
field data are obtained only at nodal points of a grid 
corresponding to the discretization of the model on a single 
surface with constant elevation. 

The algorithm is well suited for all interpretation tech­
niques based on forward modelling, such as trial and er­
ror, Monte Carlo method, Simulated annealing (see, e.g., 
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Tarantola, 1987) or algorithms based on evolution strategy. 
Notwithstanding its higher accuracy in comparison to con­
ventional modelling techniques utilizing the convolutional 
model, the forward modelling algorithm works very fast. 
Thus, it can be done many times in a short time interval. 
The change of parameters as well as the choice of best fit­
ting model depends on the employed interpretation tech­
nique. 
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