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RESUMEN 
Se presenta un algoritmo para la inversion de datos del campo potencial en el dominio de las frecuencias utilizando la trans­

formacion de Backus-Gilbert. Se describe uno de los problemas fundamentales en todo proceso de interpretacion geofisica como 
es la soluci6n del problema directo y del problema in verso. La comparacion de los resultados en el dominio del espacio y de las 
frecuencias muestra las ventajas del algoritmo aqui presentado. Se demuestra la efectividad del algoritrno solucionando tareas de 
geofisica ambiental como la detecci6n de depositos antiguos de desechos industriales. Esta tecnica interpretativa es aplicable 
tambien a la interpretacion de investigaciones geofisicas en sitios arqueol6gicos. 

f ALA BRAS CLAVE: Inversion Backus-Gilbert, exploraci6n geofisica. metodos de potencial. 

ABSTRACT 
An algorithm for the inversion of potential field data in the frequency domain using the Backus-Gilbert method is represent­

ed. This leads to an underdetermined system of linear algebraic equations. It can be easily solved because the matrix has non­
zero elements only on its main diagonal. Since the solution represents a harmonic function, its extremes are located at the bound­
ary of the model. This leads to unacceptable distribution functions of physical parameters. Therefore the concept of weighted 
minimum length was introduced. Advantages and drawbacks of weighting in the frequency domain are discussed. Theoretical as 
well as practical examples suggest that the algorithm may be applied in practice. A comparison of the Backus-Gilbert inversion 
in space domain and frequency domain from a numerical point of view shows the advantages of the proposed algorithm. 

KEY WORDS: Backus-Gilbert inversion, geophysical exploration, potential field methods. 

INTRODUCTION 

The aim of potential field interpretation in geophysical 
exploration or environmental studies is to derive a mean­
ingful model of subsurface structure from data measured at 
the surface. As is well known, any potential field anomaly 
can be generated by an infinite number of distributions of 
physical parameters. This leads to an inverse problem 
which, in general, is nonlinear and ill-posed. 

In order to treat this problem numerically, discretiza­
tion and orthogonal decomposition of the distribution func­
tion of physical parameters must be applied. By fixing the 
geometry of the model, the nonlinearity can be avoided. 
One commonly used method is subdividing the region un­
der the profile or area of investigation into a number of 
cells, where it is assumed that the source of the anomalous 
potential field lies within this region. ' 

Even if the problem were linearized in the described 
manner and the number of measurements were much 
greater than the number of cells, the derived system of 
!quations would still be poorly conditioned, and using con­
ventional least squares estimation of the model parameters 
.vould fail. One way to overcome this problem is to add 
;orne information not contained in the data or in the equa-
:ions and tO introduce additional constrains. • 

Mottl and Mottlova (1972) used integer linear pro­
~ramming to optimize a so-called "shape preference" func-
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tion. Green (1975) and Chavez and Garland (1983) found a 
model with minimum distance from an initial guess using 
the Backus-Gilbert method (Backus and Gilbert, 1967). 
Safon et al. (1977) used linear programming and con­
straints on static moments of the mass distribution. Last 
and Kubik (1983) searched for a solution with maximum 
compactness to fit the anomaly in a weighted least squares 
sense. This method was later broadened by Guillen and 
Menichetti (1984), who used a minimum constraint on the 
moment of inertia of the mass distribution with respect to a · 
given line passing through the center of mass. 

Especially from the viewpoint of numerical realization, 
the Backus-Gilbert approach seems to be very promising. · 
It leads to the minimization of the distance of an accept­
able model from a prior estimate of model parameters. In 
the sense of matrix algebra this leads to a simple minimum 
length or weighted minimum length solution. The system 
of equations can be solved using standard numerical pro­
cedures. One advantage is the simplicity of the algorithm, 
another that data variances do not influence the estimate 
but only the a posteriori variances of model parameters 
(Parker, 1971). 

Inversion of potential field data can also be understood 
from the viewpoint of linear inverse filtering techniques. 
These techniques rest on the concept of an equivalent layer 
(Grant and West, 1965). Assuming the field to be known 
on a horizontal plane, the density distribution of a thin 
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layer of prescribed depth can be uniquely determined. As 
the number of observations is limited in real cases, only a 
finite number of density values within the layer can be 
determined. Gunn (1975) used multichannel Wiener filters 
to detect bodies with specified density-magnetization ra­
tios. Kiss (1976) described the application of single chan­
nel filtering method to magnetic data measured on profiles. 
An equivalent concept was used by Tsokas and Papaza­
chos (1992) for magnetic field data measured on a finite 
horizontal plane. The main disadvantage of the method is 
that one obtains only a projection of localization and hori­
zontal extension of the inhomogenities into a single hori­
zontal layer. The depth dependency of the source strength 
(density, magnetization) cannot be resolved. 

The method described in this paper tries to combine 
these two concepts. Essentially it is based on the concept 
of the Backus-Gilbert inversion algorithm. To speed up the 
computations and to allow weighting under global view­
points, the concept of linear filtering in the frequency do­
main will be introduced. 

FORMULATION OF THE DIRECT PROBLEM 

A potential field anomaly g( r) can be expressed as the 
3-D convolution 

of a Green's function F (representing the effect of a point 
source) with the distribution function of physical parame­
ters within the source region, the source strength p. In 
practice, there is a finite number of discrete observation 
points r i· i = 1 , ... ' N. The continuous problem may be dis­
cretized with the assumption that the source strength can 
be represented by a finite number M of coefficientes, i.e. 

M 

p(r)= L.P/PAr) (2) 
j=l 

A widely used assumption is that the source is homoge­
neous within a number of subregions; thus 

_ {1 : reVi . 
qJ A r) = 0 . - V.' J = 1, . re 1 

... ,M. (3) 

Inserting (2) into (1) leads to 

M 

gi = fff F (ri- r') L,pjqJAr')d3r' (4) 
j=l 

M 

=~F. . P· L.., •-J J i=l, ... ,N, (5) 
j=l 
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where 

Fi-j = fffF cri -r')qJj[r'Jd3r' = fffviF (ri -r';d3r' 
(6) 

denoting a discrete Green's function which represents the 
impulse response of a linear filter. Thus, equation (5) can 
be considered as a finite discrete convolution. In the spe­
cial case of a source presumed to be composed of equal 
subregions (e.g., rectangular prisms) regulary distributed 
within several horizontal layers of arbitrary thickness as 
shown in Figure 1, equation (5) changes to 

Herein K and N denote the number of layers and of subre-
gions within the layer. ~ 

1 2 N 
X -

1 

2 

K 

Fig. 1. 2-D model for computation and inversion of gridded 
potential field data ( • denotes nodes of the grid). . 
Assuming further that the observation points are nodes 

of a regular grid with constant elevation corresponding to 
discretization of the source region in the horizontal plane, 
{Fi-j,t)becomes a number of shift-invariant filters. Appli­
cation of the discrete convolution theorem (see e.g. Elliott, 
1987)leadsto 

K 

G,.=L,<I> L.R 
"·" "·" 

n= 1, ... , N. (8) 
k=l 

where G,., n =1 , ... , N denotes the discrete Fourier trans­
form (DFT) of the set of potential field data gio i = 1, ... , N, 
and t:P,.,~c, n= 1, ... , N, denote the DFT of the Green's function 
and the source strength for the k-th layer. 



FORMULATION OF THE INVERSE PROBLEM 

Let an a priori model be represented by its spectral 
coef-ficients R:,k. n=1, ... , N, k= 1, ... , K. The potenti~l 
field generated by the model and its discrete spectrum G0 

can be computed using (8). Assuming the measured data to 
be perfectly accurate, we may write 

K 

G,. = :2, <1> n,k( R~.k + M,.,k ). n = 1, ... ,N. (9) 
k=1 

Here M,.,k denotes the correction of the model parameters. 
For the misfit between the measured and calculated data 

11 G it is found that 

K K 

11G,. = G,.- :2, <l>,.,k R~.k = :2, <l>,.,k M,.,k• n= 1, ... ,N. 
k=1 k=1 

(10) 

The system of equations (10) can now be written as a 
matrix equation 

- A -

11G=<l> · M (11) 

For clarity and to show the properties of the matrix ci>, 
equation (11) can be written in full matrix notation as 

<1>11' .. <1> 0 ... 0 ... 0 ... 0 
• 1,K 

o ... o ... <I>2.1<I>2.K· .. o ... o 

System (11) represents an underdetermined system of li­
near algebraic equations. It has an infinite number of so"lu­
tions and the question arises which of them should be pre­
ferred. We propose to select the minimum norm solution, 
such that the variation of model parameters differs mini­
mally (in a least-square sense) from the reference model. 
The objective function can be written as follows 

(13) 

Here ji denotes a vector of Lagrange multipliers. f1RT is 
the conjugate transpose of Mr. Differentiating 'I' with 

Backus-Gilbert inversion 

respect to M one obtains for the new estimate of the 
model parameters (MENKE, 1987) 

R = R_o +ci>T( cl> ci>T r1/1G (14) 

Application of the inverse DFT yields the desired physical 
model parameters Pi.d = 1, ... .N. k = 1, ... , K. 

This solution has two main shortcomings. It can be 
shown (see, e.g., Ballani and Strommeyer, 1982; Sans6 et 
al., 1986) that the solution is harmonic and, consequently, 
its extremes lie at the boundaries of the region under con­
sideration. This property is not acceptable for real subsur­
face structures. As the resolution of potential field data de­
creases exponentially with increasing depth, this approach 
leads to dispersion of the calculated anomalous distribution 
of physical parameters at the bottom of the model (Chavez 
and Garland, 1983). 

To avoid these features, a weighted measure of length 
may be introduced. The weights are arbitrary, and there­
fore, they can be chosen to fulfil a priori conditions. This 
offers one way to include a priori information into the in-­
version procedure. These measures may be particularly ap­
propriate when the model parameters represent a discre­
tized continuous function. The estimates of model para­
meters must satisfy the minimum condition for the objec­
tive function 

(15) 

A 

where A denotes a diagonal weighting matrix with ele­
ments 

A .. = A,.o . . =A.( k)o. . i,J· = 1, ... , N · K (16) I,J I I,J I 11, I,J, 

and O;.; denotes the Kronecker delta. The weights ~ are re­
lated to any frequency index n and layer index k in the fol­
lowing manner 

i(n,k)=K(n-1)+k, n=1, ... , N, k =1, ... , K . 
(17) 

The corrections to model parameters are obtained from 
(see, e.g., Tarantola, 1987) 

M = J...-Ici>T ( ci>J...-Ici>T( 11G . (18) 

If the weighting matrix equals the identify matrix and R0 

is set to zero, equation (18) reduces to (14). 

MINIMUM LENGTH SOLUTION IN THE 
FREQUENCY DOMAIN 

Now consider the system (18) to be solved. cl>A.-Ici>T de­
notes the symmetrical matrix of the weighted inner prod-

533 



U. Koppelt and J. Rojas 

" 
nets of the row vectors of matrix <}>. From (12) it can be 
seen that the individual rows of <I> are o~thogonal. This 
implies 

(
" "-1" T) <I> A <I> = Fo .. 

. . ' l,j, 

'·' 
i,j=l, ... , N, (19) 

where 

(20) 

If all weights are greater than zero, the matrix inverse 
exists since 

(21) 

where Amax is the maximum weight. Thus 

(22) 

The solution of system (18) can be given explicitly as 

AD <l>~k AG 
Llfill,k = A. ' • Ll II, n=l, ... ,N,k=l, ... ,K (23) 

i(n,k)F,. 

From the viewpoint of the theory of digital filtering, (23) 
represents an inverse digital filtering in the frequency 
domain. Thus 

n = l, ... ,N,k = l, ... ,K (24) 

is a set of K finite discrete frequency response functions. 
They are mapping the potential field data onto the distrete 
source strength distribution within the K layers of the 
model. 

Let us discuss the choice of weights. There are three 
main possibilities. Initially we may choose 

A,. = AK(n- 1)+1 = ... = AK(n- I)+K, n = 1, .. . ,N (25) 

This is equivalent to pure frequency weighting inde­
pendent of the individual layer. But from (20) and (24) it 
can be seen that the A.'s will be reduced and, consequently, 
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the final results are not affected by them. This follows ori­
ginally from the condition of perfect data fitting (see the 
second term of the objective function (15)). Another way 
is to choose 

'l (t) - '] - - '] K -1 K 
A -A K(l-l)+k - ... -A K(N-i)+k, - , ... , (26) 

This corresponds to pure depth-dependent weighting. It 
represents the easiest way of introducing a priori informa­
tion about the depth of burial. This information can be ob­
tained, e.g., from other geophysical data (refraction seis­
mic data, geoelectrical measurements, etc.). The most uni­
versal way of weighting is to choose all weights indepen­
dently. This corresponds to individual frequency depen­
dent weighting for separate layers. But since weighting oc­
curs in the frequency domain, it has to be kept in mind that 
it can only be done globally. For local weighting in the 
space domain see Chavez and Garland (1983). 

For a single layer (K=1), system (11) reduces to an 
even-determined system of linear algebraic equations. As 
pointed out, no weighting can be applied. The model para­
meters are obtained from 

n=l, ... ,N . (27) 

This leads to the concept of the equivalent layer. Based 
on autocorrelation analysis, it has been adapted to geo­
physical prospection for buried archeological remains by 
Karousova and Karous (1989). The main aim of this effort 
is to transform the data into an easily readable format and, 
also, visually to enhance the maps in order to resolve sub­
surface structures that are fairly close together. It may be 
particularly suited to the processing of magnetic maps. 

APPLICATION TO REAL AND SYNTHETIC DATA 

In order to test the algorithm two examples will be 
given. In the first example the algorithm is applied to gra­
vity data, in tLle second example to magnetic data. 

To allow a comparison of results, a synthetic model si­
milarly to the model used by Chavez and Garland (1983) 
was initially chosen. In Figure 2 the model obtained from 
inversion without weighting is shown. This illustrates the 
shortcomings mentioned above: the dispersion of the ano­
maly in the lower part of the model and the poor correla­
tion between the actual and the computed density anoma­
lies because the solution is harmonic. Much better results 
are obtained by weighting in the frequency domain (Figure 
3). Here only depth-dependent weighting was employed. 
No assumptions about the lateral extension of the anomaly 
are made. For the same result with minimum length inver­
sion in the space domain much more a priori information 
is required. In addition to depth-dependent weighting, 
weighting dependent on lateral co-ordinates must be used. 
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Fig. 2. Inversion of gravity data using minimum length inversion in the frequency domain. (a) gravitational attraction of the model; 
(b) synthetic model in comparison with the result of inversion. 
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Fig. 3. Inversion of gravity data using weighted minimum length inversion in the frequency domain. A much improved correlation be­
tween synthetic model and computed density distribution is achieved. 
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In order to detect possible soil pollution in the urban 
area of Leipzig, environmental studies initiated by the De­
partment of the Environment were carried out over the last 
two years. With the aid of historical research and inter­
pretation of old aerial photographs several localities with 
increased potential hazard were selected. The Eichberg, a 
hill in the NE part of the town, was among them. It is a 
sand lens of 2 m to 5 m thickness over a layer of boulder 
clay of about 10m thickness. During 1914-1936 sand was 
obtained from three pits, which were later filled. The task 
of the geophysical investigation was to detect the pits, de­
termine their depths and estimate the material of the fill­
ing. 

Geoelectrical profiling using the Wenner configura­
tion and magnetic measurements of total field anomaly 
were carried out to detect the pits and to determine their la­
teral extension (for theoretical background see Arnaud 
Gerkens, 1989). The two results showed a good agreement. 
Since only the largest pit, in the north part of the area, 
showed a significant magnetic anomaly, it was further in­
vestigated. The depth of the pits was estimated using geo­
electrical depth sounding with Schlumberger configura­
tion. For the largest pit a bottom depth of 3.5±0.5 m was 
estimated. Because the anomaly had a significant strike in 
the EW direction, 2-D inversion techniques could be ap­
plied to several profiles in NS direction. One of them is 
shown in Figure 4. 

The results of the depth estimation were used to select 
depth-dependent weights for the inversion of the magnetic 
data. The weights were chosen to be proportional to the 
mean depth of the layer. The uppermost layer was weight­
ed by unity. Figure 5 shows the result of the weighted mi­
nimum length inversion in the frequency domain. The esti­
mated lateral extension agrees with those found from geo­
electrical data and with estimates using reduction to the 
pole of the total magnetic field anomaly. The shape of the 
pit can be recovered very well, but the distribution of sus­
ceptibilities cannot be recovered exactly. This is mainly 
due to nonuniqueness of the inverse problem in potential 
field interpretations. 

To estimate the composition of the filling, computed 
values of susceptibility are of limited value for they are on­
ly averages of the real physical parameters. Moreover, the 
susceptibility of anthropogenic deposi,ts is not definable. 
Mauritsch and W alach (1990) suggested a statistical me­
thod using horizontal gradient data of total field anomaly 
to estimate the filling o pits. Application of this methed in­
dicated that the pit probably contains trash and rubble. It 
was probably used by the population as a garbage dump. 
The existence of oil drums within the pit, which had been 
suspected, may be excluded. 

DISCUSSION 

The concept of minimum length inversion in the gene­
ralized spectral domain is nothing new in principle. How­
ever, this is the first proposed application to pOtential field 
interpretation for the purposes of exploration geophysics, 
archeometry and environmental studies. 
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Our approach is similar to that of Pee and Martinec 
(1984) for computing density models of the Earth's mantle 
using spherical harmonic expansions of the Earth's exter­
nal gravity field. As a reference model they used the seis­
mic model PREM (Dziewonski and Anderson, 1981). The 
spherical harmonic coefficients of the lateral density varia­
tions were computed using the minimum length inversion 
method. The existence, uniqueness and stability of the so­
lution were proven by Matyska (1987). Martinec and Pee 
(1990) discussed the effect of the solution being harmonic. 
For the computed density model of the Earth's mantle this 
meant that gravitational effects of the core-mantle bound­
ary would be virtually compensated near the Earth's sur­
face, which makes no sense from a physical point of view. 
The autors suggested using additional constraints to over­
come this drawback. From the viewpoint of the theory of 
orthogonal descomposition of continuous functions, the 
concept of spherical harmonics and the concept of Fourier 
series are equivalent. 

Backus-Gilbert inversion in the space domain and in 
the frequency domain are equivalent due to the isomor­
phism between Hilbert spaces. As shown in Figure 4, the 
observed and calculated data differ slightly at both ends-of 
the profile, although a perfect fit was claimed. This is due 
to violating the assumptions of the discrete convolution 
theorem. The signal and filter are not periodic; but because 
of the latent periodicity of the DFT they are treated as if 
they were. In linear filtering this would be called aliasing 
or edge effect. It can be minimized by lateral extrapolation 
of the potential field data before running the inversion pro­
cedure (see, e.g., Bracewell, 1965). 

The main advantage of the minimum length method in 
the frequency domain over the space domain is that the 
computational effort is much smaller. For the misfit bet­
ween calculated and observed data we find for the prism 
model (see, e.g., Green, 1975). 

(28) 

where f denotes the Green's matrix. This is equivalent to 
the system of equations (5). The corrections of the physical 
model parameters can be computed by applying the 
minimum length method 

• (29) 

Since the Gram matrix ffr is symmetric, only If (N+ 1) 
elements have to be actually computed instead of N2. But 
the Green's functions are not orthogonal and therefore all 
elements of the matrix are nonzero. As a matrix inversion 
can be computed with 0( cNJ) algebraic operations, the cal­
culation of !1p with the aid of (29) requires 0( cNJ + 
d(M+ 1) N2) operations, where M = KN. c and dare con­
stants which depend on the chosen algorithm. 
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Fig. 5. Inversion of real magnetic data (see Fig. 4) using weighted minimum length inversion in the frequency domain. The map shows 
the computed distribution of susceptibilities within the model. 

The calculation of !lp using (23) requires computa'­
tion of the DFT of both Green's function and source 
strength for every layer; the multiplication of discrete 
spectra; plus, in order to obtain the correction of physical 
model parameters, the computation of the inverse DFT for 
everly layer. Because the DFT can be computed in 
0(cNlog2N) operations with the Fast Fourier Transform 
(FFT), the whole inversion procedure requires only 0(3cM 
log2N + dM) operations. Figure 6 shows the ratio of re­
quired operations for inversion in the frequency domain to 
the number of operations required for the inversion in the 
space domain. Constants c and d were set to 1. 

CONCLUSIONS 

In this paper a linear inversion method based on the 
Backus-Gilbert approach is proposed for application to 2-
D potential field interpretations. As suggested by real and 
synthetic data examples, our algorithm is a good tool for 
inverting gravity as well as magnetic field data. Unlike 
conventional least-squares methods, which fit the data with 
a uniform source strength, this approach in general leads to 
a nonuniform source strength distribution. The calculated 
distribution function may be smoother than the real struc­
ture, but it reveals the inner structural pattern of the enbed-

537 



U. Koppelt and J. Rojas 

0.50 

0.40 * 

0.30 • 

• 0.20 
• 
• 

0.10 

0.00 
0 5 10 20 25 15 

Number 
30 35 

points of data 
Fig: 6. Ratio of operations required for inversion in the frequency domain and in the space domain as a function of the number of data 

points N. The number of layers is set to K = 10. 

ded body. This makes the method quite advantageous for 
interpretation of geophysical data in environmental studies 
and archeometry. Clearly, the choice of weights is often 
subjective. Yet, we believe that this allows a better incor­
poration of a priori information. In many cases a pure 
depth-dependent weighting may be sufficient. Utilizing 
Fast Fourier Transform (FFf) methods, the algorithm turns 
out to be very fast. As .the data are assumed to be perfectly 
accurate, random noise and regional trend must be re­
moved before running the inversion algorithm. The algo­
rithm may be easily extend to 3-D problems. 

We thank two anonymous reviewers for helpful com­
ments. 
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